1
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Zhang Y, Pan T, Yang Y, Xu X, Liu Y. Oridonin attenuates diabetic retinopathy progression by suppressing NLRP3 inflammasome pathway. Mol Cell Endocrinol 2025; 596:112419. [PMID: 39577795 DOI: 10.1016/j.mce.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Oridonin (Ori) possesses anti-inflammatory properties. However, its potential to treat diabetic retinopathy (DR) remains unclear. This study aimed to investigate the retinal protective function of Ori and the underlying mechanism. In streptozotocin-induced mice, Ori alleviated visual impairment, reduced retinal and vascular lesions, protected the neuroretinal structure, reversed retinal nerve layer thickening. Addtionnally, Ori reduced TNF-α and IL-1β levels in the peripheral blood, and suppressed retinal NLRP3 inflammasome-related inflammatory factor. In vitro, human retinal endothelial cells (hRECs) were stimulated by high glucose (HG). HG-stimulated hRECs activated the NLRP3 inflammasome, whereas Ori significantly alleviated pyroptosis by enhancing cell viability and reducing IL-1β levels in the supernatant. Ori also inhibited NF-κB/NLRP3 inflammasome pathway. NEK7 depletion alleviated NLRP3 inflammasome activation and, to some extent, mimicked the role of Ori. Indeed, Ori reversed NLRP3 inflammasome activation by suppressing NEK7-NLRP3 interaction. Therefore, Ori may serve as a potential therapeutic agent for attenuating DR progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ting Pan
- Department of Ophthalmology, Nanjing Medical University Affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing, 210006, China
| | - Yanting Yang
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xingzhao Xu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Yao Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| |
Collapse
|
3
|
Shi X, Yang X, He S, Duan T, Liang X, Ma S, Gong J. Ultrasonic Extraction of Polysaccharides from Dendrobium officinale Leaf: Kinetics, In Vitro Activities, and Characterization. Foods 2024; 13:3737. [PMID: 39682810 DOI: 10.3390/foods13233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study explored the kinetics of ultrasonic extraction of polysaccharides (DOLP) from Dendrobium officinale leaf (DOL), evaluated the in vitro bioactivity of DOL extracts and DOLP, and characterized the DOLP. A kinetic model was developed based on Fick's second law. A technique utilizing 400 W for 50 min was employed for the ultrasonic extraction of DOLP, with an optimal solid-liquid ratio established at 1:40 (g/mL). DOL extracts dried using different methods exhibited varying antioxidant activity and inhibitory effects against α-amylase and α-glucosidase. An in vitro study revealed that DOL extracts obtained through vacuum freeze drying demonstrated significantly stronger antioxidant activity, while those derived through microwave drying showed superior inhibitory effects against α-amylase and α-glucosidase compared to the other two drying methods. Furthermore, it was observed that the in vitro bioactivity of DOLP (purity: 74.07 ± 0.52%) was significantly lower than that of DOL extracts. Nevertheless, DOLP (5.0 mg/mL) demonstrated a scavenging ability reaching 64.86% of VC for DPPH radical and 67.14% of VC for ·OH radical, and the inhibition of DOLP (10 mg/mL) on α-amylase and α-glucosidase reached 58.40% and 38.28% of the acarbose, respectively. The findings revealed that DOLP are predominantly composed of mannose, glucose, galactose, and arabinose in a distinctive molar ratio of 89.00:16.33:4.78:1.
Collapse
Affiliation(s)
- Xuerong Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuzhong Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shaotong He
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Duan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuzhen Ma
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jijun Gong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
4
|
Wang Y, Wu X, Shao G, Zhai B, Wang Z, Qin B, Wang T, Liu Z, Fu Y. Novel molecularly imprinted aerogels: Preparation, characterization, and application in selective separation for oleanolic acid in lingonberry. Talanta 2024; 266:124983. [PMID: 37542848 DOI: 10.1016/j.talanta.2023.124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An oleanolic acid (OA) surface molecularly imprinted polymer silylated porous composite aerogels (OA-MIP@Si-PC-aerogels) adsorbent material was successfully prepared and characterized. The material not only has a great selectivity for the target molecule OA but also has other noteworthy qualities including high stability, excellent repeatability, and a sizable adsorption capacity. via cellulose and sodium alginate as the main materials, the carrier Si-PC-aerogels were made through ionic cross-linking, chemical cross-linking, and silylation procedures. By adopting a surface molecular imprinting approach on Si-PC-aerogels, OA-MIP@Si-PC-aerogels were effectively created utilizing OA as the template molecule and MAA as the functional monomer. Due to the presence of a specific imprinted layer on the aerogel surface, the adsorption capacity of OA-MIP@Si-PC-aerogels for OA could reach 66.20 mg g-1. OA-MIP@Si-PC-aerogels could achieve a 68.86% yield of OA from the extracts of lingonberry (Vaccinium Vitis-Idaea L.). The adsorption capacity remained at 90% after five consecutive adsorption-desorption cycles. HepG2 cells were exposed to OA that was effectively enriched with OA-MIP@Si-PC-aerogels in lingonberry (Vaccinium Vitis-Idaea L.) fruit homogenates. This OA significantly inhibited the growth of HepG2 cells in vitro. It further demonstrated that OA-MIP@Si-PC-aerogels could efficiently target OA enrichment and separation with good recovery.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bowen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
5
|
Ren WJ, Io CC, Jiang R, Ng KF, Liu JZ, Bai LP, Zhang W, Jiang ZH, Liu YH, Zhu GY. Di- and Triterpenoids from the Rhizomes of Isodon amethystoides and Their Anti-inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2023; 86:1230-1239. [PMID: 37146221 DOI: 10.1021/acs.jnatprod.2c01136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Amethystoidesic acid (1), a triterpenoid with an unprecedented 5/6/6/6 tetracyclic skeleton, and six undescribed diterpenoids, amethystoidins A-F (2-7), were isolated from the rhizomes of Isodon amethystoides along with 31 known di- and triterpenoids (8-38). Their structures were fully elucidated via extensive spectroscopic analysis including 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Compound 1 is the first example of a triterpenoid possessing a rare ring system (5/6/6/6) derived from a contracted A-ring and the 18,19-seco-E-ring of ursolic acid. Compounds 6, 16, 21, 22, 24, and 27 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, which could be partly mediated by the downregulation of LPS-induced inducible nitric oxide synthase (iNOS) protein expression.
Collapse
Affiliation(s)
- Wen-Jing Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Chi-Cheng Io
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Rong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Kei-Fong Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jia-Zheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Yu-Hong Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| |
Collapse
|
6
|
Lian C, Lan J, Zhang B, Yang H, Guo K, Li J, Chen S. Molecular Cloning and Functional Analysis of IrUGT86A1-like Gene in Medicinal Plant Isodon rubescens (Hemsl.) Hara. Life (Basel) 2022; 12:life12091334. [PMID: 36143372 PMCID: PMC9503823 DOI: 10.3390/life12091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of secondary metabolites in plants often includes glycosylation modifications. Often, the final step of constructing plant secondary metabolites is completed by glycosylation transferases, which are also involved in many cell processes. In this study, a UDP-glycosyltransferase gene (UGT) was amplified from Isodon rubescens (Hemsl.) Hara with RT-PCR and named IrUGT86A1-like (GenBank: MZ913258). Here, we found that IrUGT86A1-like gene is 1450 bp in length and encodes for 479 amino acids. Bioinformatics analysis revealed that IrUGT86A1-like is a stable and hydrophilic protein, located in the cytoplasm with a transmembrane domain. Phylogenetic analysis showed that IrUGT86A1-like protein has the closest genetic relationship with the UDP-glycosyltransferase 86A1-like protein (XP_042054241.1) of Salvia splendens. RT-qPCR analysis demonstrated that the expression of IrUGT86A1-like gene varied in different tissues; leaves had the highest expression followed by flowers, stems, and roots had the lowest expression. This expression trend is similar to the distribution of oridonin content in different tissues of I. rubescens. Additionally, IrUGT86A1-like gene was found to be positively enhanced by NaCl and MeJA treatment, and in contrast was down-regulated by ABA treatment. Finally, the prokaryotic expression vector pEASY®-Blunt E1-IrUGT86A1 was successfully used to express about 53 KD of IrUGT86A1-like protein. This research builds a foundation for further investigation on the function of this gene in the synthesis and modification of secondary metabolites.
Collapse
|
7
|
Wei MC, Wang CS, Liou RM, Yang YC. Development and validation of a green and sustainable procedure for the preparation of Perilla frutescens extracts. Food Chem 2022; 369:130929. [PMID: 34488132 DOI: 10.1016/j.foodchem.2021.130929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
A procedure combining supercritical CO2 and ultrasound-assisted (USC-CO2) extraction was developed to obtain rosmarinic acid (RA)-rich extracts from Perilla frutescens. Based on extraction yields and efficiencies, USC-CO2 was considered the best extraction method among the methods studied for obtaining RA from P. frutescens. The constant extraction rate period and the falling extraction rate period for USC-CO2 extraction of P. frutescens were 45 and 96 min long, respectively, and they were significantly shorter than those of traditional SC-CO2 (TSC-CO2) extraction. Furthermore, mass transfer coefficients were derived using the Sovová model for the fluid and solid phases from USC-CO2 extraction, with values of 9.752 × 10-3 and 4.203 × 10-3 min-1, respectively, which were obviously higher than those for TSC-CO2 extraction. Consequently, the theoretical solubilities of RA in the supercritical solvents used in dynamic USC-CO2 and TSC-CO2 extractions were estimated and found to be well correlated using three density-based models.
Collapse
Affiliation(s)
- Ming-Chi Wei
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan; Section of Mathematics and Physics Science, Center for General Education, Air Force Academy, Kaohsiung 82047, Taiwan
| | - Chia-Sui Wang
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Rey-May Liou
- Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yu-Chiao Yang
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
8
|
Gao C, Zhang L, Tang Z, Fang Z, Ye X, Yu W. Preparation, characterization, and anti-colon cancer activity of oridonin-loaded long-circulating liposomes. Pharm Dev Technol 2021; 26:1073-1078. [PMID: 34543167 DOI: 10.1080/10837450.2021.1982966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, oridonin-loaded long-circulating liposomes (LC-lipo@ORI) were prepared with the ethanol injection method. Its physicochemical properties and the morphology were characterized, and its stability and release profiles were evaluated. Furthermore, its antitumor effects were studied using two in vitro cell models of colon cancer and two tumor-bearing models in nude mice. The prepared LC-lipo@ORI was quasi-spherical, with a mean particle size of 109.55 ± 2.30 nm. The zeta potential was -1.38 ± 0.21 mV, the encapsulation efficiency was 85.79%±3.25%, and the drug loading was 5.87%±0.21%. In vitro release results showed that the cumulative release rate of LC-lipo@ORI at 12 h was 63.83%. However, ORI dispersion was almost completely released after 12 h. In vitro cytotoxicity results showed that, the inhibiting effects of LC-lipo@ORI on the proliferation of two types of colon cancer cells were apparently higher than those of ORI dispersion, whereas those of the blank carrier were not noticeable. In vivo studies confirmed that, the encapsulation of LC-lipo enhanced the inhibitory effects of ORI on tumor growth. These results indicated that LC-lipo@ORI a promising formulations for colon cancer treatment.
Collapse
Affiliation(s)
- Chunxiao Gao
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Liang Zhang
- College of Animal Pharmaceutical Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zhan Tang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Zhengyu Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ye
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenying Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Miao G, Peng L, Liu E, He L, Guan Q, Zhang J, Peng L. Solid–liquid mass transfer characteristics and mechanism of alkali‐soluble heteropolysaccharides from hemp stalk. AIChE J 2021. [DOI: 10.1002/aic.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guohua Miao
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| | - Lijuan Peng
- Yunnan Tobacco Quality Supervision and Test Station Kunming China
| | - Enfen Liu
- China Tobacco Yunnan Reconstituted Tobacco Co, Ltd Yuxi China
| | - Liang He
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics Kunming University of Science and Technology Kunming China
| | - Junhua Zhang
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| | - Lincai Peng
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| |
Collapse
|
10
|
Validation of a greener procedure for the extraction of triterpenic acids from Hedyotis corymbosa. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Insights into the Supercritical CO2 Extraction of Perilla Oil and Its Theoretical Solubility. Processes (Basel) 2021. [DOI: 10.3390/pr9020239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the current research, the supercritical carbon dioxide (SCCO2) procedure was used to extract volatile oils from perilla leaves. The yields of the volatile oils and the four main constituents, limonene, perillaldehyde, β-caryophyllene, and (Z,E)-α-farnesene obtained by the SCCO2 procedure were 1.31-, 1.12-, 1.04-, 1.05-, and 1.07-fold higher than those obtained by the hydrodistillation technique, respectively. Furthermore, the duration and temperature of extraction were 40 min and 45 °C lower, respectively, in the former procedure compared to the latter technique. These advantages reveal that SCCO2 not only obtains high-quality extracts, but also meets the requirements of green environmental protection. The theoretical solubilities of the volatile oils acquired by the SCCO2 dynamic extraction at various temperatures and pressures were 1.385 × 10−3–8.971 × 10−3 (g oil/g CO2). Moreover, the three density-based models were well correlated with these theoretical solubility data, with a high coefficient of determination and low average absolute relative deviation.
Collapse
|
12
|
Zhang Q, Chen W, Zhang B, Li C, Zhang X, Wang Q, Wang Y, Zhou Q, Li X, Shen XL. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology 2021; 450:152681. [PMID: 33465424 DOI: 10.1016/j.tox.2021.152681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin that is widely distributed in foodstuffs and feeds, meanwhile oleanolic acid (OA) is ubiquitous in various fruit skins, food materials, and medicinal herbs. Due to that OA has a nephroprotective effect, it has the poteintial to counteract OTA-induced nephrotoxicity by nutritional intervention of OA. Furthermore, tumor necrosis factor receptor-associated protein 1 (TRAP1) acts as the core of endoplasmic reticulum (ER)-mitochondria crosstalk, becoming our focus in the mechanism investigation. In this study, the cell viability, apoptosis rate, and protein expressions of human proximal tubule epithelial-originated kidney-2 (HK-2) cells in response to OTA and/or OA were determined. Results indicated that a 24 h-treatment of 1-5 μM OTA could notably induce mitochondrial-mediated and ER stress (ERS)-excitated apoptosis via inhibiting TRAP1, thereby activating CypD, Bax, Cyt-C, Cleaved Caspase-9, Cleaved Caspase-3, GRP78, p-PERK, p-eIF2α, ATF4, and CHOP and inhibiting Bcl-2 (P < 0.05). Results of the RNA interference of TRAP1 further ascertained its anti-apoptotic function via inhibiting CypD, Bax, GRP78, and CHOP and enhancing Bcl-2 (P < 0.05). The pre-treatment of 2 μM OA for 2 h could remarkably relieve OTA-induced suppression of TRAP1 (P < 0.05). In conclusion, TRAP1 played a central role in the ameliorative effect of OA on the mitochondrial-mediated and ERS-excitated apoptosis induced by OTA.
Collapse
Affiliation(s)
- Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, PR China.
| | - Chen Li
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Xunyao Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Qian Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| | - Yan Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, PR China.
| | - Qian Zhou
- College of Food Science and Technology, Hebei Agricultural University, Hebei, 071000, Hebei, PR China.
| | - Xiaohong Li
- Department of Food and Bioengineering, Beijing Agricultural Vocational College, Beijing, 102442, PR China.
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
13
|
Guo Y, Li Y, Li Z, Yan W, Chen P, Yao S. Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf. GREEN CHEMISTRY 2021. [DOI: 10.1039/d1gc01773j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a new ternary choline chloride-deep eutectic solvent was used to efficiently extract bioactive polysaccharides from poria cocos assisted by the new tool of the far infrared radiation (FIR) together with hot air circulation (HAC).
Collapse
Affiliation(s)
- Yingying Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wentao Yan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Synthesis and in vitro and in vivo biological evaluation of novel derivatives of flexicaulin A as antiproliferative agents. Eur J Med Chem 2020; 208:112789. [PMID: 32883640 DOI: 10.1016/j.ejmech.2020.112789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
As our research focuses on anticancer drugs, a series of novel derivatives of flexicaulin A (FA), an ent-kaurene diterpene, condensed with an aromatic ring were synthesized, and their antiproliferative activities against four human cancer cell lines (TE-1, EC109, MCF-7, and MGC-803) were evaluated. The activities of most of the new compounds were better than those of FA. Compound 2y exhibited the best activity with an IC50 value reaching 0.13 μM against oesophageal cancer cells (EC109 cells). The IC50 values for 2y in normal cells (GES-1 cells and HUVECs) were 0.52 μM and 0.49 μM, respectively. Subsequent mechanistic investigations found that compound 2y can inhibit the proliferation of cancer cells and cell cloning. In addition, 2y could reduce the mitochondrial membrane potential, increase the apoptosis rate, and increase the ROS level in EC109 cells. Moreover, 2y can upregulate the expression of ROS/JNK pathway-related proteins (p-ASK1, p-MKK4, p-JNK, and p-Cjun (ser63)) and pro-apoptotic proteins (Bax, Bad, and Bim). In vivo experiments showed that 2y can inhibit tumour growth in nude mice. The mechanism involves an increase in protein expression in the ROS pathway, leading to changes in apoptosis-related proteins. In addition, compound 2y shows low toxicity. These results indicate that compound 2y holds promising potential as an antiproliferative agent.
Collapse
|
15
|
Yang YC, Wang CS, Wei MC. Development and validation of an ultrasound-assisted supercritical carbon-dioxide procedure for the production of essential oils from Perilla frutescens. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|