1
|
Ning Y, Wang X, Hu Y, Zhao Y, Wang Y, Luo F, Chen L, Zhang X. A Novel "Mobile Phase Braking Drift Technique" Utilized for the Enantioselective Residual Analysis of Cyflumetofen and the Investigation of Its Enantiomeric Migration during Tea Growth, Processing, and Brewing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40268678 DOI: 10.1021/acs.jafc.5c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cyflumetofen (CYF) enantiomers were first separated by reversed-phase liquid chromatography. The enantioselectivity during tea growth, processing, and brewing was studied by a reversed-phase ultrahigh performance liquid chromatography tandem mass spectrometry (RP-UHPLC-MS/MS) method. The linearity ranges of CYF enantiomers in different matrix-matched calibration curves were from 0.0025 to 1.0 mg/L, with satisfactory correlation coefficients (R2 ≥ 0.9985). The average recoveries of (+)-CYF and (-)-CYF were 76.3-116.9 and 82.9-116.9%, respectively. The limits of quantification (LOQs) for the two enantiomers were 2.5 μg/kg in fresh tea leaves and tea, and 0.25 μg/L in tea infusion. The dissipation half-life (t1/2) of (+)-CYF and (-)-CYF during fresh tea growth was 1.04 days and 1.23 days, respectively. After processing the fresh tea leaves into green tea (black tea), the processing factors (PFs) of (+)-CYF and (-)-CYF were 0.15-0.26 (0.18-0.61) and 0.11-0.26 (0.20-0.60), respectively. The total leaching rates (TLRs) of (+)-CYF and (-)-CYF from green tea (black tea) to tea infusion were 2.7% (4.2%) and 2.1% (4.9%). The enantiomeric fractions (EFs) of CYF migration during tea growth, processing, and brewing were 0.48-0.50, 0.44-0.56, and 0.47-0.57, respectively, indicating no enantioselectivity.
Collapse
Affiliation(s)
- Yating Ning
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hangzhou Hope Agricultural Technology Co., Ltd., Hangzhou 310008, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang China
| | - Yue Hu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Zhao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Yaqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Hangzhou Hope Agricultural Technology Co., Ltd., Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
2
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Residual behaviors and health risk assessment of dinotefuran, flonicamid, and their metabolites during apple growth, storage, and processing. Food Res Int 2025; 205:115970. [PMID: 40032465 DOI: 10.1016/j.foodres.2025.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Understanding the fate of dinotefuran, flonicamid, and their metabolites is crucial for accurate dietary exposure assessment and human health. The dissipation and removal of dinotefuran, flonicamid, and their metabolites from apple cultivation to consumer's plate were studied. The results of field and storage experiments indicated significant differences in half-life at different doses. And the half-life was shorter in the field than that in storage. During washing, the residues of all target compounds were decreased. Among washing solutions, the PF values of each pesticide gradually decreased with the increasing washing time and washing solution concentration. 2 % NaHCO3 produced best removal effect after washing 15 min. Various food processing techniques, including peeling, fermentation, clarification, blanching, drying, enzymolysis, and simmering, were used to confirm the most effective way to remove these target compounds. For majority processes, the PF values were < 1, and the peeling and fermentation could obviously reduce pesticide residues. The risk quotients were < 100 %, implying that the risks were acceptable. This study provided a necessary information for the use of pesticides in apple cultivation and improvement of processing technology to ensure food safety.
Collapse
Affiliation(s)
- Fajun Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| | - Zhenzhen Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Junfeng Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Chengkui Qiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Caixia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Tao Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Linlin Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Jun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Rongli Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Hanzhong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| |
Collapse
|
3
|
Tan Y, Wen N, Lu Z, Wei W, Shi H, Wang M. Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine. Chirality 2025; 37:e70018. [PMID: 39800674 DOI: 10.1002/chir.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Chiral pesticides often undergo enantioselective degradation during food fermentation. In this study, the enantioselective fates of seven chiral pesticides during processing of wine and rice wine were investigated. The results revealed that R-metalaxyl, R-mefentrifluconazole and S-hexaconazole were preferentially degraded during wine processing with EF values of 0.57, 0.78, and 0.43, respectively, whereas S-metalaxyl and R-hexaconazole were preferentially degraded during rice wine processing with EF values of 0.44 and 0.54, respectively. Stereoselectivity was attributed to fermentative bacterial activity. The processing factor (PF) values for the five pesticides ranged from 0.04 to 0.34 during wine processing and from 0.02 to 0.29 during rice wine processing, suggesting that fermentation can mitigate pesticide exposure risks and ensure food safety. This study enhances our understanding of enantioselective fate of chiral pesticides during fermented food processing, provides guidance for the application of chiral pesticides, and enables the dietary risk of chiral pesticides in processed products to be assessed more accurately.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Nuanhui Wen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Zhiqiang Lu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Wenjie Wei
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Effects of storage and processing on the residual distribution and behavior of five preservatives and their metabolites in pomegranate. Food Chem 2024; 455:139905. [PMID: 38833870 DOI: 10.1016/j.foodchem.2024.139905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Pomegranate are often treated with preservatives during storage. This study investigated the effects of storage and food processing on the residual behavior of the five commonly used preservatives (prochloraz, thiophanate-methyl, pyrimethanil, imazalil, and difenoconazole) and their metabolites in pomegranate and its products. The LOQs for all target compounds were 0.001 mg kg-1. The residue levels of five preservatives in the calyx was highest, followed by the peel, stalk, septum, umbilicus, and seed. For the migration ability, the five preservatives from pomegranate peel to seed was negatively correlated with their octanol/water partition coefficients. The processing factors of each procedures of juice, wine, vinegar, and pectin processing were <1. Nevertheless, the PF values in drying peel during the overall process ranged from 1.26 to 4.09. Hence, it is worth noting that consumption of pomegranate essential oil and drying peel may pose a potential risk to the health of consumers.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
5
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation behavior and risk assessment of imidacloprid and its metabolites in apple from field to products. CHEMOSPHERE 2024; 359:142309. [PMID: 38735491 DOI: 10.1016/j.chemosphere.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Pesticides play vital roles in controlling pests and boosting crop yields. Imidacloprid is widely used all over the world and may form in agricultural products. The presence of pesticide residues in apples raises serious health concerns. Understanding the residual fate of imidacloprid is critical for food safety and human health. In this study, the dissipation behavior, metabolism, household processing and risk assessment of imidacloprid and its metabolites in apple were investigated from filed to products. Field experiment results suggested that the half-lives of imidacloprid at 5 times the recommended dosage was 1.5 times that of the standard dosage. And the final residues of imidacloprid were less than the established maximum residue limits (MRLs). Clarification and simmering had little effect on the reduction the residues of imidacloprid and its metabolites. The calculated processing factors were lower than 1 for imidacloprid and its metabolites, implying that the residual ratios of imidacloprid and its metabolites in each steps of the food processing were reduced. The risk quotients were <1 for all Chinese people, indicating that acceptable risks associated with dietary exposure to imidacloprid in apple. However, the higher risks were observed in young people than adults, and females faced higher risks than males. Given high residue levels in pomace, imidacloprid and its metabolites should be further studied in commercial byproducts.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
6
|
Wang X, Chen L, Ren X, Kang S, Zhao L, Zhang H, Li X, Chen Z. Fate characteristics and risk quantification of cyflumetofen from tomato cultivation to processing based on large-scale applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133496. [PMID: 38227999 DOI: 10.1016/j.jhazmat.2024.133496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Elucidating the fate characteristics of cyflumetofen and its main metabolite 2-TFMBA in tomato from cultivation to processing is crucial for safeguarding the environment and humans from hazardous effects. Cyflumetofen and 2-TFMBA could exist stably in tomato matrices for at least 343 days under frozen and dark conditions according to UHPLC-MS/MS, with a limit of quantitation of 0.001 mg/kg and retention time within 2.12 min. The occurrence, dissipation, and concentration variation of cyflumetofen were reflected by original depositions of 0.02-0.44 mg/kg, half-lives of 1.7-7.2 days, and terminal magnitudes of 0.005-0.30 mg/kg, respectively, with various influencing factors, e.g., climate conditions and tomato cultivars. Additionally, 13.5-59.3% of cyflumetofen was metabolized to 2-TFMBA, showing significant toxicological effects ranging from cultivation to processing. When the concentration decreased by 0.06 mg/kg, cyflumetofen was effectively removed by peeling, while washing was the recommended method for removing 2-TFMBA with a processing factor of 0.70. The comparative dietary risks of sum cyflumetofen were assessed for all life cycle populations using deterministic and probabilistic models. The risk quotients decreased to 1.3-4.8 times during the preparation of home canning tomato paste. Despite the low exposure risk, the potential health hazards of sum cyflumetofen should be considered, given its ubiquity and cumulative effects.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Li Chen
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
7
|
Gao Q, Wang Y, Li Y, Yang W, Jiang W, Liang Y, Zhang Z. Residue behaviors of six pesticides during apple juice production and storage. Food Res Int 2024; 177:113894. [PMID: 38225142 DOI: 10.1016/j.foodres.2023.113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
The residue behaviors of carbendazim, thiamethoxam, imidacloprid, acetamiprid, prochloraz, and difenoconazole during the production and accelerated storage of apple clear and cloudy juice was systemically evaluated. The pesticides were determined by liquid chromatography-mass spectrometry (LC-MS/MS) after each processing step and at different storage times. The results indicated that the different processing steps in the apple clear and cloudy juices production have different effects on the reduction of pesticide residues. The pre-processing steps including washing and pressing reduced the pesticide residues significantly by 36.8 % to 67.9 % and 32.9 % to 89.8 %, respectively, mainly due to the water solubility and log Kow of pesticides. The enzymation step in clear juice production slightly reduced six pesticide residues from 1.9 % to 31.6 %, and the filtration step after clarification and purification decreased the pesticide residues from 14.0 % to 87.5 % with no significance, while prochloraz was not detected. The centrifugation step in cloudy juice production reduced the pesticide residues from 6.3 % to 88.9 %. The pasteurization step in clear and cloudy juice production lowered the pesticide residues slightly on account of the short heating time of 30 s. The accelerated storage of clear and cloudy juices was effective in the reduction of pesticide residue levels. The processing factors (PFs) in the whole process of clear and cloudy juice production were equal to or lower than 0.2, especially for prochloraz and difenoconazole, illustrating that apple juice production could decrease the pesticide residues greatly. The results will provide important references to predict the levels of pesticide residues in apple juice during processing and storage. Meanwhile, the PFs identified in the study could be helpful in the risk assessment of pesticides in apple juice.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Yingxin Wang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yahui Li
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Weikang Yang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
8
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation, residues, and evaluation of processing factor for spirotetramat and its formed metabolites during kiwifruit growing, storing, and processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6277-6287. [PMID: 38147257 DOI: 10.1007/s11356-023-31639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Spirotetramat is widely used around the world to control sucking pests and may form in agricultural products. In the current study, the dissipation, residues, and evaluation of processing factor (PF) for spirotetramat and its formed metabolites were investigated during kiwifruit growing, storing, and processing. The residue analysis method was established based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) combined with a QuEChERS method to detect the residues of spirotetramat and its metabolites in kiwifruit and its processed products. The method provided recoveries of 74.7-108.7%, and the relative standard deviations (RSDs) were 0.6-13.1%. The LOQs of spirotetramat and its four metabolites were 1 μg kg-1. The degradation of spirotetramat was best fitted for the first-order kinetics model with a half-life of 9.90-10.34 days in the field and 24.75-30.13 days during storage. Residues of spirotetramat and its formed metabolites in kiwifruit would not pose dietary risk to consumers. Moreover, the peeling and fermentation were the highest removal efficiency for the spirotetramat and its formed metabolite residues during processing. The PF values calculated after each individual process were < 1, indicating a significant reduction of residues in different processing processes of kiwifruit. The spirotetramat was degraded during kiwifruit wine-making process with half-lives of 3.36-4.91 days. B-enol and B-keto were the main metabolites detected in kiwifruit and its processed products. This study revealed the residues of spirotetramat and its formed metabolites in kiwifruit growing, storing, and processing, which helps provide reasonable data for studying the dietary risk factors of kiwifruits and products.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
9
|
Wu Z, Ma Y, Xiong H, An W, Zhang Y, Zhao Q, Li J. Simultaneous determination of spiropidion and its five major metabolites in sweet orange fruit and various processing by-products using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Res Int 2023; 174:113498. [PMID: 37986498 DOI: 10.1016/j.foodres.2023.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
The present work reported the application of an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of spiropidion and its five major metabolites in sweet orange fruit and by-products throughout the whole industrial juicing process of the orange fruit. The reversed-dispersive solid phase extraction (r-DSPE) with multi-walled carbon nanotubes (MWCNTs) was employed for the extraction and purification. The established method was validated and satisfactory parameters (linearity, trueness, precision, sensitivity, matrix effect and stability) were obtained. And then, the field trial of spiropidion on sweet oranges has been conducted and the effect of commercial juicing processing on the residue of spiropidion and its metabolites was further investigated. The various processing factors (PFs) for washing, juicing, sterilization, concentrating and essential oil collecting were also determined. The final results indicated that washing processing reduced residues by 18.4%; the juicing step allowed a significant decrease of the spiropidion residue by 34.2-70.8%, with PFs value in the range of 0.290-0.658. However, high level of residual spiropidion (ranging from 4.016 to 4.205 mg/kg) was detected in orange essential oil, with PFs value of 17.157. All the above results demonstrated the efficiency of the established method in the routine control analysis of spiropidion residues in sweet orange fruits and their by-products, and will facilitate the further intensive research on its spatial distribution, transfer and degradation during the different processing procedures of the sweet orange fruits.
Collapse
Affiliation(s)
- Zhi Wu
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yuan Ma
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Huan Xiong
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Wenjin An
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yaohai Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiyang Zhao
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Jing Li
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China; Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Chongqing 400712, People's Republic of China; National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
10
|
Li K, Chen T, Shi X, Chen W, Luo X, Xiong H, Tan X, Liu Y, Zhang D. Residue behavior and processing factors of thirteen field-applied pesticides during the production of Chinese traditional fermented chopped pepper and chili powder. Food Chem X 2023; 19:100854. [PMID: 37780331 PMCID: PMC10534233 DOI: 10.1016/j.fochx.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the fate, processing factors and relationship with physicochemical properties of thirteen pesticides in field-collected pepper samples during Chinese chopped pepper and chili powder production was systematically studied. The washing, air-drying, chopping and salting and fermentation processes reduced 24.8%-62.8%, 0.9%-26.4%, 25.1%-50.3% and 16.3%-90.0% of thirteen pesticide residues, respectively, while the sun-drying processing increased the residues of eleven pesticides by 1.27-5.19 fold. The PFs of thirteen pesticides were < 1 in chopped pepper production and the PFs of eleven pesticides were more than 1 for chili powder production. The chopped pepper processing efficiency have most negative correlation with octanol-water partition coefficient. In contrast, the chili powder processing efficiency have most positive correlation with vapour pressure. Thus, this study can offer important references for assessment the pesticide residue levels in Chinese traditional fermented chopped pepper and chili powder production from fresh peppers.
Collapse
Affiliation(s)
- Kailong Li
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Tongqiang Chen
- Hunan Provincial institute of product and goods quality inspection, Changsha 410007, China
| | - Xiaobin Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hao Xiong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| |
Collapse
|
11
|
Wang F, Li X, Jiang S, Han J, Wu J, Yan M, Yao Z. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12372-12389. [PMID: 37565661 DOI: 10.1021/acs.jafc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. The dissipation pattern of spirotetramat and its four metabolites in peaches: Effects of growing conditions, storage and processing factor. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Zhang Y, Kong Z, Gregoire N, Li L, Yang L, Zhao M, Jin N, Wang F, Fan B, Francis F, Li M. Enantioselective activity and toxicity of chiral acaricide cyflumetofen toward target and non-target organisms. CHEMOSPHERE 2023; 325:138431. [PMID: 36933840 DOI: 10.1016/j.chemosphere.2023.138431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cyflumetofen (CYF), a novel chiral acaricide, exert enantiomer-specific effects on target organisms by binding to glutathione S-transferase. However, there is limited knowledge regarding the response of non-target organisms to CYF, including enantioselective toxicity. In this study, we investigated the effects of racemic CYF (rac-CYF) and its two enantiomers (+)-CYF and (-)-CYF on MCF-7 cells and non-target (honeybees) and target (bee mites and red spider mites) organisms. The results showed that similar to estradiol, 1 μM (+)-CYF promoted the proliferation and disturbed the redox homeostasis of MCF-7 cells, whereas at high concentrations (≥100 μM) it exerted a negative effect on cell viability that was substantially stronger than that of (-)-CYF or rac-CYF. (-)-CYF and rac-CYF at 1 μM concentration did not significantly affect cell proliferation, but caused cell damage at high concentrations (≥100 μM). Analysis of acute CYF toxicity against non-target and target organisms revealed that for honeybees, all CYF samples had high lethal dose (LD50) values, indicating low toxicity. In contrast, for bee mites and red spider mites, LD50 values were low, whereas those of (+)-CYF were the lowest, suggesting higher toxicity of (+)-CYF than that of the other CYF samples. Proteomics profiling revealed potential CYF-targeted proteins in honeybees related to energy metabolism, stress responses, and protein synthesis. Upregulation of estrogen-induced FAM102A protein analog indicated that CYF might exert estrogenic effects by dysregulating estradiol production and altering estrogen-dependent protein expression in bees. Our findings suggest that CYF functions as an endocrine disruptor in non-target organisms in an enantiomer-specific manner, indicating the necessity for general ecological risk assessment for chiral pesticides.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Noel Gregoire
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Lin Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Mengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Nuo Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
14
|
Hrynko I, Kaczyński P, Łuniewski S, Łozowicka B. Removal of triazole and pyrethroid pesticides from wheat grain by water treatment and ultrasound-supported processes. CHEMOSPHERE 2023; 333:138890. [PMID: 37182706 DOI: 10.1016/j.chemosphere.2023.138890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
A simple way to reduce pesticides in cereal grains is to use washing methods. The challenge of this study was to evaluate the effectiveness of reduction of 3 triazole fungicides (difenoconazole, tebuconazole, tetraconazole) and 3 pyrethroid insecticides (beta-cyfluthrin, cypermethrin, deltamethrin) commonly used in wheat protection. Four different pre-washing methods (hot and cold water washing, twice water, and ultrasound-supported washing) were evaluated. The processing factor (PF) was calculated based on the concentration of pesticides determined by LC-MS/MS in the samples of cereal grains before and after the washing process. PFs were within the range 0.01-0.97. Time, teperature and ultrasound were factors influencing the efficiency of water treatment. The study showed that ultrasound-supported washing eliminated pesticide residues to a greater extent than ordinary washing. This process significantly affected or completely reduced concentrations of triazoles in wheat grains. The highest reduction of residues (99%) was received for tebuconazole and ultrasound washing with heating temperature of 60 °C for a total of 10 min. In all washing processes, pyrethroids were removed with lower efficiency than triazoles. The lowest residue reduction was obtained for cypermethrin and washing under cold water for 5 min (3%; PF = 0.97). Beta-Cyfluthrin showed only a 6-27% reduction regardless of the process (PF: 0.73-0.95). Using static analysis, the relationship between the properties of pesticides and the reduction of their concentration in cereals was clarified and showed a strong correlation.
Collapse
Affiliation(s)
- Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland
| | - Stanisław Łuniewski
- The Uniwersity of Finance and Management, Ciepla 40, 15-472, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195, Bialystok, Poland
| |
Collapse
|
15
|
Luyinda A, Yildirim Kumral A. Effect of alkali treatment and natural fermentation on the residue behaviour of malathion and malaoxon during table olive production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:381-391. [PMID: 36657458 DOI: 10.1080/19440049.2023.2168066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pesticide use is indispensable for combating diseases occurring during olive cultivation. However, this has led to challenges of pesticide residues in consumer products as a result of pesticide application errors and the methods used during processing and preservation. This work aimed to identify the effects of table olive processing and preservation techniques on the concentrations of malathion and its degradation product malaoxon. For this purpose, olive trees in an experimental olive orchard were sprayed homogeneously with malathion at a dose of 975 mg L-1 and processed as (i) vacuum-packed, (ii) alkali treated and (iii) directly brined for natural fermentation. The changes in microbial growth, pH-acidity and pesticide (malathion and malaoxon) concentrations were monitored regularly during the experiment. Lactic acid bacteria, yeast and mould growth were not detected in any of the treatments. Mesophilic aerobic bacteria and enterobacteria were the dominant microbial groups in all non-sprayed treatments, but no enterobacteria growth was detected in sprayed treatments. Lower pH values were observed in the brines of natural fermentation treatments of both sprayed and non-sprayed olives. The independent effects of time and processing method and their interactions on malathion and malaoxon concentrations were found significant (p < .05). During the experiments, the highest reduction in malathion concentration was observed in alkali treated samples (95-99%), followed by naturally fermented (77-88%) and vacuum-packed samples (74-76%). Processing factors for all treatments were lower than 1.
Collapse
Affiliation(s)
- Abdurahman Luyinda
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Nilufer, Turkey
| | - Aysegul Yildirim Kumral
- Faculty of Agriculture, Department of Food Engineering, Bursa Uludag University, Bursa, Nilufer, Turkey
| |
Collapse
|
16
|
Yao J, Gao J, Wang N, Liu X, Zhou Z, Wang P. Degradation and chiral properties of metamifop during rice processing. Food Chem 2023; 420:135614. [PMID: 37084473 DOI: 10.1016/j.foodchem.2023.135614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Metamifop has been used to control gramineous weeds in paddy fields and may form residues in rice. In this study, the residue analysis method for metamifop and the metabolites was set up based on high-performance liquid chromatography-mass spectrometry and the chiral analysis method was also developed. The enantioselective degradation and residue of metamifop in rice processing were studied, and the major metabolites were monitored. The removal rate of metamifop by washing could reach 60.03%, while the loss in rice and porridge cooking was less than 16%. No decrease was found in fermentation into fermented grains, but metamifop was degraded in the process of rice wine fermentation with half-lives of around 9.5 days. N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methylpropionamide and 6-chlorobenzo [d] oxazole-2 (3H)-one were found to be the major metabolites. This study reveals the enantioselective residue of metamifop in rice processing, which helps understand the potential risk in food consumption.
Collapse
|
17
|
Li Z. Screening safe pesticide application rates in crop fields for protecting consumer health: A backward model for interim recommended rates. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:126-138. [PMID: 35266607 DOI: 10.1002/ieam.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
To reduce human health risks and comply with regulatory standards, it is necessary to provide safe application rates of pesticides in crop fields. In this study, a screening-level model is proposed to improve the regulation of pesticide application rates based on the dynamiCrop platform, which can serve as a complementary approach to field trials for regulatory agencies. The screening-level model can conveniently simulate safe application rates of pesticides based on consumer health risks and maximum residue levels (MRLs). Using 2,4-D as an example, the simulation results agreed with the data of field trials under Good Agricultural Practices and demonstrated that current manufacturers' recommended application rates can effectively comply with MRLs and protect human health. In addition, we simulated the default safe application rates of 449 pesticides in five common crops using the default values of the acceptable daily intake (ADI; 0.01 mg kg-1 day-1 ) and MRL (0.01 mg kg-1 ). The results demonstrated that aerial-fruit crops (e.g., tomatoes and apples) had much lower default safe application rates of pesticides than tuber crops due to the different pesticide uptake mechanisms of plants. In addition, the MRL-based default safe application rates were significantly lower than the ADI-based default rates, indicating that the default MRL of 0.01 mg kg-1 adopted by current regulatory agencies is very conservative regarding population health risks. Although other factors, such as the variability of residue levels in crops, occupational exposure (farmers and operators), and multiple pesticide application patterns, need to be considered in future studies, our screening-level model could be used as a complementary tool in field trials to assist regulatory agencies in regulating pesticide application rates in crop fields. Integr Environ Assess Manag 2023;19:126-138. © 2022 SETAC.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
19
|
Dissipation, Residue and Dietary Intake Risk Assessment of Penthiopyrad in Eggplants and Its Removal Using Various Household Processing Techniques. Foods 2022; 11:foods11213327. [PMID: 36359941 PMCID: PMC9655489 DOI: 10.3390/foods11213327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
A field trial was conducted to illustrate the dissipation and residue and assess the dietary intake risk of penthiopyrad in eggplants, and the distribution was further estimated after different household processing methods. Penthiopyrad dissipated quickly in eggplants, with half-lives of 1.85−2.56 days. The final residue data indicated that following the recommended spraying method, penthiopyrad would not threaten human health. Risk quotient results (<<100%) also demonstrated that the dietary intake risk of penthiopyrad in eggplants for Chinese consumers could be negligible. Washing, peeling and thermal treatments had significant removal effects on penthiopyrad from eggplants (0 < processing factor < 0.60). The characterization of the dissipation and distribution of penthiopyrad in field and processed eggplant samples could provide a more realistic reference for risk assessment of processed products, as well as some information for humans who may be exposed to penthiopyrad.
Collapse
|
20
|
A Novel Enantioseparation and Trace Determination of Chiral Herbicide Flurtamone Using UPLC-MS/MS in Various Food and Environmental Matrices Based on Box-Behnken Design. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
22
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation behavior of prochloraz and its metabolites in grape under open-field, storage and the wine-making process. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liang Y, Duan J, Gao Q, Li Y, Zhang Z. Effect of Chinese steamed bun and bread processing on pesticide residues in wheat flour. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe changes of five pesticides including imidacloprid, triadimefon, fenitrothion, chlorpyrifos-methyl, and chlorpyrifos in wheat flour during Chinese steamed bun and bread processing were systematically investigated. The pesticide residues were determined by high performance liquid chromatography coupled with diode array detector. Dough mixing step in both Chinese steamed bun and bread processing reduced the concentration of five pesticide residues significantly by 33 to 46%. It was mainly attributed to the increase of moisture content in mixed dough during this step. The reduction of pesticides in fermenting step varied from 2 to 22% in Chinese steamed bun and bread processing. Resting step in both Chinese steamed bun and bread processing has little effect on the pesticide residues with the reduction from 2 to 8%. The five pesticides have different behaviours in steaming step of Chinese steamed bun processing and in baking step of bread processing. During the steaming step, only the concentrations of triadimefon and imidacloprid residues in crust were increased by 52 and 1%, the others in crust and in crumb of Chinese steamed bun were decreased by 4 to 38%. After the baking step, the concentrations of triadimefon and imidacloprid residues in crust, and the triadimefon residue in crumb of bread were increased by 65, 83, and 14%, respectively, the others were all reduced. The processing factors (PFs) for triadimefon and imidacloprid in crust in the steaming and baking steps, for triadimefon in crumb in the baking steps were greater than 1, and the others were all less than 1. Overall, this study provides important references for monitoring pesticide residues in the processing of wheat flour products. The PFs obtained could be helpful for the risk assessment of pesticides in wheat flour products.
Collapse
|
24
|
Li Y, Nie J, Zhang J, Xu G, Zhang H, Liu M, Gao X, Shah BSA, Yin N. Chiral fungicide penconazole: Absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152061. [PMID: 34861299 DOI: 10.1016/j.scitotenv.2021.152061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Traditional evaluation of chiral pesticides can lead to inaccurate results, as their enantiomers may show different properties. Penconazole, a chiral triazole fungicide with two enantiomers, is widely applied to protect against phytopathogens. In this study, its absolute configuration, bioactivity, ecotoxicity, and stereoselective degradation were investigated at the enantiomeric level in detail. The absolute configuration of the two enantiomers (R-(+)-penconazole and S-(-)-penconazole) was first confirmed by electronic circular dichroism (ECD), and their enantioseparation method was developed and optimized using UPLC-MS/MS. S-(-)-penconazole showed high bioactivity, as its fungicidal activity against four target phytopathogens (Alternaria alternate f. sp. mali, Botryosphaeria berengeriana f. sp. piricola, Colletotrichum gloeosporioides, and Fusarium oxysporum) was 1.8-4.4 times higher than that of R-(+)-penconazole. The results of an acute toxicity test showed that the LC50 values of S-(-)-penconazole against Daphnia magna were 32.5 times higher than those of R-(+)-penconazole at 24 h during the test period. Stereoselective degradation behaviors were found in nonbagging and bagging Fuji apples collected from three major apple-producing regions in China, with half-lives of 23.5-51.6 d (nonbagging treatment) and 23.0-57.5 d (bagging treatment) for R-(+)-penconazole and 41.1-60.9 d (nonbagging treatment) and 52.5-91.2 d (bagging treatment) for S-(+)-penconazole, respectively. This study provided new insights into the bioactivity, ecotoxicity, and stereoselective degradation of penconazole enantiomers. The above results also emphasized the importance of risk assessments of chiral pesticides at the enantiomeric level.
Collapse
Affiliation(s)
- Ye Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao 266109, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao 266109, China; Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Jia Zhang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, 221000, China.
| | - Guofeng Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Hui Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Mingyu Liu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Xiaoqin Gao
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Bacha Syde Asim Shah
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China.
| | - Ning Yin
- Center for Modern Agricultural Development Service, 033000, China
| |
Collapse
|
25
|
Li Z, Fantke P. Toward harmonizing global pesticide regulations for surface freshwaters in support of protecting human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113909. [PMID: 34624580 DOI: 10.1016/j.jenvman.2021.113909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
To promote international collaboration on environmental pollution management and human health protection, we conducted a global-level study on the management of pesticides for surface freshwater quality. Prior to actions being taken in terms of water treatment or remediation, it is essential that clear and definite regulations be disseminated. In our study, 3094 surface freshwater quality standards for 184 different pesticides were recorded from 53 countries and categorized according to pesticide types and standard types, as well as diverse use of freshwater by humans, and compared water quality standards related to human health. Our results indicate large variations in pesticide regulations, standard types (i.e., long- or short-term water quality standards), and related numerical values. With regard to the protection of human health, the 10 most frequently regulated pesticides account for approximately 47% of the total number of standards across 184 considered pesticides. The average occurrence-weighted variations of standard values (i.e., numerical values provided in a standard in terms of residue limits of a given pesticide in water) for the 20 most regulated persistent organic pollutants (POPs) and other phase-out pesticides (i.e., pesticides not currently-approved for use in agriculture across various countries) are 4.1 and 2.6 orders of magnitude, respectively, with human-exposure related standard values for some pesticides varying with over 3 orders of magnitude (e.g., lindane). In addition, variations in water quality standard values occurred across standard types (e.g., maximum and average), water use types (e.g., unspecified waters and human consumption), and standard values (e.g., pesticide individuals and groups). We conclude that regulatory inconsistencies emphasize the need for international collaboration on domestic water treatment, environmental management as well as specific water quality standards for the wider range of current-use pesticides, thereby improving global harmonization in support of protecting human health.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Engineering, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| |
Collapse
|
26
|
An X, Pan X, Li R, Jiang D, Dong F, Zhu W, Xu J, Liu X, Wu X, Zheng Y. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2021; 376:131883. [PMID: 34971887 DOI: 10.1016/j.foodchem.2021.131883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
A fast, effective, and environmental-friendly method was developed for enantioseparation and analysis of mefentrifluconazole in vegetables based on supercritical fluid chromatography tandem mass spectrometry. The enantioselective behaviors of mefentrifluconazole enantiomers in tomato, cucumber, and pepper in the greenhouse, and pickled cucumber and pepper during processing were investigated. Mefentrifluconazole enantiomers could obtain baseline separation within 2 min. The average recoveries of all matrices ranged from 78.4% to 119.0%, with relative standard deviations less than 16.8% for two enantiomers. S-(+)-mefentrifluconazole was preferentially degraded in pepper, while there was no enantioselectivity in tomato and cucumber under field conditions. During processing, S-(+)-mefentrifluconazole was reduced preferentially than R-(-)-mefentrifluconazole in pickled cucumber and cucumber brine. Inversely, R-(-)-mefentrifluconazole degraded faster than S-(+)-mefentrifluconazole in pepper brine. But, no obvious enantioselectivity was observed in pickled pepper. The result of this study could contribute to a more accurate dietary risk assessment of mefentrifluconazole in vegetables and processed products.
Collapse
Affiliation(s)
- Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duoduo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Li R, Pan X, An X, Wang K, Dong F, Xu J, Liu X, Wu X, Zheng Y. Monitoring the behavior of imazalil and its metabolite in grapes, apples, and the processing of fruit wine at enantiomeric level. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5478-5486. [PMID: 33682082 DOI: 10.1002/jsfa.11196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/17/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Imazalil is widely used in agriculture, which may pose a threat to food safety. This study aimed to investigate the fate of imazalil and its main metabolite, R14821 (imazalil-M), in field grapes and apples, and in the processing of fruit wine at the enantiomeric level. RESULTS Analysis method was established to determine imazalil and imazalil-M enantiomers in grape, apple, fruit wine and pomace. The method showed acceptable recoveries of 71.6-99.9% and precision with relative standard deviation of 0.3-11.7%. Processing factors (PFs) were 0.15-0.40 (for imazalil enantiomers) and <0.13-0.83 (for imazalil-M enantiomers) during the wine-making process. The PFs after individual steps including washing, peeling, fermentation, and clarification were all less than 1. No enantioselective dissipation of imazalil was found in grapes under field conditions with half-lives of 23.82-24.49 days. R-(-)-imazalil degraded slightly faster than S-(+)-imazalil in apples under field conditions with half-lives of 9.82-10.09 days. S-(+)-imazalil-M preferentially degraded in field grapes and apple. No significant enantioselectivity of imazalil and imazalil-M was observed during the wine-making process. The enantiomeric fraction (EF) values of imazalil were 0.484-0.511 and 0.509-0.522 in grape wine and cider, respectively. The EFs were 0.484-0.501(in grape wine) and 0.484-0.504 (in cider) for imazalil-M. CONCLUSION The results showed that the wine-making process could reduce imazalil and imazalil-M residues in grapes and apples. The finding of non-enantioselectivity of imazalil during the processing of fruit wine was useful for accurate risk assessment for imazalil in raw and processing fruits. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
28
|
Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food Chem 2021; 360:130106. [PMID: 34034058 DOI: 10.1016/j.foodchem.2021.130106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used worldwide, leading to varying degrees of residues in food. Lactic acid bacteria (LAB) can degrade OPPs by producing phosphatase. This study explored the reasons for the variation in the degradation of different OPPs by Lactobacillus plantarum. The results showed that the degradation effects of OPPs by L. plantarum (intact cells) varied greatly, the degradation rate constant of phoxim was 1.65-fold higher than that of dichlorvos. However, the phosphatase extracted from L. plantarum had no degradation selectivity for OPPs in vitro. It was speculated that the selective uptake of cells determines this degradation selectivity. The results of molecular docking supported this hypothesis because there was no difference in the binding energies between phosphatase and OPPs, while the binding energies between phosphate-binding protein and pesticides were different, and they were negatively correlated with the degradation rate constants of the eight OPPs by L. plantarum.
Collapse
|
29
|
Bai A, Liu S, Chen A, Chen W, Luo X, Liu Y, Zhang D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem 2021; 359:129983. [PMID: 33964658 DOI: 10.1016/j.foodchem.2021.129983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The fate of eighteen pesticides in field-collected rice samples during Chinese Baijiu production was systematically studied. The results indicated that steeping decreased flonicamid residue by 73.2% due to its high water-solubility and low octanol/water partition coefficient. The steaming step reduced pesticide residues by 32.0%-75.3% through evaporation or thermal degradation. After steaming, the pesticide residues were further reduced by 39.8-74.2% in fermentation which might be caused by biological degradation. In addition, distillation was shown to be most effective, responsible for greater than 90% losses of the remaining pesticide residues. The processing factors (PFs) were generally lower than 1 for different processes and the whole procedure. These results revealed that the procedure of Chinese Baijiu production could dramatically decrease residues of all the eighteen pesticides. Overall, this study provide important references for monitoring pesticide residue levels during the production of Chinese Baijiu from rice, and ensuring proper risk assessment from pesticide contamination.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
30
|
Li Y, Xu J, Zhao X, He H, Zhang C, Zhang Z. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits. Food Chem 2021; 359:129925. [PMID: 33964657 DOI: 10.1016/j.foodchem.2021.129925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
A modified QuEChERS method for determining cyenopyrafen in strawberries, mandarins and their processed products was established with a good linearity (R2 > 0.9981), accuracy (recoveries of 83% to 111%) and precision (relative standard deviations of 0.9% to 14%). The limit of quantification (LOQ) was 0.01 mg/kg. Field results showed that the half-lives of cyenopyrafen were 6.8 and 11.8 d in strawberry and mandarin respectively, and that the final residues were within established maximum residue limits (MRLs). The household processing factors (PFs) for cyenopyrafen residues in strawberry and mandarin fruits were also studied: residues increased in strawberry jam (PF 1.51) and mandarin juice (1.31) but decreased in strawberries (0.58) and mandarin pulp (<0.17) after washing and peeling, respectively. A risk assessment showed that the risk from long-term dietary exposures to cyenopyrafen was 73.73%, indicating that consuming these products was unlikely to present a public health concern.
Collapse
Affiliation(s)
- Yanjie Li
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiabin Xu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei He
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Changpeng Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhiheng Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
31
|
Application of Chiral and Achiral Supercritical Fluid Chromatography in Pesticide Analysis: A Review. J Chromatogr A 2020; 1634:461684. [DOI: 10.1016/j.chroma.2020.461684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|