1
|
Liu W, Yang Q, Wang Z, Wang J, Min F, Yuan J, Tong P, Li X, Wu Y, Gao J, Chen H. Quantitative food allergen risk assessment: Evolving concepts, modern approaches, and industry implications. Compr Rev Food Sci Food Saf 2025; 24:e70132. [PMID: 39929606 DOI: 10.1111/1541-4337.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 05/08/2025]
Abstract
Food safety is crucially linked to the food system, ensuring safe production, handling, and distribution to protect public health. Food allergy has been considered as a public health and food safety issue. Despite being widely regarded as a prevailing strategy for managing food allergies, strict food avoidance faces challenges due to allergen cross-contact in the food supply chain and the potential for inaccurate allergen labeling. Hence, a scientific approach to assess allergen risk in this context is imperative. In this review, a novel approach to managing food allergies, referred to as quantitative food allergen risk assessment, is presented. This discussion covered the evolving concepts and modern analytical approaches. Moreover, this review delves into the current application of quantitative food allergen risk assessment. Finally, a valuable tool for food allergen risk assessment in the food industry, Voluntary Incidental Trace Allergen Labelling (VITAL), was introduced. The establishment of a globally harmonized and standardized quantitative food allergen risk assessment framework could facilitate the promotion of international harmonization of allergen labeling, support food allergic consumers in making safe food choices, and safeguard the health of allergic individuals across various regions and ethnicities. The implementation of food allergen risk assessment could ensure both food supply chain safety and guide the establishment of acceptable allergen cross-contact levels, enhancing food safety and bolstering the integrity and sustainability of the food system.
Collapse
Affiliation(s)
- Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- China National Center for Food Safety Risk Assessment, Beijing, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Qian Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Zhang Y, Lei S, Zou W, Wang L, Yan J, Zhang X, Zhang W, Yang Q. Research progress on detection methods for food allergens. J Food Compost Anal 2025; 137:106906. [DOI: 10.1016/j.jfca.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Torii A, Seki Y, Sasano R, Ishida Y, Nakamura K, Ito R, Iwasaki Y, Iijima K, Akiyama H. Development of a rapid and reliable method to simultaneously detect seven food allergens in processed foods using LC-MS/MS. Food Chem X 2024; 23:101558. [PMID: 38984290 PMCID: PMC11231652 DOI: 10.1016/j.fochx.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Rapid analysis of multiple food allergens is required to confirm the appropriateness of food allergen labelling in processed foods. This study aimed to develop a rapid and reliable method to simultaneously detect trace amounts of seven food allergenic proteins (wheat, buckwheat, milk, egg, crustacean, peanut, and walnut) in processed foods using LC-MS/MS. Suspension-trapping (S-Trap) columns and on-line automated solid-phase extraction were used to improve the complex and time-consuming pretreatment process previously required for allergen analysis using LC-MS/MS. The developed method enabled the simultaneous detection of selected marker peptides for specific proteins derived from seven food ingredients in five types of incurred samples amended with trace amounts of allergenic proteins. The limit of detection values of the method for each protein were estimated to be <1 mg/kg. The developed analytical approach is considered an effective screening method for confirming food allergen labelling on a wide range of processed foods.
Collapse
Affiliation(s)
- Akira Torii
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Seki
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Ryoichi Sasano
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- AiSTI SCIENCE CO., Ltd., 18-3 Arimoto, Wakayama-City, Wakayama 640-8390, Japan
| | - Yoshiki Ishida
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Rie Ito
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Iwasaki
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ken Iijima
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama 356-8511, Japan
| | - Hiroshi Akiyama
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| |
Collapse
|
4
|
Lu Y, Zhang H, Gao H, Zhang X, Ji H, Gao C, Chen Y, Xiao J, Li Z. Quantification of Allergic Crustacean Tropomyosin Using Shared Signature Peptides in Processed Foods with a Mass Spectrometry-Based Proteomic Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11672-11681. [PMID: 38713521 DOI: 10.1021/acs.jafc.3c09064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shhezi University, Shihezi City 832003, Xinjiang Uygur Autonomous Region, P. R. China
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, 83 Xinye Road, Qingdao, Shandong Province 266114, China
| | - Hongyan Gao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, 83 Xinye Road, Qingdao, Shandong Province 266114, China
| | - Hua Ji
- College of Food Science and Technology, Shhezi University, Shihezi City 832003, Xinjiang Uygur Autonomous Region, P. R. China
| | - Chunyu Gao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jing Xiao
- China National Center for Food Safety Risk Assessment, No.2 Building, No.37 Guangqu Road, Chaoyang District, Beijing 100022, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| |
Collapse
|
5
|
Liu A, Yang L, Yang Y, Lei S, Li Z, He P. Simultaneous detection of glycinin and β-conglycinin in processed soybean products by high-performance liquid chromatography-tandem mass spectrometry with stable isotope-labeled standard peptides. Food Res Int 2023; 173:113387. [PMID: 37803724 DOI: 10.1016/j.foodres.2023.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Glycinin and β-conglycinin are the two main allergic proteins in soybean. Due to their complex structures and lack of protein standards, it is difficult to achieve quantitative determination of these proteins in soybeans. In this study, an HPLC-MS/MS method was developed for the simultaneous determination of five subunits of glycinin (G1, G2, G3, G4, and G5) and three subunits of β-conglycinin (α, α', and β) in processed soybean products based on 8 specific peptides and their stable isotope-labeled peptides. Here, each specific peptide was derived from one of the above 8 subunits. When soy protein was extracted and digested with trypsin, 8 specific peptides, and corresponding stable isotope-labeled peptides were analyzed by HPLC-MS/MS. The linear range for the specific peptides was between 3.2 and 1000 ng/mL (R2 > 0.9955). The recoveries of added peptides ranged from 83.4% to 117.8%, and the intra-day precisions (% CV) were below 17.4%. The limit of quantification of each subunit of glycinin and β-conglycinin in processed soybean products (in terms of protein amount) was between 15.1 and 156.1 g/g. This method was successfully applied to the analysis of 8 subunits of glycinin and β-conglycinin in 68 different processed soybean products, which provides technical support for processed product quality evaluation and monitoring soybean processing technology.
Collapse
Affiliation(s)
- Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Luqing Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Yuanhe Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Siqi Lei
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
6
|
Investigating the loss of major yolk proteins during the processing of sea cucumber (Apostichopus japonicus) using an MRM-based targeted proteomics strategy. Food Chem 2023; 404:134670. [DOI: 10.1016/j.foodchem.2022.134670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Torii A, Seki Y, Arimoto C, Hojo N, Iijima K, Nakamura K, Ito R, Yamakawa H, Akiyama H. Development of a simple and reliable LC-MS/MS method to simultaneously detect walnut and almond as specified in food allergen labelling regulations in processed foods. Curr Res Food Sci 2023; 6:100444. [PMID: 36699117 PMCID: PMC9868337 DOI: 10.1016/j.crfs.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
We developed a simple and reliable analytical method using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously detect walnut and almond as specified in regulations for food allergen labelling in processed foods. Five specific target peptides derived from walnut 2S albumin and 7S globulin and three target peptides from almond 11S globulin were selected by analysing several varieties of walnut and almond, eight kinds of other nuts, and ten kinds of major allergen ingredients or cereals. The limit of detection for the walnut 2S albumin peptide GEEMEEMVQSAR (m/z 698.3 [precursor] > 316.1 [product]) was 0.22 ± 0.02 μg/g, and that for almond 11S globulin peptide GNLDFVQPPR (m/z 571.8 [precursor] > 369.2 [product]) was 0.08 ± 0.02 μg/g when extracted walnut and almond protein were spiked into butter cookie chocolate ice cream. These peptides had good linearity (R2 > 0.999) for each calibration curve with a range of 0.1-50 μg/mL protein concentration in the sample solutions, and sufficient recovery rates (90.4-101.5%) from the spiked samples. The developed analytical approach is applicable to a wide variety of processed foods for food allergen labelling.
Collapse
Affiliation(s)
- Akira Torii
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yusuke Seki
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Chisato Arimoto
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Naomi Hojo
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Ken Iijima
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Kosuke Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Rie Ito
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hirohito Yamakawa
- Nisshin Seifun Group Inc., 5-3-1 Tsurugaoka, Fujimino-City, Saitama, 356-8511, Japan
| | - Hiroshi Akiyama
- Hoshi University, School of Pharmacy, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
8
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Pi X, Sun Y, Deng X, Xin D, Cheng J, Guo M. Characterization of the Reduced IgE Binding Capacity in Boiled and Autoclaved Soybeans through Proteomic Approaches. Foods 2022; 11:479. [PMID: 35159629 PMCID: PMC8834289 DOI: 10.3390/foods11030479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The study investigated the changes in IgE binding capacity, protein profiles and peptide compositions after soybeans were boiled and autoclaved. The results of ELISA showed that the IgE binding capacity of soybean was reduced by 69.3% and 88.9% after boiling and autoclaving, respectively. Above 43 and 10 kDa proteins disappeared in boiled and autoclaved soybeans from SDS-PAGE, respectively. A Venn diagram and heat map showed that there was no change in allergen types and a reduction in allergen contents in the boiled and autoclaved soybeans. The changes in peptide compositions were also observed in the boiled and autoclaved soybeans through Venn diagram, PCA and heat map. LC/MS-MS and peptide mapping analysis demonstrated that boiling and autoclaving masked many epitopes in Gly m 4 and Gly m 5, such as ALVTDADNVIPK, SVENVEGNGGPGTIKK and KITFLEDGETK of Gly m 4 and VEKEECEEGEIPRPRPRPQHPER of Gly m 5, resulting in a reduction of IgE binding capacity in the extracted proteins. By contrast, the exposure of many epitopes in Gly m 6 was observed in boiled and autoclaved soybeans, which might be mainly responsible for the existing IgE binding capacity in the treated soybean proteins. Interestingly, the IgE binding capacity of soybeans showed a positive correlation with the total contents and number of peptides in Gly m 4-Gly m 6.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Xiaomin Deng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
| | - Dawei Xin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
| | - Mingruo Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (X.P.); (Y.S.); (X.D.); (D.X.)
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Yang H, Cao Z, Mou R, Cao Z, Chen M. Quantification of rice α‐globulin allergen using liquid chromatography–tandem mass spectrometry combined with cysteine‐specific modifier and extended stable isotope‐labeled peptide. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Huan Yang
- Jiangxi Agricultural University Nanchang 330000 People's Republic of China
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Zhao‐yun Cao
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Ren‐xiang Mou
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Zhen‐zhen Cao
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| | - Ming‐xue Chen
- Rice Product Quality Inspection and Supervision Center Ministry of Agriculture and Rural Affairs China National Rice Research Institute Hangzhou 310006 People's Republic of China
| |
Collapse
|
11
|
Ho CW, Hsu JL, Chen SH, Liaw ET, Liu SS, Huang ES, Chen YK, Jean Huang CC, Yu HS. Development and validation of mass spectrometry-based method for detecting shrimp allergen tropomyosin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Yang H, Cao Z, Ma Y, Chen M. [Simultaneous determination of three allergic proteins in rice and products by high performance liquid chromatography-tandem mass spectrometry combined with stable isotope-labeled peptides]. Se Pu 2021; 39:1314-1323. [PMID: 34812003 PMCID: PMC9404202 DOI: 10.3724/sp.j.1123.2021.06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
基于稳定同位素标记特征肽段和液相色谱-质谱联用仪建立稻米及制品中3种过敏蛋白质的同时定量方法。稻米及制品样品经盐溶液提取,赖氨酰基内切酶(Lys-C)和胰蛋白酶依次水解,C18-SD柱净化后,采用纳升高效液相色谱-线性离子阱-静电场轨道阱(NanoLC-LTQ-Orbitrap)采集和Protein Discovery软件鉴定,NCBI和Uniprot数据库的基本局部搜索比对工具(BLAST)筛选验证,最终获得表征稻米及制品中α-淀粉酶/胰蛋白酶抑制剂类蛋白质(seed allergenic protein RAG2, RAG2)、乙二醛酶Ⅰ活性蛋白(glyoxalase Ⅰ)和α-球蛋白(19 kDa globulin)3种过敏蛋白质的特异性肽段。3个特异性肽段经液相色谱梯度洗脱,在Poroshell色谱柱上实现完全分离,由三重四极杆质谱仪分析。实验通过优化多反应监测(MRM)质谱参数,比较不同溶剂体系、水解酶种类和酶量等酶解条件,结合内标法定量,实现对稻米及制品中3种蛋白质的绝对定量。实验结果表明,当酶解溶剂中含1 g/L十二烷基硫酸钠,采用Lys-C和胰蛋白酶组合消化策略,可有效提高3种蛋白质的酶切效率至65.7%~97.3%。该方法在1~200 nmol/L范围内线性关系良好,相关系数均大于0.9972, 3种蛋白质的检出限和定量限分别为3 mg/kg和10 mg/kg。3种蛋白质在空白稻米制品基质中3个水平下的加标回收率为80.6%~103.7%,日间和日内精密度均小于11.5%。该方法稳定性好,检测灵敏度高,操作简便,在分析各类稻米及制品中3种过敏蛋白质含量具有广泛的应用前景。
Collapse
Affiliation(s)
- Huan Yang
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China.,Jiangxi Agricultural University, Nanchang 330000, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Youning Ma
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingxue Chen
- Rice Product Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
13
|
Wen Y, Liu A, Meng C, Li Z, He P. Quantification of lectin in soybeans and soy products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122987. [PMID: 34656828 DOI: 10.1016/j.jchromb.2021.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Lectin is one of the major anti-nutritional factors in soybeans and inhibits digestion of dietary protein. Here, an absolute quantification method was developed to detect lectin using synthetic peptide 183TTSWDLANNK192 as reference standard and corresponding isotope labeled peptide TTSWDLANNK (Alanine-13C3,15N) as internal standard to normalize results. After the ground soybeans and soy products were defatted with n-hexane and extracted with extraction buffer, the crude protein extract was digested on filter membrane by trypsin. Further, the enzymatic hydrolysis peptides were quantified using liquid chromatography-tandem mass spectrometry. The synthetic reference peptide showed a detection limit of 0.27 ng/mL and a linear relationship in the range of 3.2-1000 ng/mL (r2 > 0.997). Correspondingly, the detect limit of lectin in soybean samples was 35.5 μg/g. The results showed that the recoveries of the lectin in spiked samples ranged from 80.9% to 108.7% with intra-day precisions (% CV) less than 9%. The method was successfully used to evaluate lectin levels in hundreds of soybean seeds from different varieties and soy products from different soybean processing techniques. Furthermore, the method may provide a potential application as a general method for the ultrasensitive detection of various protein anti-nutritional factors in food.
Collapse
Affiliation(s)
- Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Chengzhen Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
14
|
Li J, Wang H, Cheng JH. DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications. Crit Rev Food Sci Nutr 2021; 63:178-191. [PMID: 34184960 DOI: 10.1080/10408398.2021.1944977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing number of people with seafood allergy has caused a series of problems for practitioners and consumers in the seafood industry year by year. Thereby, development of efficient, convenient and low-cost allergen detection methods is urgently needed. This review introduces three important existing seafood allergen detection methods associated with DNA-based, protein-based and aptamer-based. Their principles and biological characteristics are firstly presented. The core of these three methods are DNA amplification techniques, specific binding of antigens and antibodies, and specific binding of aptamers and ligands, respectively. Among them, DNA-based detection method is an indirect analysis, which takes the gene of allergen as the detection object and is characterized by good stability and high sensitivity. Protein-based and aptamer-based, methods employ indirect analysis for allergen detection. The difference is that the latter uses an easily synthesized and highly efficient aptamer as the detection probe, showing great promising potentials. The advantages and disadvantages of the three mentioned detection methods are also discussed. In the future, as more efficient and reliable detection methods for seafood allergens come into practice, the possibility of seafood allergy patients eating seafood products by mistake will be greatly reduced, which will ensure the food safety and the health of allergy patients.
Collapse
Affiliation(s)
- Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|