1
|
Zhan X, Zhang J, Xing J, Xu J, Ouyang D, Wang L, Wan Y, Luo X. Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk. Foods 2025; 14:1271. [PMID: 40238511 PMCID: PMC11988502 DOI: 10.3390/foods14071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Oat starch plays a crucial role in the stability of oat milk. Enzyme-hydrolyzed oat starch has been demonstrated to be an effective means of improving the stability of oat milk. The effects of different enzyme combinations on the stability of oat milk and the properties of starch in oats were investigated by adding α-amylase, amyloglucosidase, and different ratios of pullulanase and isoamylase. The results showed that as the degree of hydrolysis increased, the molecular weight, amylose content, and side chain length distribution of the starch decreased significantly. Moreover, compared with oat starch, the rheological and emulsifying properties of the starch hydrolysates were improved, and the characterization of emulsion stability showed that a 1:2 ratio of pullulanase to isoamylase promoted effective debranching and thus improved the stability of oat milk. This study demonstrated that debranching enzymes enhance the enzymatic hydrolysis of beverages and improve the physicochemical properties and stability of oat milk.
Collapse
Affiliation(s)
- Xinyan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| | - Jinye Zhang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| | - Jiali Xing
- Key Laboratory of Detection and Risk Prevention of Key Hazardous Materials in Food, China General Chamber of Commerce, Ningbo Key Laboratory of Detection, Control, and Early Warning of Key Hazardous Materials in Food, Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China;
| | - Jinyi Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| | - Dan Ouyang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China;
| | - Ying Wan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| | - Xiaohu Luo
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China; (X.Z.); (J.Z.); (J.X.); (D.O.)
| |
Collapse
|
2
|
Ma L, Liu J, Cheng Y, Frank J, Liang J. Structural features, physiological functions and digestive properties of phosphorylated corn starch: A comparative study of four phosphorylating agents and two preparation methods. Int J Biol Macromol 2025; 292:139146. [PMID: 39725116 DOI: 10.1016/j.ijbiomac.2024.139146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Phosphorylation is an important modification to modulate functional and digestive properties of starches. We systematically investigated starch phosphorylation process parameters by using two different preparation methods (slurry and semi-dry conditions) and four commonly used phosphorylating agents, namely sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), STMP/STPP (99: 1), and sodium phytate (SP). The effects of phosphorylation on physicochemical characteristics, techno-functionalities, digestive properties and structural features of corn starch were analyzed. Phosphorylation with the semi-dry method resulted in higher phosphorus content, degree of double helix, and degree of starch aggregation and lower amylose content and relative crystallinity than with the slurry method. Phosphorylation using semi-dry conditions, irrespective of the used phosphorylating agent, furthermore decreased the gelatinization temperature, enthalpy, the temperature corresponding to the maximum starch mass loss rate and estimated glycemic index of corn starch, and increased solubility, swelling power, peak viscosity, transmittance, and resistant starch content. Of the phosphorylating agents, independent of the used preparation method, STMP and STMP/STPP resulted in the highest degrees of starch phosphorylation and therefore modulated the physiochemical, functional and digestive properties of corn starch more than STPP and SP. The findings of this systematic comparison provide important information to tailor phosphorylated corn starches to meet specific food requirements.
Collapse
Affiliation(s)
- Lei Ma
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jun Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Jianfen Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Cai XS, Wu ZW, Qin JW, Miao WB, Liu HM, Wang XD. Yield, physicochemical properties and in vitro digestibility of starch isolated from defatted meal made from microwaved tigernut (Cyperus esculentus L.) tubers. Int J Biol Macromol 2025; 291:138724. [PMID: 39672406 DOI: 10.1016/j.ijbiomac.2024.138724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
In this work, the effects of microwave treatment (MDT) of tigernut tubers at 540 W for 140, 180, 220, 240 s on the yield, physicochemical properties and in vitro digestibility of tigernut starch (TS) were firstly investigated. MDT significantly reduced the crystallinity and double helix structures of the starch, without altering its native A-type crystal structure. After microwaving for 140 s and 180 s, the extraction yield of TS was significantly increased from 14.92 % to 16.68 %, and a dense gel network structure was found by rheological analysis. In vitro digestion results indicated that the microwaved TS contained more content of rapidly digestible starch (RDS, 76.10 %-80.74 %) but lower slowly digestible starch (SDS, 2.85 %-5.78 %) and resistant starch (RS, 14.94 %-18.12 %); in other words, microwaving increased the in vitro digestibility of TS. This work elucidated the essential features of the response of tigernut starch to microwave treatment, and provided a basic understand of the digestibility of tigernut starch under microwave treatment, making it more suitable for industrial applications.
Collapse
Affiliation(s)
- Xiao-Shuang Cai
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhong-Wei Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Wen Qin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Bo Miao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Zhang X, Peng P, Ma Q, Niu S, Duan S, Zhang Y, Hu X, Wang X. The Quality and Starch Digestibility of Multi-Grain Noodles Are Regulated by the Additive Amount of Dendrobium Officinale. Foods 2025; 14:413. [PMID: 39942011 PMCID: PMC11817478 DOI: 10.3390/foods14030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Dendrobium officinale (DO) is a well-known medicinal and edible plant, yet its impact on the quality of noodles has been infrequently reported. In this study, DO was incorporated into multi-grain flour in varying proportions (0, 2, 4, 6, 8%) to prepare noodles, and their quality was assessed. The percentage increase in DO decreased the cooking loss, whiteness, appearance, and taste of the noodles while simultaneously enhancing their water absorption, adhesiveness, smoothness, and starch digestion resistance. Lower supplemental levels of DO (2-4%) facilitated the water absorption of protein and the formation of a dense and extensive protein network surrounding the partially gelatinized starch, which was characterized by higher relative crystallinity. The highest sensory score (77.4) and greatest content of slowly digestible starch content (38%) were observed in the noodles containing 4% DO. Conversely, higher percentages of DO (6-8%) diluted and compromised the protein network in the cooked noodles, leading to water migration from protein to starch. The excessive polysaccharides from DO tended to complex with fully gelatinized starch, promoting starch aggregation and interactions between starch and non-starch components. This ultimately resulted in the highest adhesiveness and resistant starch content (34%) in the cooked noodles with 8% DO. These findings provide a reference for enhancing noodle quality by regulating the amount of DO added, thereby promoting the application of DO in cereal-based food products.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Shance Niu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
- State Key Laboratory of Crop Improvement and Regulation in North China, Hebei Agricultural University, Baoding 071001, China
| | - Shande Duan
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
| | - Yimeng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.Z.); (P.P.); (Q.M.); (Y.Z.); (X.H.)
| |
Collapse
|
5
|
Chauhan D, Gujral HS, Perera D, Dhital S. Flaking of millets and its impact on bioactivity, pasting, digestibility, structural and thermal properties. Food Chem 2024; 458:140240. [PMID: 38964112 DOI: 10.1016/j.foodchem.2024.140240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Five different millets (foxtail, little, barnyard, kodo and browntop) with and without sprouting were subjected to flaking. Phytic acid and phenolic content tends to decrease significantly, whereas antioxidant activity increased up to 77.32% on flaking of millets. A significant decrease in peak and final viscosity was observed in millet flakes. A-type diffraction pattern was predominant for unsprouted millets whereas the flaked millets showed V-type crystallinity. The protein digestibility significantly increased up to 37.77% in flakes made from sprouted millets. The mineral bioavailability upon flaking of millets increased, especially Ca (88.22% for little), Fe (43.04% for barnyard) and Zn (61.77% for kodo), which is attributed to the reduction in phytic acid. Flaking, however, led to an increase in rapidly and slowly digestible starch with a corresponding decrease in resistant starch. Among the unsprouted and sprouted millet flakes, foxtail received the highest sensory scores for overall acceptability.
Collapse
Affiliation(s)
- Deepti Chauhan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
| | - Hardeep Singh Gujral
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India.
| | - Dilini Perera
- Department of Chemical & Biological Engineering, Monash University, VIC 3800, Australia
| | - Sushil Dhital
- Department of Chemical & Biological Engineering, Monash University, VIC 3800, Australia
| |
Collapse
|
6
|
Lei X, Xu J, Han H, Zhang X, Li Y, Wang S, Li Y, Ren Y. Fine molecular structure and digestibility changes of potato starch irradiated with electron beam and X-ray. Food Chem 2024; 439:138192. [PMID: 38091788 DOI: 10.1016/j.foodchem.2023.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
The change of digestibility of starch irradiated with different types from the perspective of fine structure is not well understood. In this work, the change of internal structure, molecular weight and chain-length distribution, helical structure, lamellar structure, fractal structure and digestibility of native and treated potato starch with electron beam and X-ray was analyzed. Two irradiations caused the destruction of internal structure, the disappearance of growth rings and increase of pores. Irradiation degraded starch to produce short chains and to decrease molecular weight. Irradiation increased double helical content and the thickness and peak area of lamellar structure, resulting in the reorganization of amylopectin and increase of structure order degree. The protected glycosidic linkages increased starch resistance to hydrolase attack, thereby enhancing the anti-digestibility of irradiated starch. Pearson correlation matrix also verified the above-mentioned results. Moreover, X-ray more increased the anti-digestibility of starch by enhancing ability to change fine structure.
Collapse
Affiliation(s)
- Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jiayi Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaolu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yihan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yali Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
7
|
Shen M, Huang K, Cao H, Zhang Y, Sun Z, Yu Z, Guan X. Rheological, thermal, and in vitro starch digestibility properties of oat starch-lipid complexes. Int J Biol Macromol 2024; 268:131550. [PMID: 38631591 DOI: 10.1016/j.ijbiomac.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The influence of oat lipids on the structural, thermal, rheological, and in vitro digestibility properties of oat starch under heat processing conditions was investigated. X-ray diffraction, fourier infrared spectroscopy, and differential scanning calorimetry revealed the formation of a V-shaped crystal structure between starch and lipid, resulting in enhanced orderliness and enthalpy. Oat lipids decreased the final viscosity and gel strength of oat starch while weakening the trend towards gel network formation. Additionally, oat lipids exhibited enhanced resistance to starch hydrolase, leading to elevated contents of slowly digestible starch and resistant starch. Consequently, this leads to an augmentation in the rate constants for the rapid digestion fraction (k1) and the slow digestion fraction (k2). When the lipid content reached 7.50 %, a significant increase of 42.20 % was observed in the maximum digestibility of slow digestion fraction (C∞2), while a notable decrease of 44.06 % was noted in the maximum digestibility of rapid digestion fraction (C∞1). The correlation analysis revealed that lipid content, final viscosity, and enthalpy exerted significant influences on in vitro starch digestion. These results demonstrate the substantial impact of lipid content on oat starch structure, subsequently affecting its thermal, rheological, and digestive properties.
Collapse
Affiliation(s)
- Meng Shen
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Xiao Guan
- School of Health Science and Engineering, the University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
8
|
Huang Z, Feng W, Zhang T, Miao M. Structure and functional characteristics of starch from different hulled oats cultivated in China. Carbohydr Polym 2024; 330:121791. [PMID: 38368094 DOI: 10.1016/j.carbpol.2024.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/19/2024]
Abstract
This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.
Collapse
Affiliation(s)
- Zhihao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Wenjuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Zhou C, Li B, Yang W, Liu T, Yu H, Liu S, Yang Z. A Comprehensive Study on the Influence of Superheated Steam Treatment on Lipolytic Enzymes, Physicochemical Characteristics, and Volatile Composition of Lightly Milled Rice. Foods 2024; 13:240. [PMID: 38254541 PMCID: PMC10815025 DOI: 10.3390/foods13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Enzyme inactivation is crucial for enhancing the shelf life of lightly milled rice (LMR), yet the impact of diverse superheated steam (SS) treatment conditions on lipolytic enzyme efficiency, physicochemical properties, and volatile profiles of LMR remains unclear. This study investigated varying SS conditions, employing temperatures of 120 °C, 140 °C, and 160 °C and exposure times of 2, 4, 6, and 8 min. The research aimed to discern the influence of these conditions on enzyme activities, physicochemical characteristics, and quality attributes of LMR. Results indicated a significant rise in the inactivation rate with increased treatment temperature or duration, achieving a notable 70% reduction in enzyme activities at 120 °C for 6 min. Prolonged exposure to higher temperatures also induced pronounced fissures on LMR surfaces. Furthermore, intensive SS treatment led to a noteworthy 5.52% reduction in the relative crystallinity of LMR starch. GC/MS analysis revealed a consequential decrease, ranging from 44.7% to 65.7%, in undesirable odor ketones post-SS treatment. These findings underscore the potential of SS treatment in enhancing the commercial attributes of LMR.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenli Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoran Yu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
11
|
Li W, Sun S, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of protein on the gelatinization behavior and digestibility of corn flour with different amylose contents. Int J Biol Macromol 2023; 249:125971. [PMID: 37494995 DOI: 10.1016/j.ijbiomac.2023.125971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The effects of endogenous proteins on the gelatinization behavior and digestibility of waxy corn flour (WCF), normal corn flour (NCF) and high amylose corn flour (HCF) were systematically investigated. Microscopic characteristics showed that the proteins surrounded multiple starch granules, which led to an increase in the particle size of the corn flour, but no significant change in the relative crystallinity. Small angle x-ray scattering experiments during pasting revealed that the starch granules of NCF remained compact, while WCF and HCF were relatively loose. Carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) showed that the proteins retained the helical structure of starch allowing NCF to have a higher Resistant starch(RS) content. The presence of protein led to a decrease in swelling power, viscosity, and in vitro digestibility of starch, and a noticeable increase in gelatinization temperature and thermal stability. RS increased most significantly in NCF from 3.86 % to 15.27 %. The effect of protein on the water activity of starch with different amylose contents after pasting was also inconsistent. This study will contribute to the understanding of the interaction between starch and protein in corn flours with different amylose contents and contribute to the development of corn flours.
Collapse
Affiliation(s)
- Wendong Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shenglin Sun
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Caiming Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
12
|
Wang M, Mao H, Ke Z, Huang R, Chen J, Qi L, Wang J. Effect of proanthocyanidins from different sources on the digestibility, physicochemical properties and structure of gelatinized maize starch. Int J Biol Macromol 2023; 248:125935. [PMID: 37482168 DOI: 10.1016/j.ijbiomac.2023.125935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The effect of proanthocyanidins (PAs) from Chinese bayberry leaves (BLPs), grape seeds (GSPs), peanut skins (PSPs) and pine barks (PBPs) on physicochemical properties, structure and in-vitro digestibility of gelatinized maize starch was investigated. The results showed that all PAs remarkably retarded starch digestibility, meanwhile, BLPs highlighted superiority in increasing resistant starch content from 31.29 ± 1.12 % to 68.61 ± 1.15 %. The iodine-binding affinity analysis confirmed the interaction between PAs and starch, especially the stronger binding of BLPs to amylose, which was driven by non-covalent bonds supported by XRD and FT-IR analysis. Further, we found that PAs altered the rheological properties, thermal properties and morphology structure of starch. In brief, PAs induced larger consistency, poorer flow ability, lower gelatinization temperatures and melting enthalpy change (ΔH) of starch paste. SEM and CLSM observation demonstrated that PAs facilitated starch aggregation. Our results indicated that PAs especially BLPs could be considered as potential additives to modify starch in food industry.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
13
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
14
|
Xia J, Zhang Y, Huang K, Cao H, Sun Q, Wang M, Zhang S, Sun Z, Guan X. Different multi-scale structural features of oat resistant starch prepared by ultrasound combined enzymatic hydrolysis affect its digestive properties. ULTRASONICS SONOCHEMISTRY 2023; 96:106419. [PMID: 37156158 DOI: 10.1016/j.ultsonch.2023.106419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In this research, oat resistant starch (ORS) was prepared by autoclaving-retrogradation cycle (ORS-A), enzymatic hydrolysis (ORS-B), and ultrasound combined enzymatic hydrolysis (ORS-C). Differences in their structural features, physicochemical properties and digestive properties were studied. Results of particle size distribution, XRD, DSC, FTIR, SEM and in vitro digestion showed that ORS-C was a B + C-crystal, and ORS-C had a larger particle size, the smallest span value, the highest relative crystallinity, the most ordered and stable double helix structure, the roughest surface shape and strongest digestion resistance compared to ORS-A and ORS-B. Correlation analysis revealed that the digestion resistance of ORS-C was strongly positively correlated with RS content, amylose content, relative crystallinity and absorption peak intensity ratio of 1047/1022 cm-1 (R1047/1022), and weakly positively correlated with average particle size. These results provided theoretical support for the application of ORS-C with strong digestion resistance prepared by ultrasound combined enzymatic hydrolysis in the low GI food application.
Collapse
Affiliation(s)
- Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Man Wang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Suhua Zhang
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215028, China
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
15
|
Effects of three glutenins extracted in acidic, neutral and alkaline urea solutions on the retrogradation of wheat amylose and amylopectin. Int J Biol Macromol 2023; 233:123576. [PMID: 36764342 DOI: 10.1016/j.ijbiomac.2023.123576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Three glutenins (glutenin 1, glutenin 2, and glutenin 2) were extracted in acidic, neutral and alkaline urea solutions respectively. All of the three glutenins are rich in glutamic acid (Glu, >30 %) and proline (Pro, >20 %). Glutenin 1, extracted at pH 5, shows higher contents of hydrophilic amino acids as serine (Ser, 5.25 %), aspartic acid (Asp, 2.99 %), tyrosine (Tyr, 3.11 %), arginine (Arg, 2.09 %) and threonine (Thr, 2.11 %) than the other two glutenins. The retrogradation of three glutenins with amylose/amylopectin indicated that glutenin 1 showed significant inhibition effect on the retrogradation of wheat amylose. The characterizations of amylose retrograded with glutenin 1 by FT-IR, XRD, DSC and solid 13C NMR showed that new hydrogen bonds between Glu, Tyr and wheat amylose were formed, which prevented the formation of hydrogen bonds between amylose themselves. Glycosidic bonds between some hydroxyl groups of C6 in wheat amylose and certain hydroxyl groups of Ser and Thr in glutenin with specific chain length were present. The macromolecules with steric hindrance prevented the rearrangement of amylose into regular crystals. The retrogradation of wheat amylose was inhibited in this way. This study provides a key targeting step to control the retrogradation of amylose.
Collapse
|
16
|
Sivakumar C, Findlay CRJ, Karunakaran C, Paliwal J. Non-destructive characterization of pulse flours-A review. Compr Rev Food Sci Food Saf 2023; 22:1613-1632. [PMID: 36880584 DOI: 10.1111/1541-4337.13123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
The consumption of plant-based proteins sourced from pulses is sustainable from the perspective of agriculture, environment, food security, and nutrition. Increased incorporation of high-quality pulse ingredients into foods such as pasta and baked goods is poised to produce refined food products to satisfy consumer demand. However, a better understanding of pulse milling processes is required to optimize the blending of pulse flours with wheat flour and other traditional ingredients. A thorough review of the state-of-the-art on pulse flour quality characterization reveals that research is required to elucidate the relationships between the micro- and nanoscale structures of these flours and their milling-dependent properties, such as hydration, starch and protein quality, components separation, and particle size distribution. With advances in synchrotron-enabled material characterization techniques, there exist a few options that have the potential to fill knowledge gaps. To this end, we conducted a comprehensive review of four high-resolution nondestructive techniques (i.e., scanning electron microscopy, synchrotron X-ray microtomography, synchrotron small-angle X-ray scattering, and Fourier-transformed infrared spectromicroscopy) and a comparison of their suitability for characterizing pulse flours. Our detailed synthesis of the literature concludes that a multimodal approach to fully characterize pulse flours will be vital to predicting their end-use suitability. A holistic characterization will help optimize and standardize the milling methods, pretreatments, and post-processing of pulse flours. Millers/processors will benefit by having a range of well-understood pulse flour fractions to incorporate into food formulations.
Collapse
Affiliation(s)
- Chitra Sivakumar
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Jitendra Paliwal
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Effect of Calcium Hydroxide on Physicochemical and In Vitro Digestibility Properties of Tartary Buckwheat Starch-Rutin Complex Prepared by Pre-Gelatinization and Co-Gelatinization Methods. Foods 2023; 12:foods12050951. [PMID: 36900466 PMCID: PMC10000869 DOI: 10.3390/foods12050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
This study examined the effect of calcium hydroxide (Ca(OH)2, 0.6%, w/w) on structural, physicochemical and in vitro digestibility properties of the complexed system of Tartary buckwheat starch (TBS) and rutin (10%, w/w). The pre-gelatinization and co-gelatinization methods were also compared. SEM results showed that the presence of Ca(OH)2 promoted the connection and further strengthened the pore wall of the three-dimensional network structure of the gelatinized and retrograded TBS-rutin complex, indicating the complex possessed a more stable structure with the presence of Ca(OH)2, which were also confirmed by the results of textural analysis and TGA. Additionally, Ca(OH)2 reduced relative crystallinity (RC), degree of order (DO) and enthalpy, inhibiting their increase during storage, thereby retarding the regeneration of the TBS-rutin complex. A higher storage modulus (G') value was observed in the complexes when Ca(OH)2 was added. Results of in vitro digestion revealed that Ca(OH)2 retarded the hydrolysis of the complex, resulting in an increase in values in slow-digestible starch and resistant starch (RS). Compared with pre-gelatinization, the complex process prepared with the co-gelatinization method presented lower RC, DO, enthalpy, and higher RS. The present work indicates the potential beneficial effect of Ca(OH)2 during the preparation of starch-polyphenol complex and would be helpful to reveal the mechanism of Ca(OH)2 on improving the quality of rutin riched Tartary buckwheat products.
Collapse
|
18
|
Gu Y, Qian X, Sun B, Tian X, Wang X, Ma S. Effect of roasting treatment on the micromorphology, gelatinization, structure, and digestibility of whole oat flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wang H, Li Y, Wang L, Wang L, Li Z, Qiu J. Multi-scale structure, rheological and digestive properties of starch isolated from highland barley kernels subjected to different thermal treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Zou X, Wang X, Zhang M, Peng P, Ma Q, Hu X. Pre-baking-steaming of oat induces stronger macromolecular interactions and more resistant starch in oat-buckwheat noodle. Food Chem 2022; 400:134045. [DOI: 10.1016/j.foodchem.2022.134045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022]
|
21
|
Rostamabadi H, Karaca AC, Deng L, Colussi R, Narita IMP, Kaur K, Aaliya B, Sunooj KV, Falsafi SR. Oat starch - How physical and chemical modifications affect the physicochemical attributes and digestibility? Carbohydr Polym 2022; 296:119931. [DOI: 10.1016/j.carbpol.2022.119931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
|
22
|
Kaur P, Kaur K, Basha SJ, Kennedy JF. Current trends in the preparation, characterization and applications of oat starch - A review. Int J Biol Macromol 2022; 212:172-181. [PMID: 35598726 DOI: 10.1016/j.ijbiomac.2022.05.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Worldwide consumption of oats is gaining popularity due to its composition and multifunctional benefits of individual components. Oat starch being the major component accounts up to 60% of the dry weight of kernel, possess small granule size and high lipid content. Properties of starch substantially affect the quality of the product. Modification and characterization of starch is important for their specific applications that increase the utilization of oat starch. Different modification techniques greatly affect the functional, pasting, gelatinisation, textural, rheological, retrogradation properties and enzymatic digestibility of oat starches in comparison to native starch. Modified oat starch competes against other abundant and inexpensive cereal starches (rice and corn) that are available in modified forms in the market. This review summarises the current knowledge of physicochemical, morphological, pasting, functional, rheological and gelatinization properties, developments in the extraction and modification (physical, chemical and enzymatic) and applications of oat starch. Thus, this review will upgrade the scientific basis on oat starch being a unique source of starch for variety of applications.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India
| | - Kamaljit Kaur
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India.
| | - Shaik Jakeer Basha
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana, India
| | - John F Kennedy
- Chembiotech Ltd, Kyrewood House, Tenbury Wells WR15 8FF, UK
| |
Collapse
|
23
|
Zhang M, Chen G, Li M, Niu H, Chen Y, Jiang P, Li S. Effects of microwave on microscopic, hydration and gelatinization properties of oat and its application on noodle‐processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingyue Zhang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Guiyun Chen
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Mingyuan Li
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Haili Niu
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Ye Chen
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Peiyun Jiang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Shuhong Li
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| |
Collapse
|
24
|
Dynamic behaviors of protein and starch and interactions associated with glutenin composition in wheat dough matrices during sequential thermo-mechanical treatments. Food Res Int 2022; 154:110986. [DOI: 10.1016/j.foodres.2022.110986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
|
25
|
Tang Y, Li S, Yan J, Peng Y, Weng W, Yao X, Gao A, Cheng J, Ruan J, Xu B. Bioactive Components and Health Functions of Oat. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Tang
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yan Peng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Anjing Gao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
26
|
Nguyen SN, Drawbridge P, Beta T. Resistant Starch in Wheat‐, Barley‐, Rye‐, and Oat‐Based Foods: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si Nhat Nguyen
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Pamela Drawbridge
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
27
|
Gu Y, Qian X, Sun B, Ma S, Tian X, Wang X. Nutritional composition and physicochemical properties of oat flour sieving fractions with different particle size. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Xu H, Zhou J, Liu X, Yu J, Copeland L, Wang S. Methods for characterizing the structure of starch in relation to its applications: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34847797 DOI: 10.1080/10408398.2021.2007843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Starch is a major part of the human diet and an important material for industrial utilization. The structure of starch granules is the subject of intensive research because it determines functionality, and hence suitability for specific applications. Starch granules are made up of a hierarchy of complex structural elements, from lamellae and amorphous regions to blocklets, growth rings and granules, which increase in scale from nanometers to microns. The complexity of these native structures changes with the processing of starch-rich ingredients into foods and other products. This review aims to provide a comprehensive review of analytical methods developed to characterize structure of starch granules, and their applications in analyzing the changes in starch structure as a result of processing, with particular consideration of the poorly understood short-range ordered structures in amorphous regions of granules.
Collapse
Affiliation(s)
- Hanbin Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jiaping Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Les Copeland
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
29
|
Zhang K, Dong R, Hu X, Ren C, Li Y. Oat-Based Foods: Chemical Constituents, Glycemic Index, and the Effect of Processing. Foods 2021; 10:1304. [PMID: 34200160 PMCID: PMC8229445 DOI: 10.3390/foods10061304] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
The desire for foods with lower glycemic indices has led to the exploration of functional ingredients and novel food processing techniques. The glycemic index (GI) is a well-recognized tool to assess the capacity of foods to raise blood glucose levels. Among cereal crops, oats have shown the greatest promise for mitigating glycemic response. This review evaluated decades of research on the effects of oat components on the GI level of oat-based foods with specific emphasis on oat starch, β-glucans, proteins, and phenolics. The effects of commonly used processing techniques in oats on GI level, including heating, cooling, and germination were also discussed. In addition, the GI of oat-based foods in various physical formats such as whole grain, flakes, and flour was systematically summarized. The aim of this review was to synthesize knowledge of the field and to provide a deeper understanding of how the chemical composition and processing of oats affect GI, thereby further benefiting the development of low-GI oat foods.
Collapse
Affiliation(s)
- Kailong Zhang
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Rui Dong
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Xinzhong Hu
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng 137000, China;
| | - Yuwei Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China;
| |
Collapse
|
30
|
Ren N, Ma Z, Li X, Hu X. Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. Int J Biol Macromol 2021; 173:293-306. [PMID: 33484801 DOI: 10.1016/j.ijbiomac.2021.01.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Different treatments of autoclaving, pullulanase debranching and/or ultrasound were applied to prepare debranched lentil starch (DBLS). Their fine structures can affect the retrogradation patterns of DBLSs, which consequently could affect their potential use as delivery carrier of sensitive bioactive compounds. An attempt was made to use these DBLSs as wall materials to encapsulate rutin, aiming to improve the bioaccessibility, meanwhile to enhance the aqueous solubility and stability of rutin molecules. Their encapsulation efficiency, structural characteristics, thermal stability, morphological features, antioxidant activity and in vitro release behavior under simulated upper gastrointestinal tract environment were evaluated. The results suggested that rutin was dispersed in the DBLS polymer matrix, showing the amorphous nature that further authenticates the encapsulation and entrapment of rutin. The structural analyses of microparticles revealed that rutin could interacted with DBLS biopolymer chains by hydrogen bonds, making the starch molecular chains less susceptible to interact with themselves for reordering. The encapsulation efficiency was found to be in an opposite trend with those values obtained for relative crystallinity, melting enthalpy, degree of order/double helices of DBLS wall materials before encapsulation. The release rate results indicated that DBLS carrier with lower Mw, DPn and higher molecular order was beneficial for the slower release of rutin encapsulated in the microparticles.
Collapse
Affiliation(s)
- Namei Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
31
|
Suklaew PO, Chusak C, Adisakwattana S. Physicochemical and Functional Characteristics of RD43 Rice Flour and Its Food Application. Foods 2020; 9:foods9121912. [PMID: 33371374 PMCID: PMC7767328 DOI: 10.3390/foods9121912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
The increased use of a new rice cultivar is the result of increasing consumer demands for healthier choices. In this study, physicochemical, thermal, pasting, and functional properties of flour from RD43 rice, a new rice variety, and its food application were investigated. RD43 rice flour demonstrated an irregular and polyhedral shape with a volume mean diameter of 103 ± 0.15 µm. In addition, the amylose content of RD43 rice and Hom Mali rice flour was 19.04% and 16.38%, respectively. The X-ray diffraction (XRD) and Fourier Transforms Infrared (FTIR) confirmed the presence of a V-type crystalline structure and less crystallinity in RD43 rice flour, which resulted in a significant reduction of the water absorption index (WAI), swelling power (SP), water solubility index (WSI), gelatinization temperature, and pasting properties. Comparing with Hom Mali rice flour, RD43 rice flour had greater ability to disrupt cholesterol micellization and bind bile acid. Furthermore, it had lower starch digestibility, with a lower percentage of rapidly digestible starch (RDS) and higher percentage of undigestible starch than Hom Mali rice flour. Moreover, steamed muffins based on RD43 rice flour had lower starch digestibility than Hom Mali steamed muffins. The sensory analysis showed no significant differences between Hom Mali and RD43 steamed muffins. The findings suggest that RD43 rice flour could be an alternative ingredient for lowering the glycemic index of food products.
Collapse
|