1
|
Xu X, Liu H, Sun P, Li D. Effect of lysine-assisted ultrasonic and vacuum tumbling treatment on the quality of chicken breast meat in canned foods. ULTRASONICS SONOCHEMISTRY 2025; 116:107310. [PMID: 40090162 PMCID: PMC11957659 DOI: 10.1016/j.ultsonch.2025.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Curing is a technological process that improves the tenderness, water retention, and overall quality of canned food. This study aimed to evaluate the effects of different exogenous additives, specifically sodium tripolyphosphate and lysine, on the quality of chicken breast meat in canned assorted vegetables and diced chicken using different curing methods: static curing, ultrasonic curing, vacuum tumbling curing, and ultrasonic combined with vacuum tumbling curing. The texture, moisture mobility and distribution, microstructure, and sensory acceptability of the chicken meat were evaluated. The results showed that lysine demonstrates better water retention than sodium tripolyphosphate, combining ultrasonic and vacuum tumbling treatments with 0.2% Lys (SL-UVT) significantly enhanced the texture characteristics and reduced the cooking loss of chicken breast meat. Additionally, SL-UVT treatment improved the texture, appearance, flavor, and overall acceptability scores. Nuclear magnetic resonance (NMR) analysis showed that SL-UVT treatment affected water distribution and flowability, increasing the retention of less mobile water in chicken breasts. In addition, the gap between myogenic fibers increased after SL-UVT treatment, trapping more water. In conclusion, SL-UVT treatment significantly improved the tenderness and water-holding capacity of the chicken breast from both macroscopic and microscopic perspectives. This study provided a theoretical foundation for refining and optimizing canned meat processing techniques.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Huimin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Peizi Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034 Liaoning, China; Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034 Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034 Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Yu X, Feng Y, Ma W, Xiao X, Liu J, Dong W, Hu Y, Liu H. Ultrasound combined with Adenosine 5'-Monophosphate Treatment: A Strategic Approach for enhancing the tenderness of chicken wooden breast meat. ULTRASONICS SONOCHEMISTRY 2025; 114:107284. [PMID: 39983290 DOI: 10.1016/j.ultsonch.2025.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
This study aimed to evaluate the effects of ultrasound and adenosine 5'-monophosphate (AMP) treatments on the quality characteristics and tenderness of chicken wooden breast (CWB). Compared to normal breast, CWB exhibits distinct quality characteristics, including increased weight, higher pH, pale color, and a firmer texture. It was found that ultrasound, AMP, and their combined application significantly reduced the shear force of CWB (p < 0.05), effectively improving its tenderness. The combined treatment of ultrasound and AMP significantly decreased the filtering residues of myofibrillar proteins (MPs) and increased myofibrillar fragmentation index (p < 0.05). MPs structure analysis showed that the combined ultrasound and AMP treatment facilitated the degradation of tropomyosin, the transformation of α-helix into β-sheet, and decreased intensity of tryptophan fluorescence, promoting MPs degradation and improving CWB tenderness. Pathological analysis and scanning electron microscopy also observed muscle fiber damage and the loss of myofibrillar membrane integrity following the combined treatment. These findings highlight the potential of AMP and ultrasound treatments in the tenderization process of CWB.
Collapse
Affiliation(s)
- Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China.
| | - Yanli Feng
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China.
| | - Wenhan Ma
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China
| | - Xue Xiao
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China
| | - Jun Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China
| | - Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, No. 11, Cihu Road, Huangshi City 435002 Hubei Province, China.
| |
Collapse
|
3
|
Yu C, Chen L, Ouyang K, Chen H, Lin S, Wang W. Effect of the Partial Substitution of NaCl with L-Arg on the Gel Properties and Aggregation Behavior of Beef Myosin. Foods 2025; 14:680. [PMID: 40002125 PMCID: PMC11854034 DOI: 10.3390/foods14040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
With 0.3 M KCl replacing NaCl, the effect of L-Arg on beef myosin's gel, structure, and aggregation was investigated. L-Arg could enhance hydrogen and ionic bonds, increasing myosin solubility and reducing turbidity. The content of regular secondary structures (β-sheet) increased, and the content of random coil structures decreased significantly (p < 0.05). The results of dynamic light scattering (DLS) and atomic force microscope (AFM) further demonstrated that L-Arg could improve the uniformity and dispersion of myosin aggregate size and inhibit the aggregation of myosin between the head and the tail. Moreover, as the hydrophobic interaction and disulfide bonds were the main forces, a thermal gel dominated by myosin oligomers and filaments was formed. In the 0.3 M KCl, 0.1 M NaCl, and 0.2 M L-Arg system, the hardness, elasticity, and water holding capacity (WHC) of beef myosin gel were effectively improved, providing a salt reduction reference for beef products.
Collapse
Affiliation(s)
- Chuanlong Yu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Suyun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (C.Y.)
| |
Collapse
|
4
|
Huang Y, Yang S, Zhang L, Miao S, Xu Z, Zheng B, Deng K. Combined Effects of Compound Low-Sodium Alternative Salts and Vacuum Tumbling on the Quality, Water Distribution, and Microstructure of Marinated Beef. Foods 2025; 14:605. [PMID: 40002049 PMCID: PMC11853829 DOI: 10.3390/foods14040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study proposes a compound low-sodium alternative salt (CLSAS) formulation (2.4% sodium chloride, 0.8% K lactate, 0.4% magnesium chloride, 0.4% Ca ascorbate, 0.2% L lysine, and 4% sorbitol) combined with vacuum tumbling for beef marination. The effects of 4% NaCl static marination (F), CLSAS static marination (L), and CLSAS vacuum tumbling (VT-L) on the physicochemical properties, water distribution, and microstructure of marinated beef were evaluated. Compared with F, L maintained similar yield and color, reduced cooking loss, and improved texture while lowering sodium content. VT-L further enhanced product yield, water content, color, texture, and tenderness. Both CLSAS and vacuum tumbling reduced the relaxation time of immobilized water, promoted orderly formation of protein structure, and altered the microstructure of myogenic fibers. VT-L additionally improved the water-holding capacity of myofibrils and further reduced the relaxation times of immobilized and free water. Overall, VT-L could be an effective approach for enhancing the quality of low-sodium meat products, providing a feasible basis for the industrial application of CLSAS for low-sodium marinated meat products.
Collapse
Affiliation(s)
- Yanfeng Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (Y.H.); (L.Z.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China
| | - Shujie Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Longtao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (Y.H.); (L.Z.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Zhiyong Xu
- Fujian Yitai Food Development Co., Ltd., Putian 351100, China;
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (Y.H.); (L.Z.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China
| | - Kaibo Deng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (Y.H.); (L.Z.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fuzhou 350002, China
| |
Collapse
|
5
|
Yang Y, Zhou G, Ding Y, Shi W, Chen Y, Ge C, Xu B, Yang L. Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus. Food Res Int 2025; 201:115680. [PMID: 39849797 DOI: 10.1016/j.foodres.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study aimed to investigate the effects of inoculation with various combinations of starters on the microbial communities and metabolic profiles of fermented sausages. High-throughput sequencing revealed that, during sausage fermentation, Firmicutes was the dominant bacterial phylum, and the primary microorganisms were Lactococcus, Staphylococcus, Lactobacillus, and Pseudomonas. On the last day of fermentation, the highest abundance of Staphylococcus was observed in the co-inoculation group. Furthermore, inoculated fermentation effectively inhibited the growth of pathogenic and spoilage bacteria. Metabolomic analysis of the four groups of samples identified 208 metabolites in positive ion mode and 109 in negative ion mode. A total of 31 differential metabolites were identified (P < 0.05, variable importance in the projection >1.5), primarily benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls. Five crucial differential metabolites (subaphylline, naringenin, 1-hexadecanol, beta-alanyl-L-lysine, and 3'-AMP) were identified as potential biomarkers for fermented sausages. Key differential metabolite metabolic pathways indicated that L. plantarum YR07 dominated in metabolite regulation during sausage fermentation, and S. xylosus Y-18 downregulated the fatty acid degradation pathway, which also affected the metabolism of fermented sausages. Co-cultivation of the two bacteria exhibited a synergistic effect on the metabolism of the fermented sausages. This study offers further insights into improving the quality of fermented sausages, thereby establishing a theoretical foundation for the production of excellent fermenters.
Collapse
Affiliation(s)
- Yulong Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Gang Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yining Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Shi
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yueqian Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chunbo Ge
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
6
|
Liu C, Yang Y, Wang M, Jiang W, Du Y, Hao Z, Chen L, Zhu K, Liu B, Niu L, Zhao Y, Wang Y, Gan M, Shen L, Zhu L. Effects of L-arginine on gut microbiota and muscle metabolism in fattening pigs based on omics analysis. Front Microbiol 2024; 15:1490064. [PMID: 39588104 PMCID: PMC11586382 DOI: 10.3389/fmicb.2024.1490064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction L-arginine is an α-amino acid and a semi-essential nutrient of significant biological interest. It plays a role in influencing various aspects of animal meat traits, gut microbiota composition, and physiological metabolism. Methods This study aimed to investigate the combined effects of L-arginine supplementation on gut microbiota composition and the metabolism of the longissimus dorsi muscle in fattening pigs. Eighteen Yorkshire commercial pigs were divided into two groups: a control group that received no supplements and a treatment group that was given 1% L-arginine for 52 days. The diversity and composition of microorganisms in the feces of the control (NC) and L-arginine (Arg) groups were analyzed by sequencing the 16S rRNA V3 -V4 region of the bacterial genome. Results The findings indicated that L-arginine supplementation increased both the abundance and diversity of gut microbiota, particularly affecting the Firmicutes and Bacteroidetes phyla. KEGG enrichment analysis revealed significant changes in several metabolism-related pathways, including amino acid, carbohydrate, and lipid metabolism. Metabolomic analysis identified 85 differential metabolites between the arginine and control groups, with phospholipids ranking among the top 20. Additionally, functional predictions indicated an increased abundance in the glycerophospholipid metabolism pathway. Correlation analysis linked changes in gut microbiota to phospholipid levels, which subsequently influenced post-slaughter meat color and drip loss. Discussion These results suggest that L-arginine supplementation positively impacts gut microbiota composition and the metabolic profile of the longissimus dorsi muscle in fattening pigs, with potential implications for meat quality.
Collapse
Affiliation(s)
- Chengming Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiting Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Meng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yong Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ziling Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Giovanini de Oliveira Sartori A, Silva Antonelo D, Ribeiro GH, Colnago LA, de Carvalho Balieiro JC, Francisquine Delgado E, Contreras Castillo CJ. Lipidome and metabolome profiling of longissimus lumborum beef with different ultimate pH and postmortem aging. Meat Sci 2024; 217:109621. [PMID: 39116534 DOI: 10.1016/j.meatsci.2024.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The objective of this exploratory study was to assess the changes on lipidome and metabolome profiling of Longissimus lumborum bull muscle with different ultimate pH (pHu) and aging periods. The bull muscles classified as normal, intermediate, or high pHu were collected from a Brazilian commercial slaughterhouse, cut into steaks, individually vacuum-packaged, and aged for 3 days (3-d) or 21 days (21-d) at 2 °C. Muscle extracts were analyzed for the profiles of both lipids, by mass spectrometry (via direct flow-injection), and metabolites, by nuclear magnetic resonance, with downstream multivariate data analysis. As major results, pairwise comparisons identified C12:0 and C14:0 acylcarnitines as potential biomarkers of the intermediate pHu-muscle, which are related to lipid catabolism for alternative energy metabolism and indicate less protein breakage postmortem. Interestingly, the concentration of arginine at early postmortem aging (3-d) may influence the previously reported improved tenderness in normal and high pHu-muscles. Moreover, upregulation of fumarate, formate, and acetate with increased pHu muscle at 21-d aging indicate more intense tricarboxylic acid cycle, amino acid degradation, and pyruvate oxidation by reactive oxygen species, respectively. These three compounds (fumarate, formate, and acetate) discriminated statistically the muscle with high pHu at 21-d aging. The normal pHu-muscle showed higher concentrations of glycogenolysis and glycolysis metabolites, including glucose, mannose, and pyruvate. Hence, our results enhance knowledge of postmortem biochemical changes of beef within different pHu groups aged up to 21 days, which is essential to understand the mechanisms underpinning bull meat quality changes.
Collapse
|
8
|
Dou L, Liu C, Su R, Corazzin M, Jin Z, Yang Z, Hu G, Zhang M, Sun L, Zhao L, Jin Y, Su L. Effects of dietary arginine supplementation on muscle structure, meat characteristics and lipid oxidation products in lambs and its potential mechanisms of action. Meat Sci 2024; 216:109581. [PMID: 38970933 DOI: 10.1016/j.meatsci.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to assess the effect of dietary arginine supplementation on muscle structure and meat characteristics of lambs also considering lipid oxidation products and to contribute to reveal its mechanisms of action using tandem mass tagging (TMT) proteomics. Eighteen lambs were allocated to two dietary treatment groups: control diet or control diet with the addition of 1% L-arginine. The results revealed that dietary arginine supplementation increased muscle fibre diameter and cross-sectional area (P < 0.05), which was attributable to protein deposition, as evidenced by increased RNA content, RNA/DNA ratio, inhibition of apoptotic enzyme activity, and alterations in the IGF-1/Akt signaling pathway (P < 0.05). In addition, dietary arginine elevated pH24h, a* values, and IMF content, decreased shear force value and backfat thickness (P < 0.05), as well as decreased the formation of lipid oxidation products involved in meat flavor including hexanal, heptanal, octanal, nonanal and 1-octen-3-ol by increasing the antioxidant capacity of the muscle (P < 0.05). The proteomics results suggested that seven enrichment pathways may be potential mechanisms by which arginine affected the muscle structure and meat characteristics of lambs. In summary, arginine supplementation in lamb diets provides a safe and effective way to improve meat quality, and antioxidant capacity of muscle of lamb.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Zhimin Jin
- Inner Mongolia Autonomous Region Administration of Market Supervision Evaluation & Inspection Center, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China.
| |
Collapse
|
9
|
Deng C, Zou H, Wu Y, Lou A, Liu Y, Luo J, Quan W, Shen Q. Dietary supplementation with quercetin: an ideal approach for improving meat quality and oxidative stability of broiler chickens. Poult Sci 2024; 103:103789. [PMID: 38833740 PMCID: PMC11190705 DOI: 10.1016/j.psj.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased β-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.
Collapse
Affiliation(s)
- Chuangye Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
10
|
Fan X, Gao X, Zhou C. l-arginine and l-lysine supplementation to NaCl tenderizes porcine meat by promoting myosin extraction and actomyosin dissociation. Food Chem 2024; 446:138809. [PMID: 38402768 DOI: 10.1016/j.foodchem.2024.138809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.
Collapse
Affiliation(s)
- Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Xu S, Guo X, Fu C, Wang J, Meng X, Hui T, Peng Z. Effect of ultrasound-assisted L-lysine treatment on pork meat quality and myofibrillar protein properties during postmortem aging. J Food Sci 2024; 89:4162-4177. [PMID: 38795377 DOI: 10.1111/1750-3841.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024]
Abstract
This paper aimed to investigate the effects of ultrasound-assisted L-lysine treatment on meat quality and myofibrillar proteins (MPs) properties of pork longissimus dorsi during postmortem aging. The results revealed that the L-lysine (Lys) and/or ultrasound treatment significantly increased (p < 0.05) the water-holding capacity and tenderness of the pork during postmortem aging, while the ultrasound-assisted Lys treatment had the lowest cooking loss, pressurization loss, Warner-Bratzler shear force, and hardness. In addition, L-lysine and/or ultrasound treatment increased (p < 0.05) pH value, T21, and myofibrillar fragmentation index, while the ultrasound-assisted Lys treatment had the highest value. Meanwhile, the protein solubility was increased with Lys and/or ultrasound treatment during postmortem aging, and ultrasound-assisted Lys treatment had the highest solubility, reaching 88.19%, 92.98%, and 91.73% at 0, 1, and 3 days, respectively. The result of protein conformational characteristics showed that Lys and/or ultrasound treatment caused the unfolding of the α-helix structure, resulting in the exposure of more hydrophobic amino acids and buried sulfhydryl groups, ultimately enhancing MPs solubility. In summary, ultrasound-assisted Lys treatment altered the structure of MPs, resulting in the enhancement of the water-holding capacity and tenderness of the pork. PRACTICAL APPLICATION: This study showed that ultrasound-assisted L-lysine (Lys) treatment could enhance the water-holding capacity and tenderness of pork during postmortem aging. The results might provide a reference for the application of ultrasound-assisted Lys treatment on the improvement of pork meat quality. To facilitate practical applications in production, the development of medium and large-sized ultrasound equipment for conducting small-scale and pilot experiments is crucial for future research.
Collapse
Affiliation(s)
- Shuangyi Xu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Xiuyun Guo
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Chao Fu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China
| | - Jipan Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Xiangren Meng
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Teng Hui
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China
| | - Zengqi Peng
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Liu X, Zhou K, Chen B, Xie Y, Ma Y, Zhou H, Xu B. Insight into the evolution of textural properties and juiciness of ready-to-eat chicken breasts upon different thermal sterilization: From the perspective of protein degradation. J Texture Stud 2024; 55:e12835. [PMID: 38778604 DOI: 10.1111/jtxs.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Bo Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
13
|
Zhou X, Wang J, Zhao J, Yuan C, Zhang X, Huang T, Yang W, Wei H. Effect of ultrasound combined with pineapple protease treatment on the tenderness of dried shrimp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3947-3957. [PMID: 38264924 DOI: 10.1002/jsfa.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND In order to improve the tenderness of dried shrimp products as well as to reduce the hardness of the meat during the drying process, shrimp were treated with ultrasound combined with pineapple protease and the tenderization condition was optimized by measuring the texture and shear force of dried shrimp. In addition, the sulfhydryl content, myofibril fragmentation index (MFI) and microstructure were also examined to clarify the mechanisms of shrimp tenderization. RESULTS The results showed UB1 group with ultrasonic power of 100 W, heating temperature of 50 °C and pineapple protease concentration of 20 U mL-1 were the optimum tenderization conditions, where shrimp showed the lowest hardness (490.76 g) and shear force (2006.35 gf). Microstructure as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggested that during the tenderization process the muscle segments of shrimps were broken, degradation of myofibrillar proteins occurred, and MFI values and total sulfhydryl content increased significantly (P < 0.05) (MFI value = 193.6 and total sulfhydryl content = 93.93 mmol mg-1 protein for UB 1 group). CONCLUSION Ultrasound combined with bromelain could be used as a simple and effective tenderization method for the production of tender dried shrimp. The best conditions were 100 W ultrasonic power, 50 °C ultrasonic temperature, and 20 U mL-1 bromelain. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Zhou
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jian Wang
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jingxu Zhao
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Tao Huang
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Huamao Wei
- College of Food Science and engineering, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Qian R, Sun C, Bai T, Yan J, Cheng J, Zhang J. Recent advances and challenges in the interaction between myofibrillar proteins and flavor substances. Front Nutr 2024; 11:1378884. [PMID: 38725578 PMCID: PMC11079221 DOI: 10.3389/fnut.2024.1378884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.
Collapse
Affiliation(s)
- Rong Qian
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chang Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Yan
- Sichuan Laochuan East Food Co., Ltd., Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Sun H, Yan X, Wang L, Zhu R, Chen M, Yin J, Zhang X. Insights into the mechanism of L-malic acid on drip loss of chicken meat under commercial conditions. J Anim Sci Biotechnol 2024; 15:14. [PMID: 38287463 PMCID: PMC10823695 DOI: 10.1186/s40104-023-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND A deterioration in the meat quality of broilers has attracted much more attention in recent years. L-malic acid (MA) is evidenced to decrease meat drip loss in broilers, but the underlying molecular mechanisms are still unclear. It's also not sure whether the outputs obtained under experimental conditions can be obtained in a commercial condition. Here, we investigated the effects and mechanisms of dietary MA supplementation on chicken meat drip loss at large-scale rearing. RESULTS Results showed that the growth performance and drip loss were improved by MA supplementation. Meat metabolome revealed that L-2-aminoadipic acid, β-aminoisobutyric acid, eicosapentaenoic acid, and nicotinamide, as well as amino acid metabolism pathways connected to the improvements of meat quality by MA addition. The transcriptome analysis further indicated that the effect of MA on drip loss was also related to the proper immune response, evidenced by the enhanced B cell receptor signaling pathway, NF-κB signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. CONCLUSIONS We provided evidence that MA decreased chicken meat drip loss under commercial conditions. Metabolome and transcriptome revealed a comprehensive understanding of the underlying mechanisms. Together, MA could be used as a promising dietary supplement for enhancing the water-holding capacity of chicken meat.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd./Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, 610023, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruimin Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Dou L, Sun L, Liu C, Su L, Chen X, Yang Z, Hu G, Zhang M, Zhao L, Jin Y. Effect of dietary arginine supplementation on protein synthesis, meat quality and flavor in growing lambs. Meat Sci 2023; 204:109291. [PMID: 37523931 DOI: 10.1016/j.meatsci.2023.109291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
This study aimed to assess the effect of dietary arginine supplementation on protein synthesis, meat quality and flavor in lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.29 ± 2.02 kg; aged 3 months) were assigned to two groups, the control group was fed the basal diet (Con group), and the arginine group (Arg group) was supplemented with 1% l-arginine based on the Con group for 90 d. The results suggested that dietary arginine significantly increased final body weight, loin eye muscle area, muscle fiber diameter, cross-sectional area (P < 0.050), and decreased shear force value and cooking loss (P < 0.050), as well as altered the composition and contents of volatile flavor compounds in lambs. Importantly, the total protein (TP) content, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP) activities in serum, branched-chain aminotransferase (BCAT), AST, ALT activities and neuronal nitric oxide synthase (nNOS) gene expression and content were elevated (P < 0.050), while content of urea nitrogen (BUN) in serum and 3-methylhistidine (3-MH) were decreased in arginine fed lambs (P < 0.050). In addition, arginine triggered muscle protein synthesis through protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, while minimized protein degradation by regulating gene expression of myogenin (MyoG), myostatin (MSTN), muscle atrophy F-box (MAFbx) and forkhead box O3 family (FoxO3) (P < 0.050). Taken together, this study suggested that arginine can be used to improve protein deposition and meat quality in lamb production.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
17
|
Wen ML, Wu P, Jiang WD, Liu Y, Wu CM, Zhong CB, Li SW, Tang L, Feng L, Zhou XQ. Dietary threonine improves muscle nutritional value and muscle hardness associated with collagen synthesis in grass carp (Ctenopharyngodon idella). Food Chem 2023; 422:136223. [PMID: 37121206 DOI: 10.1016/j.foodchem.2023.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
To further explain the improvement effect of threonine (Thr) on the fillet quality of fish, a 9-week feeding experiment was conducted. After feeding graded levels of Thr (2.38, 5.38, 8.38, 11.38, 14.38 and 17.38 g/kg), the compositions of fillet hydrolyzed amino acid and fatty acid, and the muscle hardness associated with collagen biosynthesis were mainly analyzed in grass carp (Ctenopharyngodon idella). The results showed that Thr increased the pH value, changed the amino acids and fatty acid composition of fillets, especially essential amino acid (EAA), C22:6n3 (DHA) and C20:5n3 (EPA). Furthermore, this study revealed for the first time that the improvement of muscle hardness by Thr was associated with collagen biosynthesis, and the TGF-β1/Smads, LARP6a and Hsp47 regulate transcriptional processes, translation initiation and post-translational modifications in collagen biosynthesis, respectively. This study offered a basis for exploring the contribution of Thr in improving muscle quality in sub-adult grass carp.
Collapse
Affiliation(s)
- Mei-Lan Wen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Cai-Mei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
18
|
Cao C, Xu Y, Liu M, Kong B, Zhang F, Zhang H, Liu Q, Zhao J. Additive Effects of L-Arginine with Potassium Carbonate on the Quality Profile Promotion of Phosphate-Free Frankfurters. Foods 2022; 11:foods11223581. [PMID: 36429173 PMCID: PMC9688976 DOI: 10.3390/foods11223581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The present study investigated the additive effects of L-Arginine (L-Arg) with potassium carbonate (PC) on the quality characteristics of phosphate-free frankfurters. The results showed that L-Arg combined with PC could act as a viable phosphate replacer by decreasing cooking loss and improving the textural properties of phosphate-free frankfurters (p < 0.05), mainly because of its pH-raising ability. Moreover, L-Arg could assist PC in effectively retarding lipid oxidation in phosphate-free frankfurters during storage (p < 0.05). Furthermore, 0.1% L-Arg combined with 0.15% PC was found to exhibit the best optimal phosphate-replacing effect. This combination could also overcome quality defects and promote the sensory attributes of phosphate-free frankfurters to the maximum extent. Therefore, our results suggest that L-Arg combined with PC can be considered a feasible alternative for the processing of phosphate-free frankfurters with an improved quality profile and superior health benefits.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Meiyue Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
- Correspondence: (Q.L.); (J.Z.); Tel.: +86-451-5519-0675 (Q.L.)
| | - Jinhai Zhao
- Institute of Advanced Technology, Heilongjiang Academy of Science, Harbin 150001, China
- Correspondence: (Q.L.); (J.Z.); Tel.: +86-451-5519-0675 (Q.L.)
| |
Collapse
|
19
|
Li Y, Guo Q, Wang K, Nverjiang M, Wu K, Wang X, Xia X. Monitoring the Changes in Heat Transfer and Water Evaporation of French Fries during Frying to Analyze Its Oil Uptake and Quality. Foods 2022; 11:3473. [PMID: 36360086 PMCID: PMC9655203 DOI: 10.3390/foods11213473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The effect of frying temperature on heat transfer, water loss kinetic, oil uptake kinetic, and quality of French fries was evaluated. With increasing frying temperature, the core temperature of fries increased, and the Biot number and heat transfer coefficient (h) first decreased and then increased significantly (p < 0.05). The water loss rate (kw) and water effective diffusion of fries increased with the increasing frying temperature. The kw of fries fried at 150−190 °C were 0.2391, 0.2414, 0.3205, 0.3998, and 0.3931, respectively. The oil uptake rate (ko) first increased and then decreased with increasing frying temperature, and the ko of samples fried at 150−190 °C were 0.2691, 0.2564, 0.4764, 0.3387, and 0.2522, respectively. There were significant differences in the a*, L*, ΔE, and BI between fries with different temperatures (p < 0.05), while there was no significant difference in the b* (p > 0.05). The hardness and crispness of fries increased with increased frying temperature. The highest overall acceptability scores of fries were fried at 170 °C. Therefore, the changes in color, texture overall acceptability, and oil content were due to the Maillard reaction and the formation of porous structure, which was induced by h and water evaporation of fries when they changed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Khoja IA, Arsalan A, Biswas AK, Tandon S. Casein zymography based detection and one step purification for simultaneous quantification of calcium induced endogenous proteases in breast and thigh muscles from different chicken breeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- I. A. Khoja
- Division of Post‐Harvest Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. Arsalan
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | - A. K. Biswas
- Division of Livestock Products Technology, ICAR‐Indian Veterinary Research Institute, Izatnagar Bareilly U.P. India
| | | |
Collapse
|
21
|
Ma W, Yuan F, Feng L, Wang J, Sun Y, Cao Y, Huang J. ε-Polylysine-mediated enhancement of the structural stability and gelling properties of myofibrillar protein under oxidative stress. Int J Biol Macromol 2022; 220:1114-1123. [PMID: 36030980 DOI: 10.1016/j.ijbiomac.2022.08.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
The effects of ε-polylysine (ε-PL) at different concentrations (0.005 %, 0.010 %, 0.020 %, and 0.030 %) on the structure and gelling behavior of pork myofibrillar protein (MP) under oxidative stress were explored. The incorporation of ε-PL significantly restrained oxidation-induced sulfhydryl and solubility losses (up to 9.72 % and 41.9 %, respectively) as well as protein crosslinking and aggregation. Compared with the oxidized control, ε-PL at low concentrations (0.005 % - 0.020 %) promoted further unfolding and destabilization of MP, while 0.030 % ε-PL led to refolding of MP and enhanced its thermal stability. The ε-PL-induced physicochemical changes favored the formation of a finer and more homogeneous three-dimensional network structure, therefore obviously enhancing the strength and water-holding capacity (WHC) of thermally induced oxidized MP gels, with the ε-PL at 0.020 % showed the greatest enhancement. This work revealed for the first time that ε-PL can significantly ameliorate the oxidation stability and gel-forming ability of meat proteins.
Collapse
Affiliation(s)
- Wenhui Ma
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fang Yuan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Li Feng
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiankang Wang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yujiao Sun
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yungang Cao
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Junrong Huang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
22
|
Zhang J, Toldrá F, Zhang W. Insight into Ultrasound-Induced Modifications of the Proteome and Flavor-Related Proteins of Unsmoked Bacon by Applying Label-Free Quantitation Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10259-10270. [PMID: 35947788 DOI: 10.1021/acs.jafc.2c03605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the modifications of the proteome and flavor-related proteins in unsmoked bacon resulting from ultrasound treatment with the application of label-free quantitation technology together with bioinformatics analysis. Results showed that the expression levels of 137 proteins were markedly affected by ultrasound with most of them being significantly upregulated. The proteins distributed in the cytoplasm and the cytosol, the mitochondrion, and the nucleus were more susceptible to ultrasound treatment. Meanwhile, 20 flavor-related proteins, mostly myofibrillar proteins and metabolic enzymes mainly involved in the metabolic pathways of signaling and cellular processes and environmental information processing, were screened out. In addition, the differential expressions of flavor-related proteins induced by ultrasound were verified by western blotting. This study displayed insightful information from the proteomics perspective for a better understanding of the influential effect of ultrasound treatment on meat flavor.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
23
|
Shi H, Ali Khan I, Zhang R, Zou Y, Xu W, Wang D. Evaluation of ultrasound-assisted L-histidine marination on beef M. semitendinosus: Insight into meat quality and actomyosin properties. ULTRASONICS SONOCHEMISTRY 2022; 85:105987. [PMID: 35339000 PMCID: PMC8956927 DOI: 10.1016/j.ultsonch.2022.105987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 05/02/2023]
Abstract
This paper aimed to evaluate the effects of ultrasound-assisted L-histidine marination (UMH) on meat quality and actomyosin properties of beef M. semitendinosus. Our results found that UMH treatment effectively avoided excessive liquid withdrawal, and disrupted myofibril integrity by modifying the water distribution and weakening connection of actin-myosin with increased muscle pH. The ultrasound-treated sample provided more opportunity for the filtration of L-histidine to intervene the isoelectric point and conformation of muscle protein. The activated caspase-3 and changes of ATPase activity in UMH-treated meat accelerated the postmortem ageing, and L-histidine might competitively inhibit the actin-myosin binding by the imidazole group. UMH decreased the surface hydrophobicity by shielding hydrophobic area and unfolding the actomyosin structure. In addition, the increased actomyosin solubility with smaller particle size enhanced the SH content for better cross-linking of myosin tail, and formation of heat-set gelling protein structure. Therefore, UMH treatment manifested the potential to improve beef quality.
Collapse
Affiliation(s)
- Haibo Shi
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 210014, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Ruyi Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 210014, PR China.
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 210014, PR China
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 210014, PR China.
| |
Collapse
|
24
|
Effects of quercetin on tenderness, apoptotic and autophagy signalling in chickens during post-mortem ageing. Food Chem 2022; 383:132409. [PMID: 35176713 DOI: 10.1016/j.foodchem.2022.132409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
The effect of quercetin on chicken breast muscle tenderness and the associated mechanism were investigated. The results indicated that quercetin significantly decreased the shear force and increased the myofibril fragmentation index (MFI). Haematoxylin-eosin-stained images showed that the internal structure of myofibril bundles in the quercetin-treated group was obviously degraded. Transmission electron microscopy showed that the myofibril structure, especially the M-line and A-band, was seriously degraded after quercetin treatment. Furthermore, quercetin treatment increased caspase-3 activity and the Bax/Bcl-2 ratio. The intensity of BiP, XBP1 and p-IRE1/IRE1 ratio increased significantly, and caspase-12 was activated. In addition, quercetin induced the transition from LC3I to LC3II and increased the expression of ATG7 and Beclin-1. The PI3K/Akt/mTOR signalling pathway was involved in the induction of autophagy and apoptosis by quercetin. These results indicated quercetin can promote meat tenderization, and activate apoptosis and autophagy pathways during post-mortem ageing.
Collapse
|
25
|
Cao Y, Han X, Yuan F, Fan X, Liu M, Feng L, Li Z, Huang J. Effect of combined treatment of L-arginine and transglutaminase on the gelation behavior of freeze-damaged myofibrillar protein. Food Funct 2022; 13:1495-1505. [PMID: 35060582 DOI: 10.1039/d1fo03691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research focused on the effects of L-arginine (Arg, 5 mM), transglutaminase (TG, E : S = 1 : 500), and the combination (Arg + TG) on the physicochemical properties and heat-induced gel performance of freeze-damaged myofibrillar protein (MP). The incorporation of Arg decreased the α-helix percentage (48.4%) and the mean particle size of freeze-damaged MP, as well as cooking loss (46.5%) and the overall textural characteristics of MP gels. The addition of TG reduced the α-helix content by 10.7% but significantly enhanced the crosslinking and heat-induced gel behavior of freeze-damaged MP, resulting in a slight reduction of cooking loss (17.7%) and the most ideal textural properties of MP gels. Although the presence of Arg remarkably suppressed the heat-induced development of storage modulus (G') and reduced the hardness of MP gels (by 13.4%), the combination (Arg + TG) showed the lower cooking loss and the improved textural characteristics, with the set gel displaying the most delicate and compact microstructure. These findings indicated that the combination of Arg and TG could be a potential strategy to enhance the gelling performance of freeze-damaged meat proteins.
Collapse
Affiliation(s)
- Yungang Cao
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Xinrui Han
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Fang Yuan
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xin Fan
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Miaomiao Liu
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Li Feng
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Zhaorui Li
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| | - Junrong Huang
- School of Food and Biological Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an, 710021, China.
| |
Collapse
|
26
|
The Quality Changes and Proteomic Analysis of Cattle Muscle Postmortem during Rigor Mortis. Foods 2022; 11:foods11020217. [PMID: 35053949 PMCID: PMC8775072 DOI: 10.3390/foods11020217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023] Open
Abstract
Rigor mortis occurs in a relatively early postmortem period and is a complex biochemical process in the conversion of muscle to meat. Understanding the quality changes and biomarkers during rigor mortis can provide a theoretical basis for maintaining and improving meat quality. Herein, a tandem mass tag proteomic method is used to investigate the effects of differentially expressed proteins on the meat quality of cattle Longissimus lumborum muscle postmortem (0, 6, and 24 h). The pH, total sulfhydryl content and sarcomere length decrease significantly during storage. In contrast, meat color values (L*, a*, and b*) and the myofibril fragmentation index increase significantly. Altogether, 147 differentially expressed proteins are identified, most being categorized as metabolic enzymes, mitochondrial proteins, necroptosis and ferroptosis proteins and structural proteins. The results also reveal additional proteins that are potentially involved in rigor mortis, such as cardiac phospholamban, acetyl-coenzyme A acyltransferase, and ankyrin repeat domain 2. The current results provide proteomic insights into the changes in meat quality during rigor mortis.
Collapse
|
27
|
Improving quality attributes of refrigerated prepared pork chops by injecting l-arginine and l-lysine solution. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Jia W, Zhang R, Liu L, Zhu Z, Mo H, Xu M, Shi L, Zhang H. Proteomics analysis to investigate the impact of diversified thermal processing on meat tenderness in Hengshan goat meat. Meat Sci 2021; 183:108655. [PMID: 34403850 DOI: 10.1016/j.meatsci.2021.108655] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
During the thermal processing, proteins of Hengshan goat meat undergo structural modifications such as degradation, oxidation and denaturation, ultimately affect the palatability and acceptability. The results of several objective metrics demonstrated that thermal processing exhibited significant impacts on the tenderness of goat meat. The 551, 84, 72, and 121 proteins were identified in the control and thermal processed groups (boiled, steamed, and roasted), respectively. Compared with the control group, the 101, 98, and 109 differentially-expressed proteins were explored in the treatment groups. Furthermore, the functions of metabolic and skeletal muscle proteome were investigated and discussed. Sensory evaluation and proteomics analysis showed that steaming and boiling treatment had no significant effect on the tenderness of goat meat, while roasting significantly reduced the tenderness, indicating that the available thermal processing methods to ensure the tenderness of goat meat were steaming and boiling treatments. Thus, the established proteomics database of goat meat provided the valuable reference for rational selection of thermal processing methods.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Zhang
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
29
|
Shi H, Shahidi F, Wang J, Huang Y, Zou Y, Xu W, Wang D. Techniques for postmortem tenderisation in meat processing: effectiveness, application and possible mechanisms. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00062-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Developing efficient and promising tenderising techniques for postmortem meat is a heavily researched topic among meat scientists as consumers are willing to pay more for guaranteed tender meat. However, emerging tenderising techniques are not broadly used in the meat industry and, to some degree, are controversial due to lack of theoretical support. Thus, understanding the mechanisms involved in postmortem tenderisation is essential. This article first provides an overview of the relationship of ageing tenderisation and calpain system, as well as proteomics applied to identify protein biomarkers characterizing tenderness. In general, the ageing tenderisation is mediated by multiple biochemical activities, and it can exhibit better palatability and commercial benefit by combining other interventions. The calpain system plays a key role in ageing tenderisation functions by rupturing myofibrils and regulating proteolysis, glycolysis, apoptosis and metabolic modification. Additionally, tenderising techniques from different aspects including exogenous enzymes, chemistry, physics and the combined methods are discussed in depth. Particularly, innovation of home cooking could be recommended to prepare relatively tender meat due to its convenience and ease of operation by consumers. Furthermore, the combined interventions provide better performance in controlled tenderness. Finally, future trends in developing new tenderising techniques, and applied consideration in the meat processing industry are proposed in order to improve meat quality with higher economical value.
Graphical abstract
Collapse
|
30
|
Zhang D, Zhang Y, Huang Y, Chen L, Bao P, Fang H, Zhou C. l-Arginine and l-Lysine Alleviate Myosin from Oxidation: Their Role in Maintaining Myosin's Emulsifying Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3189-3198. [PMID: 33496584 DOI: 10.1021/acs.jafc.0c06095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the alleviative effects of l-arginine and l-lysine on the emulsifying properties and structural changes of myosin under hydroxyl radical (·OH) stress. The results showed that ·OH decreased the emulsifying activity index and emulsifying stability index but increased the creaming index and droplet size of a soybean oil-myosin emulsion (SOME). Confocal laser scanning microscopy demonstrated that ·OH caused larger and more inhomogeneous SOME droplets. l-Arginine and l-lysine effectively alleviated ·OH-induced destructive effects on the emulsifying properties of myosin. In addition, ·OH increased the extent of protein carbonylation and dityrosine formation, surface hydrophobicity, and β-sheet content, but decreased the tryptophan fluorescence intensity, solubility, total sulfhydryl, and α-helix content of myosin. Although l-lysine increased dityrosine fluorescence intensity, l-arginine and l-lysine effectively alleviated the aforementioned structural changes of myosin. Therefore, l-arginine and l-lysine could mitigate ·OH-induced structural changes of myosin, which enabled myosin to maintain its emulsifying capacity under oxidative stress.
Collapse
Affiliation(s)
- Daojing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yinyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Huang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
31
|
Shakeri M, Cottrell JJ, Wilkinson S, Le HH, Suleria HAR, Warner RD, Dunshea FR. A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens. Animals (Basel) 2020; 10:ani10071158. [PMID: 32650461 PMCID: PMC7401608 DOI: 10.3390/ani10071158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Heat stress is a main reason of systemic oxidative stress, which compromises broiler meat production and quality. To improve the productivity of poultry meat production, studies have investigated different heat stress amelioration strategies. Among these strategies, low-cost feed supplementations are introduced to potentially reduce the negative effects of heat stress. Previous studies have also investigated the effects of different antioxidants on growth performance and meat quality, while a limited number of studies have been made regarding the impacts of the polyphenols at different doses. Polyphenols with antioxidant properties have positive effects against oxidative stress, and are naturally available in high amounts in plants, which makes them a novel feed supplementation for improving meat production as well as meat quality in heat-stressed broiler chickens. Therefore, this study attempted to investigate the effects of different doses of polyphenols supplementation on growth performance, physiological responses, and meat quality in broiler chickens exposed to cyclic heat stress. Abstract Heat stress (HS) compromises growth performance and meat quality of broiler chickens by interrupting lipid and protein metabolism, resulting in increased oxidative damages. The experiment attempted to investigate whether dietary polyphenols (Polygain (POL)) could ameliorate the aforementioned adverse effects of HS on performance and meat quality. One hundred and twenty one day-old-male chicks were allocated to two temperature conditions, thermoneutral (TN) or HS, and fed with either a control diet (CON) or the CON plus four different doses of POL (2, 4, 6 and 10 g/kg). Heat stress caused respiratory alkalosis as evidenced by increased rectal temperature (p < 0.001) and respiration rate (p < 0.001) due to increased blood pH (p < 0.001). Heat stress decreased final body weight (p = 0.061) and breast muscle water content (p = 0.013) while POL improved both (p = 0.002 and p = 0.003, respectively). Heat stress amplified muscle damages, indicated by increased thiobarbituric acid reactive substances (p < 0.001) and reduced myofibril fragmentation index (p = 0.006) whereas POL improved both (p = 0.037 and p = 0.092, respectively). Heat stress impaired meat tenderness (p < 0.001) while POL improved it (p = 0.003). In conclusion, HS impaired growth performance and meat quality whereas POL ameliorated these responses in a dose-dependent manner, and effects of POL were evident under both temperature conditions.
Collapse
Affiliation(s)
- Majid Shakeri
- Department of Medicine, The University of Washington, Seattle WA 98102, USA
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | | | - Hieu H. Le
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Robyn D. Warner
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|