1
|
Qi L, Wang Z, Yin Z, Liu K, Meenu M, Lu H, Zhao H, Yuan C, Tian Y. Rapid and slow thawing of Takifugu rubripes fillets: TMT-labeled proteomics analysis, biochemical and morphological comparison. Food Chem 2025; 476:143389. [PMID: 39977997 DOI: 10.1016/j.foodchem.2025.143389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
This study aimed to investigate how running water (rapid, R) and ice-water (slow, I) thawing methods affect the quality of Takifugu rubripes fillets. Thawing shrinkage and changes in extractable proteins quantified by tandem mass tag (TMT)-labeled quantitative proteomics were compared. The results showed that the rapidly thawed fillets were quickly underwent greater shrinkage, and the smaller gap areas were reduced by 7.5 % compared to slow thawing. Compared with fresh fish fillets, the outflow of proteins such as ATP synthase, NADH dehydrogenase, and aconitase within mitochondria increased in both thawing methods that presents cell membrane damage and significant disruptions in mitochondrial structure. The pyruvate dehydrogenase and cytochrome c were significantly upregulated in slow-thawing group. Whereas myosin and structural proteins including the Z-line related were significantly upregulated in the rapid-thawing group. These differential proteins serve as crucial markers for elucidating mechanism involved in muscle quality deterioration under different thawing conditions.
Collapse
Affiliation(s)
- Lin Qi
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhuolin Wang
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Zhongzhuan Yin
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Kaisheng Liu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road, Hangzhou 310058, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Hui Zhao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Chunhong Yuan
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan; Agri - Innovation Center, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China.
| |
Collapse
|
2
|
Shi R, Sun Z, Yu X, Wei H, Li G, Yang W. Effect of magnetic field-assisted thawing on the quality and microstructure of Portunus trituberculatus meat. Food Res Int 2025; 202:115722. [PMID: 39967174 DOI: 10.1016/j.foodres.2025.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
The objective of this study was to examine the impact of magnetic field-assisted thawing (MFT) on the quality and microstructure of Portunus trituberculatus meat, in comparison to other thawing methods (Air thawing, AT; Hydrostatic thawing, HT; Microwave thawing, MT). A comprehensive comparative analysis was conducted on different physicochemical and flavor properties of crab meat. MFT significantly reduced thawing loss by 18.9-20.0 % and TBARS levels by 40 % compared to the other methods, demonstrating its ability to minimize lipid oxidation. Microstructure analysis showed that MFT preserved muscle fiber integrity, leading to a denser and more organized structure with reduced protein denaturation. This performance was attributed to MFT's ability to reduce protein denaturation, which effectively minimizes water loss and inhibits lipid oxidation during thawing. Moreover, MFT improved the retention of key flavor compounds, increasing nonanal and 2-undecanone levels by 31.4 % and 69 %, respectively, contributing to a fresher aroma. MFT group also retained more umami (Glu + 40.8 %) and sweet amino acids (Gly, Ala + about 19.8 %), and nucleotides (AMP + 0.8 %, IMP + 9.4 %), while less bitter amino acids (Lys -68.2 %, Met -51.9 %). In conclusion, MFT had good ability of keeping quality of crabs meat, providing noval thawing method for P. trituberculatus.
Collapse
Affiliation(s)
- Rong Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China
| | - Zhongqi Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China
| | - Xuemei Yu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China
| | - Huamao Wei
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China.
| | - Gaoshang Li
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China.
| | - Wenge Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211 China.
| |
Collapse
|
3
|
Rivera-Tobar D, Pérez-Won M, Jara-Quijada E, González-Cavieres L, Tabilo-Munizaga G, Lemus-Mondaca R. Principles of ultrasonic agglomeration and its effect on physicochemical and macro- and microstructural properties of foods. Food Chem 2025; 463:141309. [PMID: 39326307 DOI: 10.1016/j.foodchem.2024.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Ultrasonic compaction, also known as ultrasonic agglomeration, is an emerging technology that represents a novel alternative for food agglomeration; it is of great interest to the food industry. This review aims to gather information on the physicochemical, organoleptic, microbiological, and structural changes generated by ultrasound and study the fundamentals of agglomeration and ultrasound in different food matrices. In addition, chemical changes are reported in some nutrients related to conformational changes, such as the disintegration of diacylglycerides into monoacylglycerols, disordering of the crystalline region of starch granules to the amorphous phase, disruption of the membrane in plant cells, and transient or permanent modification of the protein structure (3D folding). The increasing development of patents can provide an insight into the potential of ultrasonic agglomeration applications in the food industry.
Collapse
Affiliation(s)
- Daniela Rivera-Tobar
- Department of Food Science and Technology, Faculty of Technological, Universidad de Santiago de Chile, Av. Víctor Jara 3769, Estación Central, Región Metropolitana, Chile..
| | - Mario Pérez-Won
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile..
| | - Erick Jara-Quijada
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile.; Nutrition and Dietetics, Faculty of Health Sciences, Universidad Adventista de Chile, Camino a Las Mariposas #11771, Chillán, Chile
| | - Luis González-Cavieres
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile
| | - Roberto Lemus-Mondaca
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, Calle Dr. Carlos Lorca 964, Independencia, Región Metropolitana, Chile
| |
Collapse
|
4
|
Nie CZ, Wang L, Tian HH, Huang XH, Qin L. The flavor enhancement mechanism of ultrasound-assisted curing and UV-assisted drying in semi-dried tilapia fillets based on flavoromics, lipidomics, and metabolomics. Food Chem 2025; 463:141386. [PMID: 39332368 DOI: 10.1016/j.foodchem.2024.141386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
This study aimed to investigate the effects of ultrasound-assisted curing and UV-assisted drying on the quality of semi-dried tilapia fillets through flavoromics, lipidomics, and metabolomics. Both treatments enhanced myofibril pore space and reduced moisture content (-14.84 %, P < 0.05), with ultrasound demonstrating greater effectiveness. Additionally, they also facilitated lipid oxidation (P < 0.05), which altered the flavor profile. UV treatment enhancing key aroma compounds (ROAV >1), especially octanal, 1-octen-3-one, ethyl-isovalerate, and 2-pentyl-furan, more effectively than ultrasound (P < 0.05). 420 lipid molecules and 213 metabolites were identified, including 162 differential lipids and 69 differential metabolites (VIP > 1). Correlation analysis indicated that triglycerides, fatty acids, organic acids, and nucleosides were key precursors of flavor. The sensory evaluation demonstrated that ultrasound and UV treatments synergistically enhanced fillet quality. This study introduces an innovative processing method aimed at the industrialized and efficient production of high-quality air-dried aquatic products.
Collapse
Affiliation(s)
- Cheng-Zhen Nie
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Liang Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - He-He Tian
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Zhang Y, Liu G. Electrostatically-enhanced two-stage low-temperature tempering: Effects on the quality of frozen tan mutton. Food Chem X 2024; 24:101926. [PMID: 39525067 PMCID: PMC11550020 DOI: 10.1016/j.fochx.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The two-stage low-temperature tempering (TLT) and TLT assisted by electrostatic fields (TLT-1500/2000/2500/3000) were developed to investigate their effects on the quality of frozen Tan mutton. The results demonstrated that both TLT and TLT-1500/2000/2500/3000 significantly (P < 0.05) enhanced the tempering rate compared to refrigerator tempering (4 °C, RT). The analysis of tempering, cooking, and centrifugal losses, along with the evaluation of electrical conductivity, pH, and TVB-N, showed that the water retention capacity and freshness of Tan mutton treated with TLT-2500 were closest to those of fresh Tan mutton. Scanning electron microscopy analysis demonstrated that TLT-2500 best maintained the tissue integrity of Tan mutton, while low-field nuclear magnetic resonance analysis revealed it contained the highest immobile water and least free water. Furthermore, Tan mutton treated with TLT-2000 and TLT-2500 exhibited minimal lipid oxidation and color change. In contrast, the most significant changes in all indicators were observed after RT.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
6
|
Coria-Hernández J, Meléndez-Pérez R. Cryogel Addition Effect on Ultrasound-Assisted Thawing of Pork Meat. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9662782. [PMID: 39720785 PMCID: PMC11668546 DOI: 10.1155/ijfo/9662782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
The use of new technologies that allow for improving conventional food preservation processes is what the industry has been adopting in recent decades, with high-intensity ultrasound (US) and the application of cryoprotectant agents (cryogels) being those that have become more relevant today. For this reason, in this study, cuts of Longissimus thoracis pork frozen in liquid nitrogen with and without waxy starch cryogel and thawed under controlled conditions in water immersion and with US were used, evaluating thermal parameters such as the initial zone and the melting rate of ice crystals and quality parameters such as pH, water holding capacity (WHC), microstructure, color profile, shear force, and surface changes. It was shown that the addition of cryogel modifies the initial fusion zone, that US-assisted thawing increases the fusion rate, and that both factors influence the quality parameters. However, the main effect on pH is the use of cryogel, unlike WHC, color parameters, and shear force, where the main impact is the thawing method. These results conclude that waxy starch cryogel and the US at 50% thawing have the potential to apply assistance technology in food processing.
Collapse
Affiliation(s)
- Jonathan Coria-Hernández
- Laboratory 13 Thermal and Structural Analysis of Materials and Foods, Multidisciplinary Research Unit, National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM–FESC), Cuautitlan Izcalli, Mexico State, Mexico
| | - Rosalía Meléndez-Pérez
- Laboratory 13 Thermal and Structural Analysis of Materials and Foods, Multidisciplinary Research Unit, National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan (UNAM–FESC), Cuautitlan Izcalli, Mexico State, Mexico
| |
Collapse
|
7
|
Xu W, Bao Y, Gou H, Xu B, Hong H, Gao R. Mitigation of mechanical damage and protein deterioration in giant river prawn (Macrobrachium rosenbergii) by multi-frequency ultrasound-assisted immersion freezing. Food Chem 2024; 458:140324. [PMID: 38970954 DOI: 10.1016/j.foodchem.2024.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In order to investigate the effects of multi-frequency ultrasound-assisted immersion freezing (MUIF) on the meat quality of Macrobrachium rosenbergii, tail meat was subjected to different MUIF treatments respectively, namely 20 + 40 kHz (MUIF-20 + 40), 20 + 60 kHz (MUIF-20 + 60), 40 + 60 kHz (MUIF-40 + 60) and 20 + 40 + 60 kHz (MUIF-20 + 40 + 60), and the immersion freezing (IF) as control. Results showed that average diameter of ice crystals was 28 μm in IF, and that was only 8 μm in MUIF-20 + 40 + 60. When compared to IF, MUIF alleviated oxidative deterioration of lipids and proteins, but only at higher ultrasound frequency (MUIF-40 + 60; MUIF-20 + 40 + 60). Carbonyl content of MUIF-20 + 40 + 60 was only 40% of that in IF. Similarly, protein denaturation was inhibited in MUIF (except for MUIF-20 + 40). Transmission electron microscopy showed greater distortion of the ultrastructural components in IF, MUIF-40 + 60, and MUIF-20 + 40 + 60, suggested by bended Z-line. In conclusion, MUIF can be an effective strategy to mitigate mechanical damage and protein deterioration in the meat of Macrobrachium rosenbergii.
Collapse
Affiliation(s)
- Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| | - Hao Gou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
8
|
Zhang Y, Li Y, Guo J, Feng Y, Xie Q, Guo M, Yin J, Liu G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem 2024; 456:140001. [PMID: 38852449 DOI: 10.1016/j.foodchem.2024.140001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
9
|
Yang X, Bian C, Dong Y, Xie J, Mei J. Effects of different power multi-frequency ultrasound-assisted thawing on the quality characteristics and protein stability of large yellow croaker ( Larimichthys crocea). Food Chem X 2024; 23:101559. [PMID: 39036484 PMCID: PMC11260327 DOI: 10.1016/j.fochx.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
This study investigated the impact of multi-frequency ultrasound-assisted (20/28/40 kHz) thawing (MUAT) at different power levels (195, 220, 245, and 270 W, respectively) on the flesh quality and protein stability of large yellow croakers. Compared with flowing water thawing (FWT) and the other MUAT sample, flesh quality results indicated that the MUAT-220 W significantly reduced (p < 0.05) thawing loss, total volatile base nitrogen (TVB-N), total free amino acids (FAAs) and thiobarbituric acid reactive substances (TBARS). Low-field nuclear magnetic resonance (LF-NMR) spectroscopy indicated that MUAT-220 W samples had higher immobilized water content and lower free water content. In addition, the MUAT-220 W sample contained higher sulfhydryl and lower carbonyl contents compared to the FWT sample. Secondary and tertiary structural results of myofibrillar proteins (MPs) showed that MUAT-220 W significantly reduced thawing damage to MPs. Therefore, MUAT-220 W improved the quality and protein stability of the large yellow croaker during the defrosting process.
Collapse
Affiliation(s)
- Xinrui Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| |
Collapse
|
10
|
Liu J, Huang J, Jiang L, Lin J, Ge Y, Hu Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int J Biol Macromol 2024; 277:134435. [PMID: 39098679 DOI: 10.1016/j.ijbiomac.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this work was to evaluate the potential application of chitosan/PVA food packaging films incorporating nano-ZnO and purple potato anthocyanins for preserving chilled hairtail pieces. The hairtail pieces were packaged with chitosan/PVA (CP) and chitosan/PVA/nano-ZnO/purple potato anthocyanins (CPZP), respectively, and Control named without any packaging. The changes in pH, total volatile basic nitrogen (TVB-N), total bacterial colony (TVC), thiobarbituric acid (TBA), color value, and sensory evaluation scores of hairtail pieces were periodically determined. Notably, pH, TVC, TVB-N and TBA values of CPZP group on day 15 were 11.67 %, 23.71 %, 80.73 %, and 35.07 %, respectively, lower than Control group. In addition, CPZP group also performed the best in color and sensory evaluation. These results indicated that CPZP, an active food packaging, could extend the shelf-life of hairtail at least 6 days. Overall, chitosan/PVA food films incorporated with nano-ZnO and purple potato anthocyanins (180 mg/100 mL) provides a potential application in food preservation.
Collapse
Affiliation(s)
- Jialin Liu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingliang Ge
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| |
Collapse
|
11
|
Zhang F, Guo J, Li P, Zhao F, Yang X, Cheng Q, Elmore JS, Wang P, Cui C. Effects of different thawing methods on physical and physicochemical properties of frozen dough and quality of corresponding steamed bread. Food Chem 2024; 447:138932. [PMID: 38484546 DOI: 10.1016/j.foodchem.2024.138932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
The thawing method is critical for the final quality of products based on the frozen dough. The effects of ultrasound thawing, proofer thawing, refrigerator thawing, water bath thawing, ambient thawing, and microwave thawing on the rheology, texture, water distribution, fermentation characteristics, and microstructure of frozen dough and the properties of steamed bread were investigated. The results indicated that the ultrasound thawing dough had better physicochemical properties than other doughs. It was found that ultrasound thawing restrained the water migration of dough, improved its rheological properties and fermentation capacity. The total gas volume value of the ultrasound thawing dough was reduced by 21.35% compared with that of unfrozen dough. The ultrasound thawing dough displayed a thoroughly uniform starch-gluten network, and an enhanced the specific volume and internal structure of the steamed bread. In conclusion, ultrasound thawing effectively mitigated the degradation of the frozen dough and enhanced the quality of steamed bread.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China.
| | - Peiyao Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Fen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Xue Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK
| | - Ping Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Can Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| |
Collapse
|
12
|
Li Y, Wang J, Zeng QH, Wang L, Wang JJ, Li S, Zhu J, Zeng XA. Novel thawing method of ultrasound-assisted slightly basic electrolyzed water improves the processing quality of frozen shrimp compared with traditional thawing approaches. ULTRASONICS SONOCHEMISTRY 2024; 107:106931. [PMID: 38823084 PMCID: PMC11176819 DOI: 10.1016/j.ultsonch.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Thawing is the primary step in handling frozen aquatic products, which directly determines their end-product quality. This study firstly constructed a novel thawing method of ultrasound-assisted slightly basic electrolyzed water (UST), and its influences on the physicochemical and histological properties of shrimp, as well as the structural of myofibrillar proteins (MPs) in shrimp were evaluated. Results indicated that the UST treatment greatly reduced 48.9 % thawing time of frozen shrimp compared to traditional thawing approaches. Meanwhile, the UST effectively decreased the generation of malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), and carbonyl compounds in the thawed shrimps. In addition, it significantly preserved the elasticity and integrity of muscle fiber. Notably, the UST reduced the damage of thawing to the spatial structures of MPs, thereby greatly keeping the stability of protein. All these favorable changes maintained the water holding capacity (WHC) and quality of shrimp. Therefore, the UST is a promising non-thermal thawing technology for aquatic products.
Collapse
Affiliation(s)
- Yufeng Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jinsong Wang
- Institute of Agricultural and Biotechnology, Jingchu Institute of Technology, Hubei, Jingmen 448000, China
| | - Qiao-Hui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jing Jing Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Shaojie Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai JiaoTong University, Shanghai 201306, China
| | - Jiahui Zhu
- China Certification & Inspection Group Ningxia Co., LTD., Yinchuan 750000, Ningxia, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
13
|
Li J, Sun C, Ma W, Wen K, Wang Y, Yue X, Wang Y, Bai Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods 2024; 13:1566. [PMID: 38790866 PMCID: PMC11121095 DOI: 10.3390/foods13101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of ultrasound-assisted immersion freezing (UIF) at different power rates (0, 200, 400, and 600 W) on the changes in beef quality and flavor after braising. The results demonstrated that UIF treatment at 400 W significantly reduced the juice loss (cooking loss decreased from 49.04% to 39.74%) and fat oxidation (TBARS value decreased from 0.32 mg/kg to 0.20 mg/kg) of braised beef. In addition, the tenderness (hardness value decreased from 5601.50 g to 2849.46 g) and color stability of braised beef were improved after UIF treatment. The flavor characteristics of braised beef were characterized using an electronic nose and an electronic tongue. The PCA analysis data showed that the cumulative contribution rates of the first and second principal components were 85% and 93.2%, respectively, with the first principal component accounting for a higher proportion. The UIF-400 W group had the highest concentration for the first principal component, and the differentiation was not significant compared to the control group. The total amino acid values of different power UIF treatment groups were improved compared to the AF treatment group, indicating that UIF can effectively reduce the losses caused by freezing. The results demonstrate that ultrasound-assisted freezing treatment is beneficial in enhancing the tenderness and flavor attributes of beef after braising, providing new insights into the processing of meat products with desirable quality characteristics.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Chenhao Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Wuchao Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Kexin Wen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| |
Collapse
|
14
|
Zhang H, Liu S, Li S, Chen X, Xu M, Su Y, Qiao K, Chen X, Chen B, Zhong H, Lin H, Liu Z. The Effects of Four Different Thawing Methods on Quality Indicators of Amphioctopus neglectus. Foods 2024; 13:1234. [PMID: 38672906 PMCID: PMC11049476 DOI: 10.3390/foods13081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Amphioctopus neglectus is a species of octopus that is favored by consumers due to its rich nutrient profile. To investigate the influence of different thawing methods on the quality of octopus meat, we employed four distinct thawing methods: air thawing (AT), hydrostatic thawing (HT), flowing water thawing (FWT), and microwave thawing (MT). We then explored the differences in texture, color, water retention, pH, total volatile basic nitrogen (TVB-N), total sulfhydryl content, Ca2+-ATPase activity, and myofibrillar protein, among other quality indicators in response to these methods, and used a low-field nuclear magnetic resonance analyzer to assess the water migration that occurred during the thawing process. The results revealed that AT had the longest thawing time, leading to oxidation-induced protein denaturation, myofibrillar protein damage, and a significant decrease in water retention. Additionally, when this method was utilized, the content of TVB-N was significantly higher than in the other three groups. HT, to a certain extent, isolated the oxygen in the meat and thus alleviated protein oxidation, allowing higher levels of Ca2+-ATPase activity, sulfhydryl content, and springiness to be maintained. However, HT had a longer duration: 2.95 times that of FWT, resulting in a 9.84% higher cooking loss and a 28.21% higher TVB-N content compared to FWT. MT had the shortest thawing time, yielding the lowest content of TVB-N. However, uneven heating and in some cases overcooking occurred, severely damaging the protein structure, with a concurrent increase in thawing loss, W value, hardness, and shear force. Meanwhile, FWT improved the L*, W* and b* values of octopus meat, enhancing its color and water retention. The myofibrillar protein (MP) concentration was also the highest after FWT, with clearer subunit bands in SDS-PAGE electrophoresis, indicating that less degradation occurred and allowing greater springiness, increased Ca2+-ATPase activity, and a higher sulfhydryl content to be maintained. This suggests that FWT has an inhibitory effect on oxidation, alleviating protein oxidation degradation and preserving the quality of the meat. In conclusion, FWT outperformed the other three thawing methods, effectively minimizing adverse changes during thawing and successfully maintaining the quality of octopus meat.
Collapse
Affiliation(s)
- Huixin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (H.L.)
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
| | - Shuigen Li
- Fujian Fisheries Technical Extension Station, Fuzhou 350002, China;
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, State Key Laboratory of Aquatic Products Processing of Zhejiang Province, Zhoushan 316022, China;
| | - Min Xu
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Bei Chen
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (M.X.); (Y.S.); (K.Q.); (B.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| | - Hong Zhong
- Dongshan Paul Food Co., Ltd., Zhangzhou 363400, China;
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (H.L.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China;
| |
Collapse
|
15
|
Wei Q, Sun Q, Dong X, Kong B, Ji H, Liu S. Effect of static magnetic field-assisted freezing at different temperatures on muscle quality of pacific white shrimp (Litopenaeus vannamei). Food Chem 2024; 438:138041. [PMID: 38007954 DOI: 10.1016/j.foodchem.2023.138041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The effect of static magnetic field-assisted freezing (MF) at different temperatures (-35, -30, -25, and -20 °C) on the muscle quality of pacific white shrimp (Litopenaeus vannamei) was evaluated to investigate the possibility of energy saving by MF. The results showed that the -35 °C MF treatment increased the water-holding capacity of shrimp muscle, and maintained the wholeness of the microstructure compared to -35 °C immersion freezing (control group, IF). With the increase in freezing temperature in the MF treatments, the size of ice crystals gradually increased, and the sensory properties of shrimp decreased. The water-holding capacity, sensory properties, and water distribution of shrimp muscle subjected to MF at -25 °C were still no significantly different from those of the IF at -35 °C (P > 0.05). In summary, the utilization of MF enhanced the quality of frozen pacific white shrimp, which has the potential to provide energy saving benefits.
Collapse
Affiliation(s)
- Qihang Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Central of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Central of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Central of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Central of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Central of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Central of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Central of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Suárez-Medina MD, Sáez-Casado MI, Martínez-Moya T, Rincón-Cervera MÁ. The Effect of Low Temperature Storage on the Lipid Quality of Fish, Either Alone or Combined with Alternative Preservation Technologies. Foods 2024; 13:1097. [PMID: 38611401 PMCID: PMC11011431 DOI: 10.3390/foods13071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Marine foods are highly perishable products due to their high content of polyunsaturated fatty acids, which can be readily oxidized to form peroxides and secondary oxidation products, thus conferring such foods undesirable organoleptic characteristics and generating harmful compounds that are detrimental to the health of consumers. The use of preservation methods that minimize lipid oxidation is required in the fishing and aquaculture industries. Low temperature storage (chilling or freezing) is one of the most commonly used preservation methods for fish and seafood, although it has been shown that the oxidation of the lipid fraction of such products is partially but not completely inhibited at low temperatures. The extent of lipid oxidation depends on the species and the storage temperature and time, among other factors. This paper reviews the effect of low temperature storage on the lipid quality of fish, either alone or in combination with other preservation techniques. The use of antioxidant additives, high hydrostatic pressure, irradiation, ozonation, ultrasounds, pulsed electric fields, and the design of novel packaging can help preserve chilled or frozen fish products, although further research is needed to develop more efficient fish preservation processes from an economic, nutritional, sensory, and sustainable standpoint.
Collapse
Affiliation(s)
- María Dolores Suárez-Medina
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - María Isabel Sáez-Casado
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Tomás Martínez-Moya
- Department of Biology and Geology, CEIMAR, University of Almería, 04120 Almería, Spain; (M.D.S.-M.); (M.I.S.-C.); (T.M.-M.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
- Food Technology Division, University of Almería, 04120 Almería, Spain
| |
Collapse
|
17
|
Wang H, Ding C, Lu J, Bao Y, Han B, Zhang J, Duan S, Song Z, Chen H. Study on the thawing characteristics of beef in ultrasound combined with plasma-activated water. Food Chem X 2024; 21:101104. [PMID: 38229670 PMCID: PMC10790005 DOI: 10.1016/j.fochx.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
The effects of deionized water thawing (DT), plasma-activated water thawing (PT), ultrasound (150 W, 40 kHz) combined with deionized water thawing (UDT), and ultrasound combined with plasma-activated water thawing (UPT) on the thawing characteristics and the physicochemical properties of the beef were investigated. The results showed that the UPT group had a faster thawing rate (38 % higher compared to the PT group) and good bactericidal ability (75 % higher compared to the UDT group), and had no adverse effect on the color and pH value of the beef. Plasma-activated water (PAW) can maintain the stability of the beef fiber, improve the water holding capacity (WHC), inhibit lipid oxidation, and reduce the loss of soluble substances such as protein. Therefore, UPT thawing is a promising meat thawing technology, which provides practical guidance and methods for the wide application of UPT in the field of meat thawing.
Collapse
Affiliation(s)
- Huixin Wang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Electric Power College, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jingli Lu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yuting Bao
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Bingyang Han
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jie Zhang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Shanshan Duan
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Zhiqing Song
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Electric Power College, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
18
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
19
|
Li B, Zhong M, Sun Y, Liang Q, Shen L, Qayum A, Rashid A, Rehman A, Ma H, Ren X. Recent advancements in the utilization of ultrasonic technology for the curing of processed meat products: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2024; 103:106796. [PMID: 38350241 PMCID: PMC10876906 DOI: 10.1016/j.ultsonch.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Curation meat products involves multiple stages, including pre-curing processing (thawing, cleaning, and cutting), curing itself, and post-curing processing (freezing, and packaging). Ultrasound are nonthermal processing technology widely used in food industry. This technology is preferred because it reduces the damages caused by traditional processing techniques on food, while simultaneously improving the nutritional properties and processing characteristics of food. The utilization of ultrasonic-assisted curing technology has attracted significant attention within the realm of meat product curing, encouraging extensive research efforts. In terms of curing meat products, ultrasonic-assisted curing technology has been widely studied due to its advantages of accelerating the curing speed, reducing nutrient loss, and improving the tenderness of cured meats. Therefore, this article aims to comprehensively review the application and mechanism of ultrasound technology in various stages of meat product curing. Furthermore, it also elaborates the effects of ultrasonic-assisted curing on the tenderness, water retention, and flavor substances of the meat products during the curing process. Besides, the implication of the ultrasound in the processing of meat curation plays a potent role together with other technologies or methods. The use of ultrasound technology in the process of meat curation was analyzed, which might be a theoretical insight for the industrialization prospects of the meat product.
Collapse
Affiliation(s)
- Biao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
20
|
Pereira TC, Cruz AG, Guimarães JT, Cravotto G, Flores EMM. Ultrasonication for honey processing and preservation: A brief overview. Food Res Int 2023; 174:113579. [PMID: 37986447 DOI: 10.1016/j.foodres.2023.113579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Honey is a food product consumed all over the world. Besides its nutritional properties, honey presents antibacterial, antioxidant, and wound-healing properties. To ensure that the final product meets qualitative and microbiological standards, honey treatment is of great importance. Conventional honey treatment is based on the heating of honey samples for decrystallization and bacteria and yeast inactivation. However, conventional heating can cause negative effects on honey quality, such as the formation of toxic compounds, reduction of enzyme activity, and loss of antioxidant and antimicrobial properties. The application of ultrasonic waves has demonstrated interesting effects on honey processing. Ultrasound (US) treatment can lead to the fragmentation of glucose crystals in crystalized honey and has little effect on its properties. In addition to inactivating microorganisms, US-assisted honey processing also preserves phenolic compounds content and antimicrobial properties. However, there is still limited information about honey sonication. The aim of the present review is to comprehensively show the possibilities of US application in honey processing and its effects on honey properties.
Collapse
Affiliation(s)
- Thiago C Pereira
- Departament of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Adriano G Cruz
- Department of Food Technology, Federal University Fluminense, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Erico M M Flores
- Departament of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
21
|
Chen B, Yan Q, Li D, Xie J. Degradation mechanism and development of detection technologies of ATP-related compounds in aquatic products: recent advances and remaining challenges. Crit Rev Food Sci Nutr 2023; 65:101-122. [PMID: 37855450 DOI: 10.1080/10408398.2023.2267690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques. The degradation mechanisms discussed include mainly degradation pathways, endogenous enzymes, and microbial mechanisms of action. Microbial activity is the main reason for the degradation of IMP and related products during the mid to late storage of aquatic products, mainly through the related enzymes produced by microorganisms. Further elucidation of the degradation mechanisms of ATP-related compounds provides new ideas for quality control techniques in raw aquatic products during storage. The development of new technologies for the detection of ATP-related compounds has become a significant area of research. And, biosensors further improve the efficiency and accuracy of detection and have potential application prospects. The development of biosensor back-end modalities (test strips, fluorescent probes, and artificial intelligence) has accelerated the practical application of biosensors for the detection of ATP-related compounds.
Collapse
Affiliation(s)
- Bohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
22
|
Lei W, Zhu Y, Zhu X, Huang Y, Liu L, Lü M, Sun B. Effect of ultrasound treatment on thawing process of frozen tofu prepared with different salt coagulants. ULTRASONICS SONOCHEMISTRY 2023; 99:106578. [PMID: 37678065 PMCID: PMC10494460 DOI: 10.1016/j.ultsonch.2023.106578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
This study investigated the effects of ultrasound-assisted water thawing (UWT) at different power levels (0, 100, 150, 200, and 250 W) on the thawing rate and gel properties of frozen tofu made using three different salt coagulants (CaCl2, CaSO4, and MgCl2). Tofu produced with CaCl2 and CaSO4 elicited gel structures with dense and homogeneous networks, while that with MgCl2 had rough pores and irregular networks. UWT treatment significantly decreased thawing time by 30.9-53.5% compared to the control. Water holding capacity and scanning electron microscopy analyses demonstrated that UWT-100, UWT-150, and UWT-200 should be used to increase the amount of fixed water for CaCl2, CaSO4, and MgCl2. These findings suggest that appropriate ultrasonic treatment could improve the water retention capacity of the tofu network and make the gel network structure more compact. Additionally, protein structural analysis showed a decrease in the exposure of hydrophobic groups and reduced protein denaturation when tofu prepared with all the coagulants were thawed with UWT energies of 100-200 W ultrasonication. These findings offer theoretical support for improving the frozen tofu thawing process while ensuring optimal final product quality.
Collapse
Affiliation(s)
- Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Mingshou Lü
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Binyu Sun
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
23
|
Ismail A, Ryu J, Yim DG, Kim G, Kim SS, Lee HJ, Jo C. Quality Evaluation of Mackerel Fillets Stored under Different Conditions by Hyperspectral Imaging Analysis. Food Sci Anim Resour 2023; 43:840-858. [PMID: 37701741 PMCID: PMC10493566 DOI: 10.5851/kosfa.2023.e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
This study was designed to compare the quality changes in mackerel fillets stored under different conditions by using hyperspectral imaging (HSI) techniques. Fillets packaged in vacuum were stored for six days under five different conditions: refrigerated at 4°C (R group); iced at 5±3°C (I group); kept at an ambient of 17±2°C (A group); frozen at -18°C for 24 h and thawed in a refrigerator at 4°C for 5 h on the sampling day (FTR group); FTR thawed in tap water instead of thawing in a refrigerator (FTW group). The FTR group had the lowest total bacterial count, drip loss, 2-thiobarbituric acid reactive substances, volatile basic nitrogen, and texture profile analysis values among groups during the entire storage period (p<0.05). Scanning electron microscopy revealed that the FTR group had less damage, while the other groups had shrunken muscle tissues. HSI integrated with the partial least squares model yielded reliable and efficient results, with high R2cv values, for several quality parameters of the mackerel fillets. Overall, the FTR group, involving freezing and thawing in a refrigerator, appears to be the most favorable option for maintaining the quality of mackerel fillets, which could be practically implemented in the industry. HSI is a suitable and effective technique for determining the quality of mackerel fillets stored under different conditions.
Collapse
Affiliation(s)
- Azfar Ismail
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
- Department of Aquaculture, Faculty of
Agriculture, Universiti Putra Malaysia, Selangor 43400,
Malaysia
| | - Jiwon Ryu
- Department of Biosystems and Biomaterials
Science and Engineering, Seoul National University, Seoul
08826, Korea
- Integrated Major in Global Smart Farm,
College of Agriculture and Life Sciences, Seoul National
University, Seoul 08826, Korea
| | - Dong-Gyun Yim
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Ghiseok Kim
- Department of Biosystems and Biomaterials
Science and Engineering, Seoul National University, Seoul
08826, Korea
- Integrated Major in Global Smart Farm,
College of Agriculture and Life Sciences, Seoul National
University, Seoul 08826, Korea
| | - Sung-Su Kim
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Hag Ju Lee
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
- Institute of Green Bio Science and
Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
24
|
Chen Y, Ning Q, Wu Z, Zhou H, Liao J, Sun X, Lin J, Pang J. Use of Tandem Mass Spectrometry Quantitative Proteomics to Identify Potential Biomarkers to Follow the Effects of Cold and Frozen Storage of Muscle Tissue of Litopenaeus vannamei. Foods 2023; 12:2920. [PMID: 37569188 PMCID: PMC10418843 DOI: 10.3390/foods12152920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
L. vannamei has become one of the most productive species. However, it is susceptible to microbial contamination during fishing, transportation, and storage, which can lead to spoilage and quality deterioration. This study investigates the relationship between changes in the proteome of Litopenaeus vannamei (L. vannamei) muscle and quality characteristics during low-temperature storage using the tandem mass spectrometry technology of quantitative proteomics strategy. The differential expression of proteins under cold storage (4 °C, CS), partial slight freezing (-3 °C, PFS), and frozen storage (-18 °C, FS) conditions was compared with the fresh group (CK), resulting in 1572 proteins identified as differentially expressed. The purpose of this research is to identify potential biochemical markers by analyzing quality changes and relative differential proteins through searches in the UniProt database, Gene Ontology database, and Genome Encyclopedia. Correlation analysis revealed that seven DEPs were significantly related to physical and chemical indicators. Bioinformatics analysis demonstrated that most DEPs are involved in binding proteins, metabolic enzymes, and protein turnover. Additionally, some DEPs were identified as potential biomarkers for muscle decline. These findings contribute to understanding the mechanism of freshness decline in L. vannamei under low-temperature storage and the changes in muscle proteome.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Qian Ning
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350001, China;
| | - Zhenzhen Wu
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Hanlin Zhou
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jun Liao
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Xiangyun Sun
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jing Lin
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jie Pang
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| |
Collapse
|
25
|
Wang W, Li W, Bu Y, Li X, Zhu W. Nano Freezing-Thawing of Atlantic Salmon Fillets: Impact on Thermodynamic and Quality Characteristics. Foods 2023; 12:2887. [PMID: 37569156 PMCID: PMC10417646 DOI: 10.3390/foods12152887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) suppresses ice nucleation and growth during freezing and thawing. In this study, the effects of MNPs-assisted cryogenic freezing integrated with MNP-combined microwave thawing (NNMT) on the thermodynamic and quality changes of salmon fillets were investigated. Results have shown that NNMT raises Tg (glass transition temperature) and Tmax (transition temperature), thus improving the storage stability of salmon fillets. MNPs-assisted freezing and thawing treatment, especially NNMT treatment, significantly improved the water holding capacity, texture, color, and other quality characteristics of salmon fillets. In addition, the lipid and protein oxidation degrees of the NNMT treatment were the lowest, while the myofibrillar protein solubility of NNMT was the highest (87.28%). This study demonstrated that NNMT has minimal impact on the freezing-thawing quality of salmon fillets, making it a more suitable option for the preservation of aquatic foods.
Collapse
Affiliation(s)
| | | | | | | | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, No. 19, Keji Road, Jinzhou 121013, China; (W.W.); (W.L.); (Y.B.); (X.L.)
| |
Collapse
|
26
|
Zhang Z, Shi W, Wang Y, Meng X, Dabbour M, Kumah Mintah B, Chen X, Chen X, He R, Ma H. Mono-frequency ultrasonic-assisted thawing of frozen goose meat: Influence on thawing efficiency, product quality and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106489. [PMID: 37354765 PMCID: PMC10320251 DOI: 10.1016/j.ultsonch.2023.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
This study aimed to investigate the influences of mono-ultrasound assisted thawing on the thawing efficiency, product quality and conformational characteristics of frozen goose meat. The thawing time, thawing loss, muscle quality, and microstructure of frozen goose meat were studied. The results displayed that ultrasonic-assisted thawing effectively reduced the thawing time by 45.37-57.58% compared with non-sonicated group, and significantly decreased the thawing loss. For the quality properties of goose meat tissue, ultrasound-assisted thawing with single-frequency of 50 kHz indicated a lower protein turbidity; meanwhile, hardness values were also significantly increased, and displayed a higher springiness, gumminess and chewiness of goose meat tissue. The microstructure analysis exhibited that the conformation of goose myofibrillar protein (MP) was modified following ultrasonic-assisted thawing, and became closer and more irregular. Therefore, ultrasound-assisted thawing treatments at 50 kHz mono-frequency (temperature 25℃) have a high potential application value in the thawing research of frozen goose meat, and lay a theoretical foundation for use in the meat process industries.
Collapse
Affiliation(s)
- Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Wang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Xingyu Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xi Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
27
|
Lan W, Zhang B, Liu L, Pu T, Zhou Y, Xie J. Slightly acidic electrolyzed water-slurry ice: shelf-life extension and quality maintenance of mackerel (Pneumatophorus japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3787-3798. [PMID: 36224103 DOI: 10.1002/jsfa.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Different ice treatments were applied for the preservation of mackerel (Pneumatophorus japonicus). The quality changes of samples treated with flake ice (Control), slurry ice (SI) and slightly acidic electrolyzed water-slurry ice (SAEW-SI) in microbiological, physicochemical, protein characteristic, and sensory evaluation were investigated during chilled storage. RESULTS SAEW-SI showed a significant advantage for the inhibition of microbial growth, which could extend the shelf-life for another 144 h at least, compared with Control group. SAEW-SI treatment also showed a strong inhibition for the increase in pH, total volatile basic nitrogen (TVB-N), K-value, histamine and metmyoglobin (MetMb) content. Results of texture profile analysis (TPA) and water holding capacity (WHC) indicated that SAEW-SI can obviously suppress the decrease of hardness value, and have a better protective effect on muscle structure compared to flake ice and SI (P < 0.05). During the whole experiment, the highest sensory scores and a* were obtained in the SAEW-SI group, which indicated that SAEW-SI treatment could maintain better sensory characteristics. According to the results of thiobarbituric acid reactive substances (TBARS) and fluorescence spectroscopy analysis, SAEW-SI treatment could effectively retard protein degradation and lipid oxidation compared with Control and SI group. In maintaining the quality of mackerel, SAEW-SI shows a better effect than SI due to the synergistic effect of fence factors. CONCLUSION The results demonstrated that the shelf-life of mackerel could be extended and the quality of mackerel could be maintained effectively with SAEW-SI treatment during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianting Pu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
28
|
Nabi L, Nourani M. Biodegradable form stable phase change material for cold storage packaging of meat. Meat Sci 2023; 201:109188. [PMID: 37084550 DOI: 10.1016/j.meatsci.2023.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
In this study, tetradecane was selected as a phase change material (PCM) to provide a thermal buffering system for meat packaging. Firstly, tetradecane was capsulated within a calcium alginate shell; then the conditions for achieving the highest efficiency were obtained. The capsules were characterized using Scanning electron microscopy, Thermo-gravimetric analysis and Differential scanning calorimetry. The results revealed the stability of the thermal properties of the encapsulated PCMs and the efficient capsulation of tetradecane in the capsules. Next, the alginate films were prepared using various concentrations of sodium alginate (SA) and CaCl2 incorporated with capsulated tetradecane. Observations indicated that the film prepared with 5% SA and 12% CaCl2 had the least leakage and the best structural integration during phase change cycles and storage at 25 °C. The use of PCM-incorporated packages could successfully delay the meat temperature elevation during phase change cycles and incubation at 25 °C. After 7.5 h incubation at 25 °C and 15 phase change cycles, PCM-incorporated samples had lower weight loss and higher hardness, gumminess and chewiness as compared to the control. Further, the physicochemical parameters of the meat in PCM-incorporated package were less changed, as compared to the fresh sample. So, the prepared package could be effectively used in meat packaging.
Collapse
Affiliation(s)
- Leila Nabi
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Moloud Nourani
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran.
| |
Collapse
|
29
|
Ye C, Geng S, Zhang Y, Qiu H, Zhou J, Zeng Q, Zhao Y, Wu D, Yu G, Gong H, Hu B, Hong Y. The impact of culture systems on the gut microbiota and gut metabolome of bighead carp (Hypophthalmichthys nobilis). Anim Microbiome 2023; 5:20. [PMID: 37005679 PMCID: PMC10067185 DOI: 10.1186/s42523-023-00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry techniques on bighead carp in three culture systems. RESULTS Our study revealed significant differences in gut microbial communities and metabolic profiles among the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and "glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities. CONCLUSIONS Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the host's gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead carp under different culture systems.
Collapse
Affiliation(s)
- Chen Ye
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Shiyu Geng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yingyu Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Huimin Qiu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Jie Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Qi Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Yafei Zhao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Di Wu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Guilan Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China
| | - Haibo Gong
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nanchang, 330000, China
| | - Beijuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| | - Yijiang Hong
- School of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Aquatic Animal Resources and Utilization, Nanchang University, Nanchang, 330031, China.
- Modern Agricultural Research Institute, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
30
|
Effects of ultrasound-assisted slightly acidic electrolyzed water thawing on myofibrillar protein conformation and gel properties of chicken breasts. Food Chem 2023; 404:134738. [DOI: 10.1016/j.foodchem.2022.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/15/2022]
|
31
|
Kong D, Han R, Yuan M, Xi Q, Du Q, Li P, Yang Y, Applegate B, Wang J. Ultrasound combined with slightly acidic electrolyzed water thawing of mutton: Effects on physicochemical properties, oxidation and structure of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 93:106309. [PMID: 36706669 PMCID: PMC9938326 DOI: 10.1016/j.ultsonch.2023.106309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 05/24/2023]
Abstract
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengdi Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Xi
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
32
|
Zhang W, Tian F, Liu S, Cai L. Effects of magnetic nanoscale combined radio frequency or microwave thawing on conformation of sea bass myosin heavy chain: a molecular dynamics study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:856-864. [PMID: 36050814 DOI: 10.1002/jsfa.12197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The consumption of frozen foods inevitably involves a thawing process. Protein conformation changes during a short thawing process and the quantification of their effects remains challenging. Molecular dynamics simulations can be used to evaluate the conformational changes of protein occurring in food processing. RESULTS In the present study, four different thawing methods were used [i.e. magnetic nanometer combined with microwave thawing (MT-Mag), magnetic nanometer combined with radio frequency thawing (RT-Mag), radio frequency thawing (RT) and microwave thawing (MT)] to change the conformation of myosin heavy chain (MHC). The results obtained showed that, compared with the fresh sample, the hydrogen bond number and radius of gyration of the RT-Mag and RT groups were less decreased. Visual molecular dynamics STRIDE analysis showed that the content of the α helix was relatively high in the RT-Mag and MT-Mag groups. CONCLUSION These simulation results indicate that RT-Mag can be used as an effective method for promoting the thawing process of fish and better stabilizing the protein structure. These conclusions provide a theoretical realization for understanding the protein conformational transition during the thawing process and the realization of quantification and also provide guidance for choosing better thawing conditions without loss of nutritional properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wendi Zhang
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, China
- College of Biological and Chemical Engineering, Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment, NingboTech University, Ningbo, China
| | - Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Luyun Cai
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, China
- College of Biological and Chemical Engineering, Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment, NingboTech University, Ningbo, China
| |
Collapse
|
33
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
34
|
Zhu W, Tan G, Han M, Bu Y, Li X, Li J. Evaluating the effects of plasma-activated slightly acidic electrolyzed water on bacterial inactivation and quality attributes of Atlantic salmon fillets. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
36
|
Physico-Chemical Properties and Storage Stability of an Emulsion as a Fat Replacer in Meat Analogs during the Freezing Storage. Foods 2022; 11:foods11243977. [PMID: 36553719 PMCID: PMC9777949 DOI: 10.3390/foods11243977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
This study determined the effects of physicochemical and microbial properties of emulsion as a fat replacer in meat analogs during freezing storage. Meat analogs were prepared with different fat replacers: vegetable oil (O) for control, oil in water emulsion (E), and non-emulsified oil in water emulsion (EC) for emulsion control. After that, meat analogs were stored for 0.5, one, three, and six months at −18 °C and −60 °C. The results showed that the drip loss of all samples was not significantly different (p > 0.05). However, the liquid holding capacity of EC and E was significantly higher than that of O (p < 0.05). Additionally, the microstructures of meat analogs of E and EC were smaller with denser pore sizes than O. This explains the significantly lower hardness of E and EC compared to O (p < 0.05). Overall, E showed superior physiochemical and sensory quality. During the storage, the stability of chemical properties, such as volatile basic nitrogen and thiobarbituric acid reactive substances, showed no significant changes (p > 0.05). Moreover, the microbial studies (total viable counts and Escherichia coli count) suggested that meat analogs did not deteriorate during the preparation and storage. Thus, this study suggests that emulsion-type fat replacers influence meat analogs’ physicochemical and sensorial properties. However, these properties are not influenced by the storage temperature and duration.
Collapse
|
37
|
Li H, Bai X, Li Y, Du X, Wang B, Li F, Shi S, Pan N, Zhang Q, Xia X, Kong B. The positive contribution of ultrasound technology in muscle food key processing and its mechanism-a review. Crit Rev Food Sci Nutr 2022; 64:5220-5241. [PMID: 36469643 DOI: 10.1080/10408398.2022.2153239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Lan W, Chen X, Zhao Y, Xie J. The effects of tea polyphenol-ozonated slurry ice treatment on the quality of large yellow croaker (Pseudosciaena crocea) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7052-7061. [PMID: 35690887 DOI: 10.1002/jsfa.12066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The aim of the current study was to evaluate the synergistic effects of tea polyphenol-ozonated slurry ice on the quality, physicochemical and protein characteristics of large yellow croaker (Pseudosciaena crocea) during chilled (4 °C) storage. To 0.3% tea polyphenol combined with ozone water was added sodium chloride until the salt concentration reached 3.3% and with the use of an ice machine the mixture formed the tea polyphenol-ozonated slurry ice. Microbial [total viable count (TVC)], physicochemical [total volatile basic nitrogen (TVB-N), K value], myofibrillar fragmentation index (MFI), Ca2+ -ATPase activity, total sulfhydryl content, intrinsic fluorescence intensity (IFI), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were analyzed during chilled (4 °C) storage for up to 20 days. RESULTS The results showed that tea polyphenol-ozonated slurry ice could effectively inhibit the increase of TVC and TVB-N, reduce the degree of adenosine triphosphate (ATP) degradation. In addition, the tea polyphenol-ozonated slurry ice treatment could protect the integrity of myosin in myofibrillar proteins (MPs) by inhibiting the decrease of Ca2+ -ATPase activity and the content of total sulfhydryl. Furthermore, the tea polyphenol-ozonated slurry ice presented a superiorly protective effect on protein structure in MPs as manifested by the results of IFI, FTIR and SDS-PAGE. It was possible that due to the addition of tea polyphenol, the antioxidant activity of this complex was significantly improved. CONCLUSION The tea polyphenol-ozonated slurry ice treatment can maintain the quality of large yellow croaker by decreasing the damage of MP caused by the interaction between microorganisms and endogenous enzymes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanan Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
39
|
Yu H, Mei J, Xie J. New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: A review. ULTRASONICS SONOCHEMISTRY 2022; 90:106185. [PMID: 36201934 PMCID: PMC9535316 DOI: 10.1016/j.ultsonch.2022.106185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/30/2023]
Abstract
Solid foods include fish, shrimp, shellfish, and other aquatic products, fruits, and vegetables. These products are commonly used for food freezing, cooling, and thawing. However, traditional freezing, cooling, and thawing of solid food technologies have limitations in quality, such as protein denaturation and water loss in food. Ultrasound-assisted technology has become a useful method in solid food processing due to improved preservation quality of solid food. This paper comprehensively reviews the mechanism and application of ultrasonic in solid food processing technology. Although the application of ultrasound-assisted ultrasound in solid food processing is relatively comprehensive, the energy saving of food cold processing is essential for practical application. This paper analyzes the optimization of ultrasonic in solid food processing, including orthogonal/multi-frequency technology and the combination of ultrasonic and other technologies, which provides new ideas for freezing, cooling, and thawing of solid food processing.
Collapse
Affiliation(s)
- Huan Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
40
|
Xu C, Zang M, Qiao X, Wang S, Zhao B, Shi Y, Bai J, Wu J. Effects of ultrasound-assisted thawing on lamb meat quality and oxidative stability during refrigerated storage using non-targeted metabolomics. ULTRASONICS SONOCHEMISTRY 2022; 90:106211. [PMID: 36327923 PMCID: PMC9619372 DOI: 10.1016/j.ultsonch.2022.106211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the changes of ultrasound-assisted thawing on lamb meat quality and differential metabolite profiles during refrigerated storage. Compared with flow water thawing (FW), pH, a*, C*, and sulfhydryl content of lamb were significantly increased, while L*, drip loss and cooking loss were significantly decreased after ultrasound-assisted thawing (UT). On day 1 (UT1 and FW1) and day 7 (UT7 and FW7) in the UT and FW groups, principal component analysis explained 42.22% and 39.25% of the total variance. In this study, 44 (UT1 and FW1) and 47 (UT7 and FW7) differentially expressed metabolites were identified, including amino acids, carbohydrates and their conjugates, nucleic acids, carbonyl compounds and others. The results of this study provide data to clarify the differences between UT and FW, and lay a foundation for the application of ultrasound-assisted thawing in the meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| |
Collapse
|
41
|
Sun Q, Zhang H, Yang X, Hou Q, Zhang Y, Su J, Liu X, Wei Q, Dong X, Ji H, Liu S. Insight into muscle quality of white shrimp (Litopenaeus vannamei) frozen with static magnetic-assisted freezing at different intensities. Food Chem X 2022; 17:100518. [DOI: 10.1016/j.fochx.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
42
|
Effects of single-, dual-, and multi-frequency ultrasound-assisted freezing on the muscle quality and myofibrillar protein structure in large yellow croaker ( Larimichthys crocea). Food Chem X 2022; 15:100362. [PMID: 35756459 PMCID: PMC9218204 DOI: 10.1016/j.fochx.2022.100362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
MUAF significantly promoted the freezing process of large yellow croakers. MUAF enhanced the quality of large yellow croakers. MUAF better maintained the stability of fish protein. The mechanisms of single-, dual-, and multi-frequency UAF were analyzed.
Ultrasound-assisted freezing (UAF) has been proved to be a new technology to improve the quality of frozen foods. Frequency is an important parameter affecting UAF result. This study was to investigate the effects of single-, dual- and multi-frequency UAF on muscle quality and myofibrillar protein structure in large yellow croaker (Larimichthys crocea), providing reference for the application of multi-frequency UAF in frozen foods. Multi-frequency UAF increased the freezing rate and had lower thawing loss, thiobarbituric acid reactive substances (TBARS) value, total volatile basic nitrogen (TVB-N) value, and higher immobilized water content. Multi-frequency UAF had lower carbonyl, higher sulfhydryl content, and more stable myofibrillar protein secondary and tertiary structures. Confocal laser scanning microscopy (CLSM) indicated that the filamentous polymer in muscle fibrin solution with multi-frequency UAF was transformed into more evenly distributed units. In general, multi-frequency UAF significantly improved the freezing rate, reduced lipid oxidation, and maintained the myofibrillar structure.
Collapse
|
43
|
Aslam R, Alam MS, Kaur J, Panayampadan AS, Dar OI, Kothakota A, Pandiselvam R. Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud 2022; 53:775-799. [PMID: 34747028 DOI: 10.1111/jtxs.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
The demand for the production of high quality and safe food products has been ever increasing. Consequently, the industry is looking for novel technologies in food processing operations that are cost-effective, rapid and have a better efficiency over traditional methods. Ultrasound is well-known technology to enhance the rate of heat and mass transfer providing a high end-product quality, at just a fraction of time and energy normally required for conventional methods. The irradiation of foods with ultrasound creates acoustic cavitation that has been used to cause desirable changes in the treated products. The technology is being successfully used in various unit operations such as sterilization, pasteurization, extraction, drying, emulsification, degassing, enhancing oxidation, thawing, freezing and crystallization, brining, pickling, foaming and rehydration, and so forth. However, the high pressure and temperature associated with the cavitation process is expected to induce some changes in the textural and rheological properties of foods which form an important aspect of product quality in terms of consumer acceptability. The present review is aimed to focus on the effects of ultrasound processing on the textural and rheological properties of food products and how these properties are influenced by the process variables.
Collapse
Affiliation(s)
- Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammed Shafiq Alam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jaspreet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Afthab Saeed Panayampadan
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
44
|
Chen Y, Xiao W, Jia G, Sun A. Initial ice growth control mechanism for CMC-Na in model systems. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Developing cold air assisted radio frequency tempering protocol based on heating rate, uniformity, and quality of frozen chicken breast. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Zhang T, Zhao R, Liu W, Liu Q, Zhang L, Hu H. Dynamic changes of potato characteristics during traditional freeze-thaw dehydration processing. Food Chem 2022; 389:133069. [DOI: 10.1016/j.foodchem.2022.133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
47
|
Dai W, Yan C, Ding Y, Wang W, Gu S, Xu Z, Zhou X, Ding Y. Effect of a chitosan coating incorporating epigallocatechin gallate on the quality and shelf life of bighead carp (Aristichthys nobilis) fillets during chilled storage. Int J Biol Macromol 2022; 219:1272-1283. [PMID: 36058394 DOI: 10.1016/j.ijbiomac.2022.08.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
The objective of this study was to investigate the potential application of chitosan coatings incorporating epigallocatechin gallate (EGCG) for preserving fillets of bighead carp during chilled storage. The fillets were coated with acetic acid and glycerol, chitosan, and chitosan-EGCG, respectively, and the changes in their physicochemical, microbiological, and sensory characteristics during storage at 4 °C were determined. Notably, total volatile basic nitrogen, thiobarbituric-acid-reactive substances, and K value of chitosan-EGCG coated fillets sampled on day 15 were 48.04 %, 60.19 %, and 32.91 % lower than untreated fillets, respectively. Microbial enumeration suggested that the inclusion of EGCG significantly improved the inhibitory effect of pure chitosan coating on the proliferation of microorganisms. Furthermore, the chitosan-EGCG coated fillets also performed the best in terms of color, texture, and sensory analysis, and extended the shelf-life of the fillets for at least 6 days. A principal component analysis further confirmed the preserving effect of the chitosan-EGCG coating. Mantel test results suggested that the fillets' organoleptic characteristics strongly correlated with physicochemical and microbiological indicators. Overall, this work provides an effective protocol for food quality control and the extension of shelf life during chilled storage, and it clarifies the relationships between organoleptic characteristics and physicochemical and microbiological indexes.
Collapse
Affiliation(s)
- Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Chen Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Wenjie Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China..
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
48
|
Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem 2022; 403:134367. [DOI: 10.1016/j.foodchem.2022.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
49
|
Kutlu N, Pandiselvam R, Kamiloglu A, Saka I, Sruthi NU, Kothakota A, Socol CT, Maerescu CM. Impact of ultrasonication applications on color profile of foods. ULTRASONICS SONOCHEMISTRY 2022; 89:106109. [PMID: 35939925 PMCID: PMC9364028 DOI: 10.1016/j.ultsonch.2022.106109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 05/20/2023]
Abstract
Food color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red-purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt 69500, Turkey
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, Kerala, India.
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara 06830, Turkey
| | - N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | | | | |
Collapse
|
50
|
Lan W, Zhang B, Zhou D, Xie J. Ultrasound assisted slightly acidic electrolyzed water treatment on the protein structure stability of vacuum‐packaged sea bass (
Lateolabrax japonicas
) during refrigerated storage. J Food Saf 2022. [DOI: 10.1111/jfs.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Dapeng Zhou
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| |
Collapse
|