1
|
Vaishnav A, Lal J, Mehta NK, Mohanty S, Yadav KK, Priyadarshini MB, Debbarma P, Singh NS, Pati BK, Singh SK. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36244-3. [PMID: 40119992 DOI: 10.1007/s11356-025-36244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Fish and their byproducts play a pivotal role as protein sources. With the global population increasing, urbanization on the rise and increased affluence, efficient utilization of available protein resources is becoming increasingly critical. Additionally, the need for sustainable protein sources is gaining recognition. By 2050, the world's protein demand is expected to double, driven not only by population growth but also by heightened awareness of protein's role in maintaining health. The fishery industry has experienced continuous growth over the last decade. However, this growth comes with a significant challenge: inadequate waste management. The fisheries industry discards 35% to 70% of their production as waste, including fillet remains, skin, fins, bones, heads, viscera and scales. Despite the importance of these byproducts as protein sources, their effective utilization remains a hurdle. Various strategies have been proposed to address this issue. Among them, the production of protein hydrolysates stands out as an efficient method for value addition. Protein hydrolysis breaks down proteins into smaller peptides with diverse functional and bioactive properties. Therefore, fish protein hydrolysates have applications in both the food and nonfood sectors. Utilizing fishery byproducts and waste represents a sustainable approach toward waste valorization and resource optimization in the fishery industry. This approach offers promising opportunities for innovation and economic growth across multiple sectors. This comprehensive review explores fish protein hydrolysates derived from fishery byproducts and wastes, focusing on their applications in both the food and nonfood sectors.
Collapse
Affiliation(s)
- Anand Vaishnav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India.
| | - Saswat Mohanty
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Krishan Kumar Yadav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Payel Debbarma
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Nongthongbam Sureshchandra Singh
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bikash Kumar Pati
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Krishi Vigyan Kendra, ICAR - North Eastern Hill Region, Ukhrul, Manipur, India
| |
Collapse
|
2
|
Chen J, Wei C, Hou J, Wang J, Ruan Q. Debittering and antioxidant improvement of soy protein hydrolysates using curcumin as hydrophobic core. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2506-2514. [PMID: 39535324 DOI: 10.1002/jsfa.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Protein hydrolysates possess various bioactive functions (e.g. antioxidant), but their bitter taste is unacceptable to most consumers. In the present study, a novel approach for debittering was introduced, which involved the utilization of a hydrophobic compound, curcumin (Cur). Soy protein hydrolysates (SPH), prepared through alcalase hydrolysis, served as the research model for this investigation. RESULTS It was found that bitter intensity of SPH was dominated by the hydrophobic amino acid residues, and the addition of Cur could remarkably reduce bitterness. The debittering mechanism is attributed to the direct binding of Cur to the exposed hydrophobic amino acid residues of SPH via hydrophobic interaction, thereby shielding the hydrophobic bitter groups and hindering their interaction with the bitter taste receptors. Moreover, this debittering strategy leads to the generation of stable nanoparticles with a Cur-core/SPH-shell architecture, which can significantly improve the antioxidant capacity of SPH compared to those using biomacromolecules for encapsulation. CONCLUSION Using curcumin as a hydrophobic core is a facile and feasible strategy with bifunction of debittering as well as improving bioactive effect of SPH, which may extend its application in foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiafeng Chen
- Dining and Tourism Academy, Guangdong Polytechnic of Science and Trade, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Cuilan Wei
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Junjie Hou
- Wuzhou Bingquan Industrial Shareholding Co., Ltd, Guangxi, China
| | - Jinmei Wang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Efficacy Component Testing and Risk Substance Rapid Screening of Health Food, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| |
Collapse
|
3
|
Xiang Q, Xia Y, Fang S, Zhong F. Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach. Food Chem 2024; 440:138229. [PMID: 38159315 DOI: 10.1016/j.foodchem.2023.138229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Peptides in cheese flavoring produced through proteolysis plus fermentation generated bitterness. Bitterness of individual peptide can be quantified using quantitative structure-activity relationship, where molecular mass (M), hydrophobicity, residues, C-terminal hydrophobic amino acids (C-HAAs), and N-terminal basic ones (N-BAAs) are crucial. However, their accumulative influence on the overall bitterness of peptide mixture remains unknown. This study delved into extensive proteolysis to debitter and to correlate the multi-influencing factors of peptides and the collective bitterness. As hydrolysis increased from 7.5 % to 28.0 %, bitterness reduced from 5.0 to 0.3-2.7 scores, contingent on proteases used, in which FU was optimal. The overall bitterness cannot be predicted through the summation of individual peptide bitterness, which depended on M (0.5-3 kDa) and 5-23 residues, followed by N-BAAs and C-HAAs. Analysis of enzymatic cleavage sites and substrate characteristics revealed, to more effectively debitter bovine milk protein hydrolysates, proteases specifically cleaving Pro, Leu, Phe, and Val were desired.
Collapse
Affiliation(s)
- Qin Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yixun Xia
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| | - Sicong Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Ma C, Xie Y, Huang X, Zhang L, Julian McClements D, Zou L, Liu W. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food Chem 2024; 437:137913. [PMID: 37939421 DOI: 10.1016/j.foodchem.2023.137913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel phospholipid-based nanovesicle (PBN) was developed to encapsulate (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea, to mask its bitter taste and expand its application in food products. The PBN was formed using W/O emulsion-transfer methods and showed a multilayer membrane nanovesicle structure (around 200 nm) observed with TEM. The PBN possessed a high encapsulation efficiency (92.1%) for EGCG. The bitterness of EGCG was significantly reduced to 1/12 after encapsulation. Fourier transform infrared spectroscopy (FTIR) indicated the EGCG mainly interacted with the upper chain/glycerol/head group region of the lipid bilayerin PBN. Quartz crystal microbalance with dissipation (QCM-D) showed the addition of γ-cyclodextrin in PBN enhanced EGCG's adsorption with phospholipids and allowed for its good sustained release. Encapsulating EGCG in PBN inhibited its complexation with mucin, reducing bitterness and astringency. This provides a new method to improve EGCG's flavor, potentially expanding its application in the food industry.
Collapse
Affiliation(s)
- Chenlu Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041 Jiangxi, China
| | - Xin Huang
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang 330046 Jiangxi, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
5
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Halavach TM, Kurchenko VP, Tarun EI, Dudchik NV, Yatskou MM, Lodygin AD, Alieva LR, Evdokimov IA, Ulrih NP. Influence of Complexation with β- and γ-Cyclodextrin on Bioactivity of Whey and Colostrum Peptides. Int J Mol Sci 2023; 24:13987. [PMID: 37762289 PMCID: PMC10530839 DOI: 10.3390/ijms241813987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with β/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the β/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with β/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).
Collapse
Affiliation(s)
| | | | - Ekaterina I. Tarun
- Faculty of Environmental Medicine, International Sakharov Environmental Institute of Belarusian State University, 220070 Minsk, Belarus;
| | | | - Mikalai M. Yatskou
- Faculty of Radiophysics and Computer Technologies, Belarusian State University, 220030 Minsk, Belarus;
| | - Aleksey D. Lodygin
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ludmila R. Alieva
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ivan A. Evdokimov
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | | |
Collapse
|
8
|
Buamard N, Singh A, Zhang B, Hong H, Singh P, Benjakul S. Ethanolic Extract of Duea Ching Fruit: Extraction, Characterization and Its Effect on the Properties and Storage Stability of Sardine Surimi Gel. Foods 2023; 12:1635. [PMID: 37107429 PMCID: PMC10137442 DOI: 10.3390/foods12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The quality of surimi gel can be improved using protein cross-linkers, especially from plant extracts. Apart from the presence of phenolic compounds, Duea ching fruit is rich in calcium, which can activate indigenous transglutaminase or form the salt bridge between protein chains. Its extract can serve as a potential additive for surimi. The effect of different media for the extraction of Duea ching was studied and the use of the extract in sardine surimi gel was also investigated. The Duea ching fruit extract (DCE) was prepared using distilled water and ethanol (EtOH) at varying concentrations. The DCE prepared using 60% EtOH (DCE-60) had the highest antioxidant activity and total phenolic content. When DCE-60 (0-0.125%; w/w) was added to the sardine surimi gel, the breaking force (BF), deformation (DF) and water holding capacity (WHC) of the gel upsurged and the highest values were attained with the 0.05% DCE-60 addition (p < 0.05). However, the whiteness of the gel decreased when DCE-60 levels were augmented. The gel containing 0.05% DCE-60, namely D60-0.05, showed a denser network and had a higher overall likeness score than the control. When the D60-0.05 gel was packed in air, under vacuum or modified atmospheric packaging and stored at 4 °C, BF, DF, WHC and whiteness gradually decreased throughout 12 days of storage. However, the D60-0.05 gel sample showed lower deterioration than the control, regardless of the packaging. Moreover, the gel packaged under vacuum conditions showed the lowest reduction in properties throughout the storage than those packaged with another two conditions. Thus, the incorporation of 0.05% DCE-60 could improve the properties of sardine surimi gel and the deterioration of the resulting gel was retarded when stored at 4 °C under vacuum packaging conditions.
Collapse
Affiliation(s)
- Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (N.B.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (N.B.); (A.S.)
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (N.B.); (A.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Macchiagodena M, Bassu G, Vettori I, Fratini E, Procacci P, Pagliai M. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. J Phys Chem A 2022; 126:8826-8833. [DOI: 10.1021/acs.jpca.2c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Gavino Bassu
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Irene Vettori
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Emiliano Fratini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Piero Procacci
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marco Pagliai
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
10
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Liu B, Li N, Chen F, Zhang J, Sun X, Xu L, Fang F. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Compr Rev Food Sci Food Saf 2022; 21:5153-5170. [PMID: 36287032 DOI: 10.1111/1541-4337.13050] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Recent scientific evidence indicates that protein hydrolysates contain bioactive peptides that have potential benefits for human health. However, the bitter-tasting hydrophobic peptides in protein hydrolysates negatively affect the sensory quality of resulting products and limit their utilization in food and pharmaceutical industries. The approaches to reduce, mask, and remove bitter taste from protein hydrolysates have been extensively reported. This review paper focuses on the advances in the knowledge regarding the structure-bitterness relationship of peptides, the release mechanism of bitter peptides, and the debittering methods for protein hydrolysates. Bitter tastes generating with enzymatic hydrolysis of protein is influenced by the type, concentration, and bitter taste threshold of bitterness peptides. A "bell-shaped curve" is used to describe the relationship between the bitterness intensity of the hydrolysates and the degree of hydrolysis. The bitter receptor perceives bitter potencies of bitter peptides by the hydrophobicity recognition zone. The intensity of bitterness is influenced by hydrophobic and electronic properties of amino acids and the critical spatial structure of peptides. Compared to physicochemical debittering (i.e., selective separation, masking of bitter taste, encapsulation, Maillard reaction, and encapsulation) and other biological debittering (i.e., enzymatic hydrolysis, enzymatic deamidation, plastein reaction), enzymatic hydrolysis is a promising debittering approach as it combines protein hydrolyzation and debittering into a one-step process, but more work should be done to advance the knowledge on debittering mechanism of enzymatic hydrolysis and screening of suitable proteases. Further study can focus on combining physicochemical and biological approaches to achieve high debittering efficiency and produce high-quality products.
Collapse
Affiliation(s)
- Boye Liu
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Nana Li
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210014, People's Republic of China
| | - Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Lei Xu
- Nestlé Product Technology Center, Nestlé Health Science, Bridgewater, NJ, 08807, USA
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
12
|
Sun X, Zheng J, Liu B, Huang Z, Chen F. Characteristics of the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. Front Nutr 2022; 9:1022257. [PMID: 36267904 PMCID: PMC9577220 DOI: 10.3389/fnut.2022.1022257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Bitter peptides in the enzymatic hydrolysates were prepared and purified from wheat gluten using aqueous ethanol solutions and macroporous resin, which has opened a new road for the extraction and separation of bitter peptides. This report contains the release regularity of bitter peptides and the factors affecting the change of bitter intensity during enzymatic hydrolysis, providing a scientific basis for the research on debitterizing method. In this study, the effects of different degrees of hydrolysis (DH) and enzyme active sites on the bitter peptide content and bitter taste thresholds were discussed. The relationship between amino acid composition, molecular weight distribution, surface hydrophobicity and bitter taste thresholds was extensively researched. The results showed the exposure of hydrophobic amino acids and the bitterness intensity of the hydrolysates increased as the DH increased, and the bitterness of wheat gluten hydrolysates (WGHs) hydrolyzed by Alcalase was stronger than that of Trypsin. According to correlation analysis, the proportion of total hydrophobic amino acid is the first factor that affects the sensory properties of bitter peptide, and the release content of bitter peptides and the content of total bitter amino acids are the second, following by the content of peptide in the molecular weight range of 500–1,000 Da and the surface hydrophobicity. The amino acid sequence of bitter peptides from WGHs were identified and predicted using high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) and bioinformatics. It was found that the molecular weight of most of the peptides was below 1,500 Da, and the Q value was higher than 5.86 kJ/mol.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jiayi Zheng
- School of International Education, Henan University of Technology, Zhengzhou, China
| | - Boye Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,*Correspondence: Boye Liu
| | - Zehua Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,Fusheng Chen
| |
Collapse
|
13
|
Zhang H, Huang X, Zhang Y, Zou X, Tian L, Hong H, Luo Y, Tan Y. Silver carp (Hypophthalmichthys molitrix) by-product hydrolysates: A new nitrogen source for Bifidobacterium animalis ssp. lactis BB-12. Food Chem 2022; 404:134630. [DOI: 10.1016/j.foodchem.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
14
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
15
|
Raju N, Gulzar S, Buamard N, Ma L, Ying X, Zhang B, Benjakul S. Comparative Study of Astaxanthin, Cholesterol, Fatty Acid Profiles, and Quality Indices Between Shrimp Oil Extracted From Hepatopancreas and Cephalothorax. Front Nutr 2021; 8:803664. [PMID: 34977134 PMCID: PMC8714899 DOI: 10.3389/fnut.2021.803664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Shrimp oil from two different portions of Pacific white shrimp including cephalothorax and hepatopancreas was extracted using the mixture of hexane/isopropanol (1:1). The extracted oils from the cephalothorax (CPO) and hepatopancreas (HPO) were characterized for astaxanthin content, cholesterol levels, and fatty acid profiles. Nutrition indices of CPO and HPO were also compared. CPO had lower extraction yield (3.2 ± 0.1%, wet weight basis) than HPO (11.1 ± 0.5%, wet weight basis). High-performance liquid chromatography results indicated that the astaxanthin content in HPO was higher, compared to that of CPO. Nevertheless, the cholesterol level in HPO was 70% lower than that of CPO. Fatty acid profiles of HPO and CPO demonstrated that the polyunsaturated fatty acid (PUFA) content in HPO was higher than that of CPO. The amount of docosahexaenoic acid in the former was ~2 times higher than that of the latter. HPO contained 42.76 ± 0.36% PUFA, whereas PUFA content of CPO was 35.27 ± 0.19%. On the other hand, saturated fatty acids (SFA) were more pronounced in CPO (38.44 ± 0.26%) than HPO (30.82 ± 0.55%). Based on nutrition indices, namely, atherogenicity index, thrombogenicity index, hypocholesterolemic/hypercholesterolemic (h/H) ratio, and PUFA/SFA ratio, HPO possessed higher health benefit than CPO. The oxidation status of CPO and HPO measured in terms of peroxide value, thiobarbituric acid reactive substances, anisidine value, and conjugated dienes indicated that higher primary oxidation products were present in CPO, whereas HPO exhibited more secondary oxidation compounds. Fourier transform infrared spectra further substantiated the presence of oxidation products in CPO and HPO. Liquid chromatography-mass spectrometry identification showed the enhanced levels of phospholipids and glycolipids in the ethanolic fraction of CPO. Overall, HPO with a higher yield was more beneficial in terms of health benefits than CPO.
Collapse
Affiliation(s)
- Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Natchaphol Buamard
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
16
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
17
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Nirmal NP, Santivarangkna C, Benjakul S, Maqsood S. Fish protein hydrolysates as a health-promoting ingredient-recent update. Nutr Rev 2021; 80:1013-1026. [PMID: 34498087 DOI: 10.1093/nutrit/nuab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary habits and lifestyle-related diseases indicate that food has a direct impact on individual health. Hence, a diet containing essential nutrients is important for healthy living. Fish and fish products are important in diets worldwide because of their nutritional value, especially their easily digestible proteins with essential amino acids. Similarly, fish protein hydrolysate (FPH) obtained from fish muscle and by-products has been reported to exhibit various biological activities and to have functional properties, which make FPH a suitable nutraceutical candidate. This review focuses on the health-promoting ability of FPH in terms of skin health, bone and cartilage health, blood lipid profile, and body-weight management studied in rats and human model systems. The absorption and bioavailability of FPH in humans is discussed, and challenges and obstacles of FPH as a functional food ingredient are outlined.
Collapse
Affiliation(s)
- Nilesh P Nirmal
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chalat Santivarangkna
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Soottawat Benjakul
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Wijayanti I, Singh A, Prodpran T, Sookchoo P, Benjakul S. Effect of Asian Sea Bass (Lates calcarifer) Bio-calcium in Combination with Different Calcium Salts on Gel Properties of Threadfin Bream Surimi. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1975004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ima Wijayanti
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
- Department of Fisheries Products Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pornsatit Sookchoo
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
20
|
Sharma H, Singh AK, Borad S, Deshwal GK. Processing stability and debittering of Tinospora cordifolia (giloy) juice using ultrasonication for potential application in foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Raju N, Singh A, Benjakul S. Recovery, reusability and stability studies of beta cyclodextrin used for cholesterol removal from shrimp lipid. RSC Adv 2021; 11:23113-23121. [PMID: 35480417 PMCID: PMC9034381 DOI: 10.1039/d1ra03282h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 01/23/2023] Open
Abstract
Beta cyclodextrin (β-CD) was used for cholesterol removal from shrimp lipid using ethyl acetate and water as solvents. The cholesterol incorporating β-CD complex (β-CD–CL) was collected and β-CD recovery was performed using a β-CD–CL : ethanol mixture (1 : 15 ratio) with the aid of ultrasonication and a water bath at 55 °C for 40 min. Recycled β-CD (R-β-CD) was compared with pure β-CD (P-β-CD) for the reusability of cholesterol removal from shrimp lipid. R-β-CD showed 94% cholesterol removal, while 95% was achieved for P-β-CD. Differential Scanning Calorimetry (DSC) showed a slight decrease in the melting point of R-β-CD. Nevertheless, FTIR and NMR results revealed that functional groups and the proton spectrum of R-β-CD was negligibly altered. Fatty acid contents of treated oil were slightly higher when treated with R-β-CD than those of the lipid subjected to P-β-CD treatment. Reusability of β-CD could be achieved as confirmed by the maintained capacity in cholesterol removal and unaltered structure. Beta cyclodextrin (β-CD) used for cholesterol removal from shrimp lipid was reused after the cholesterol bound with β-CD was removed. Efficenicy of recycled β-CD was similar to pure β-CD.![]()
Collapse
Affiliation(s)
- Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| |
Collapse
|
22
|
Combined effect of microbial transglutaminase and ethanolic coconut husk extract on the gel properties and in-vitro digestibility of spotted golden goatfish (Parupeneus heptacanthus) surimi gel. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Tong X, Lian Z, Miao L, Qi B, Zhang S, Li Y, Wang H, Jiang L. An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Singh A, Benjakul S, Huda N. Characteristics and nutritional value of biscuits fortified with debittered salmon (
Salmo salar
) frame hydrolysate. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Soottawat Benjakul
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Nurul Huda
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Sabah 88400 Malaysia
| |
Collapse
|
25
|
Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10071-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|