1
|
Maia NMA, Andressa I, Cunha JS, Costa NDA, Borges LLR, Fontes EAF, de Oliveira EB, Leite Júnior BRDC, Bhering LL, Saldaña MDA, Vieira ÉNR. Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea ( Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents. PLANTS (BASEL, SWITZERLAND) 2025; 14:1042. [PMID: 40219110 PMCID: PMC11990908 DOI: 10.3390/plants14071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
This study focused on improving the extraction of anthocyanins from medicinal plants using green solvents, which is important for the food, pharmaceuticals, and cosmetics industries. The goal was to optimize the time (15-50 min), temperature (40-80 °C), and petal/solvent ratio (2.5/7%) for the ultrasound-assisted extraction of anthocyanins from Butterfly Pea (Clitoria ternatea), using a natural deep eutectic solvent (choline chloride/glycerol, ChCl:Gly). The extraction was compared with a simple water extraction. To assess stability, we analyzed the anthocyanin content, antioxidant capacity, and color changes over 21 days. The optimal results were achieved using a temperature of 80 °C for 50 min and a 7% petal/solvent ratio. The CHCl:Gly solvent resulted in higher anthocyanin levels (374.65 mg DGE/L) compared to water (211.63 mg DGE/L). After storing the CHCl:Gly extract at 5 °C, only 16% of anthocyanins were lost, while the water extract lost 38%. The CHCl:Gly extract also showed better antioxidant capacity (156.43 µmol/mL). Color changes were less noticeable in the CHCl:Gly extract, especially when refrigerated. These findings demonstrate the method's effectiveness for producing bioactive extracts, with potential for the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Nicole Marina Almeida Maia
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Irene Andressa
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Jeferson Silva Cunha
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Nataly de Almeida Costa
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Larissa Lorrane Rodrigues Borges
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Edimar Aparecida Filomeno Fontes
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Eduardo Basílio de Oliveira
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Bruno Ricardo de Castro Leite Júnior
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| | - Leonardo Lopes Bhering
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Marleny Doris Aranda Saldaña
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Érica Nascif Rufino Vieira
- Department of Food Science and Technology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (N.M.A.M.); (I.A.); (N.d.A.C.); (L.L.R.B.); (E.A.F.F.); (E.B.d.O.); (B.R.d.C.L.J.)
| |
Collapse
|
2
|
Yang S, Li X, Zhang H. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Tenebrio molitor. Sci Rep 2024; 14:28526. [PMID: 39557986 PMCID: PMC11574054 DOI: 10.1038/s41598-024-79482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Tenebrio molitor, which is rich in various nutrients, and its polysaccharides, as significant bioactive substances, exhibit strong antioxidant effects. This study utilized defatted T. molitor as raw material and employed an ultrasound-assisted extraction method. The factors considered include extraction temperature, time, ultrasound power, and liquid-to-feed ratio, with the yield of T. molitor polysaccharides as the response value. Based on single-factor experiments and response surface methodology, the optimal extraction parameters for T. molitor polysaccharides were determined. Following purification, protein removal, and dialysis to eliminate impurities, the structure of the extracted polysaccharides was preliminarily investigated using infrared spectroscopy. Their antioxidant activities were explored by measuring their DPPH·, OH·, and ABTS+· radical scavenging abilities and Fe3+ reducing power. The results indicated that the optimal conditions for ultrasound-assisted extraction were an extraction temperature of 75 °C, an extraction time of 150 min, an ultrasound power of 270 W, and a liquid-to-feed ratio of 15:1 mL/g, yielding a polysaccharide extraction rate of 9.513%. Infrared spectroscopy analysis revealed the presence of pyranose sugars with main functional groups including C-O, C=O, and O-H. Antioxidant activity tests showed that within a certain concentration range, the higher the polysaccharide concentration, the stronger its radical scavenging abilities. Compared with Vitamin C(Vc), the polysaccharides had stronger scavenging abilities for DPPH· and OH·, some scavenging ability for ABTS+·, and Fe3+ reduction ability, and corresponding to IC50 values of 0.9625, 9.1909, and 235.69 mg/mL respectively. The Fe3+ reducing power reached a maximum absorbance of 0.38899 at a concentration of 1.6 mg/mL. T. molitor polysaccharides demonstrate promising antioxidant activity and potential as functional ingredients in food, health products, and pharmaceuticals, providing new technical references for the development and utilization of T. molitor resources.
Collapse
Affiliation(s)
- Shengru Yang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China.
| | - Xu Li
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Hui Zhang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| |
Collapse
|
3
|
Velisdeh ZJ, Najafpour Darzi G, Poureini F, Mohammadi M, Sedighi A, Bappy MJP, Ebrahimifar M, Mills DK. Turning Waste into Wealth: Optimization of Microwave/Ultrasound-Assisted Extraction for Maximum Recovery of Quercetin and Total Flavonoids from Red Onion (Allium cepa L.) Skin Waste. APPLIED SCIENCES 2024; 14:9225. [DOI: 10.3390/app14209225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
This study optimized the extraction conditions to maximize the recovery yields of quercetin and total flavonoids from red onion skin waste using sequential microwave/ultrasound-assisted extraction. Five effective factors of quercetin extraction yield were investigated using response surface methodology. The method was successfully performed under optimal 60 s microwave irradiation conditions followed by 15 min sonication at 70 °C with 70% (v/v, water) ethanol with a solvent-to-solid ratio of 30 mL/g. The variance analysis of the model for both quercetin (Y1) and total flavonoid (Y2) recovery from DOS demonstrated that ultrasound temperature (X2) was the most highly significant and influential factor, with a p-value of <0.0001 for both responses. Additionally, three key interaction terms—X1X2, X2X4, and X2X5—were identified as highly significant, further underscoring the critical role of ultrasound temperature in optimizing the extraction process for both quercetin and total flavonoids. The maximum recovery yields of quercetin and total flavonoids from red onion skin were 10.32% and 12.52%, respectively. The predicted values for quercetin (10.05%) and total flavonoids (12.72%) were very close to the experimental results. The recovery yields obtained from different extraction methods under the identical experimental conditions mentioned earlier were ultrasound/microwave-assisted extraction (7.66% quercetin and 10.18% total flavonoids), ultrasound-assisted extraction (5.36% quercetin and 8.34% total flavonoids), and microwave-assisted extraction (5.03% quercetin and 7.91% total flavonoids). The ANOVA confirmed highly significant regression models (p-values < 0.0001), with an insignificant lack of fit (p = 0.0515 for quercetin, p = 0.1276 for total flavonoids), demonstrating the robustness and reliability of the optimization. This study provides valuable insights for improving the extraction of bioactive compounds, which is critical for developing effective cancer treatments and advancing medical research. Additionally, the model shows potential for scaling up food processing applications to recover valuable products from red onion skin waste.
Collapse
Affiliation(s)
- Zeinab Jabbari Velisdeh
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Fatemeh Poureini
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Armin Sedighi
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza 14778-93855, Iran
| | - David K. Mills
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
4
|
Liu Y, Deng Y, Yang Y, Dong H, Li L, Chen G. Comparison of different drying pretreatment combined with ultrasonic-assisted enzymolysis extraction of anthocyanins from Lycium ruthenicum Murr. ULTRASONICS SONOCHEMISTRY 2024; 107:106933. [PMID: 38865900 PMCID: PMC11222793 DOI: 10.1016/j.ultsonch.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.
Collapse
Affiliation(s)
- Yuxing Liu
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yu Deng
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yulong Yang
- College of Food, Shihezi University, Shihezi 832000, China
| | - Hao Dong
- Shihezi Quality and Metrology Inspection Institute, Shihezi 832000, China
| | - Lingling Li
- College of Food, Shihezi University, Shihezi 832000, China.
| | - Guogang Chen
- College of Food, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
5
|
Han L, Li R, Jin X, Li Y, Chen Q, He C, Wang M. Metabolomic analysis, extraction, purification and stability of the anthocyanins from colored potatoes. Food Chem X 2024; 22:101423. [PMID: 38764782 PMCID: PMC11101687 DOI: 10.1016/j.fochx.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Colored potatoes have many health benefits because they are rich in anthocyanins. However, the constituent and property of anthocyanins in colored potatoes have not been systematically studied yet. Herein, metabolomic analysis was carried out to investigate the chemical composition of anthocyanins in the four different colored potatoes. After that, the extract and purification conditions, and the stability of the anthocyanins were further studied. The results indicated that the four colored potatoes contained abundant of polyphenols, flavonoids, and anthocyanins. Cyanidin, delphinidin, and malvidin were identified as the major anthocyanidins in purple potatoes, whereas red potatoes were mainly consisted of pelargonidin and its derivatives. 84.47 mg C3GE/100 g DW of anthocyanins was obtained at the optimal conditions, which could be effectively purified macroporous resin of D101. Moreover, the anthocyanins were sensitive to pH, temperature, light, redox agents, and divalent or trivalent metal ions, but stable to sugars and univalent metal ions.
Collapse
Affiliation(s)
| | | | - Xiying Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yixin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
6
|
Sai-Ut S, Teksee A, Pongsetkul J, Sinthusamran S, Rawdkuen S. Optimization of ultrasonic assisted ethanolic extraction for natural pigments from butterfly pea flower applied in Thai dessert using Box-Behnken approach. Food Chem X 2024; 22:101484. [PMID: 38846798 PMCID: PMC11154199 DOI: 10.1016/j.fochx.2024.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Butterfly pea is a natural color source used in food and dessert. This study optimized ultrasound-assisted extraction with ethanol for pigments from butterfly pea flowers (BPF) using a Box-Behnken method. Key factors explored were solid-to-solvent ratio, ultrasound extraction time, and ethanol concentration. The extracted compounds were evaluated for extraction yield (EY), total phenolic content (TPC), total anthocyanin content (TAC), and DPPH antioxidant activity. EY increased significantly with reduced ethanol concentration. Optimal conditions were predicted and experimentally validated. BPF extracts showed distinct absorption wavelengths at different pH levels. BPF extract was used in coconut milk jelly, resulting in the lowest b* value. These findings highlight the value of optimal ultrasonic-assisted extraction for enhancing BPF's natural colorant extraction and promoting sustainable use in food and dessert applications.
Collapse
Affiliation(s)
- Samart Sai-Ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Apisara Teksee
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sirima Sinthusamran
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
7
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
8
|
Ma J, Li P, Ma Y, Liang L, Jia F, Wang Y, Yu L, Huang W. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. Heliyon 2024; 10:e31518. [PMID: 38826714 PMCID: PMC11141385 DOI: 10.1016/j.heliyon.2024.e31518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Peng Li
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
- The Work of Forestry Administrative Station of Kirgiz Autonomous Prefecture, Artush, 845350, PR China
| | - Liya Liang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| |
Collapse
|
9
|
Custodio-Mendoza JA, Aktaş H, Zalewska M, Wyrwisz J, Kurek MA. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules 2024; 29:1735. [PMID: 38675555 PMCID: PMC11051960 DOI: 10.3390/molecules29081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.
Collapse
Affiliation(s)
| | | | | | | | - Marcin A. Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-776 Warsaw, Poland; (J.A.C.-M.); (H.A.); (M.Z.); (J.W.)
| |
Collapse
|
10
|
Wijesekara T, Xu B. A critical review on the stability of natural food pigments and stabilization techniques. Food Res Int 2024; 179:114011. [PMID: 38342519 DOI: 10.1016/j.foodres.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
11
|
Yu X, Li S, Peng S, Tao L, Hu F. Optimization of ultrasound-assisted extraction of fatty acids from royal jelly and its effect on the structural and antioxidant property. ULTRASONICS SONOCHEMISTRY 2024; 104:106802. [PMID: 38368809 PMCID: PMC10883820 DOI: 10.1016/j.ultsonch.2024.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
Fatty acids are the key active components in royal jelly (RJ) with various biological activities. In this study, a novel ultrasound-assisted extraction (UAE) method was established to extract fatty acids from RJ and their structural and antioxidant property were further evaluated. The optimum extraction conditions were as follows: liquid-to-solid ratio of 10:1, ultrasonic power of 450 W and ultrasonic duration of 20 min, resulting in a better extraction yield of 16.48 % and 10-hydroxy-2(E)-decenoic acid (10-HDA) content of 4.12 %. Furthermore, compared with the solvent extraction method, the antioxidant activity of extract by ultrasound was enhanced significantly by at least 448 %. GC-MS showed that ultrasound didn't change the chemical composition of fatty acids, while it significantly increased the content of fatty acids. SEM image illustrated that extracts by UAE showed a rougher, looser microstructure compared to the solvent method. Overall, UAE is a promising method to obtain fatty acids in RJ with high efficiency.
Collapse
Affiliation(s)
- Xinyu Yu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Li
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqin Peng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingchen Tao
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Qi Z, Wang W, Liu Z, Niu N, Li Z, Chen L, Zhu J, Li D, Liu Y. Anthocyanin Profiles in Colored Potato Tubers at Different Altitudes by HPLC-MS Analysis with Optimized Ultrasound-Assisted Extraction. Foods 2023; 12:4175. [PMID: 38002232 PMCID: PMC10670562 DOI: 10.3390/foods12224175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The elevated anthocyanin content of colored potatoes produces numerous health benefits in humans. However, there is a paucity of studies exploring the influence of environmental factors on anthocyanin components in colored potatoes. In our work, the Box-Behnken design was adopted to optimize anthocyanin extraction from colored potato tubers with ultrasound assistance. The response surface model was stable and reliable (R2 = 0.9775), and under optimal extraction conditions, namely an ultrasonic power of 299 W, an extraction time of 10 min, and a solid-liquid ratio of 1:30 (g/mL), the yield reached 4.33 mg/g. Furthermore, the anthocyanins of colored potato tubers grown at different altitudes were determined by high-performance liquid chromatography-mass spectrometry with optimized ultrasound-assisted extraction, the results showed that anthocyanin levels were the highest at high altitudes, whereas anthocyanins were almost undetectable at mid-altitude. Moreover, the types of anthocyanin compounds present in colored potatoes varied at different altitudes. The red clones exhibited substantial accumulation of pelargonidin across all three altitudes. In contrast, the main anthocyanins found in purple clones were malvidin, petunidin, and cyanidin. We identified the anthocyanin components with a strong correlation to the environment, thereby establishing a fundamental basis for the breeding of potato clones with high anthocyanin content.
Collapse
Affiliation(s)
- Zheying Qi
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weilu Wang
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Niu
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhitao Li
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Limin Chen
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Dechen Li
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China; (Z.Q.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Wu S, Yin J, Li X, Xie J, Ding H, Han L, Bie S, Li F, Zhu B, Kang L, Song X, Yu H, Li Z. An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. Foods 2023; 12:3335. [PMID: 37761044 PMCID: PMC10529768 DOI: 10.3390/foods12183335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
This work was designed to investigate the dynamic changes process of non-volatile organic compounds (n-VOCs) and volatile organic compounds (VOCs) in mulberries during different growth periods using UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. A total of 166 compounds were identified, including 68 n-VOCs and 98 VOCs. Furthermore, principal component analysis (PCA), random forest analysis (RFA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze differences in mulberries at different ripening stages. A total of 74 compounds appeared or disappeared at different ripening periods and 24 compounds were presented throughout the growth process. Quantitative analysis and antioxidant experiments revealed that as the mulberries continued to mature, flavonoids and phenolic acids continued to increase, and the best antioxidant activity occurred from stage IV. Conclusively, an effective strategy was established for analyzing the composition change process during different growth periods, which could assist in achieving dynamic change process analysis and quality control.
Collapse
Affiliation(s)
- Shufang Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xuejuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jingyi Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Lifeng Han
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (S.W.); (J.Y.); (X.L.); (J.X.); (H.D.); (S.B.); (F.L.); (B.Z.); (X.S.); (Z.L.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
14
|
Chen L, Hu N, Zhao C, Sun X, Han R, Lv Y, Zhang Z. High-efficiency foam fractionation of anthocyanin from perilla leaves using surfactant-free active Al 2O 3 nanoparticle as collector and frother: Performance and mechanism. Food Chem 2023; 427:136708. [PMID: 37379747 DOI: 10.1016/j.foodchem.2023.136708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Anthocyanin (ACN) is a natural pigment with significant industrial applications. However, foam fractionation of ACN from perilla leaves extract presents theoretical challenges due to its limited surface activity and foaming capacity. This work developed a surfactant-free active Al2O3 nanoparticle (ANP) as a collector and frother, which was modified with adipic acid (AA). The ANP-AA efficiently collected ACN through the electrostatic interaction, condensation reaction, and hydrogen bonding, with a Langmuir maximum capacity of 129.62 mg/g. Moreover, ANP-AA could form a stable foam layer by irreversibly adsorbing on the gas-liquid interface, reducing surface tension, and alleviating liquid drainage. Under the appropriate conditions of ANP-AA 400 mg/L and pH 5.0, we achieved a high ACN recovery of 95.68% with an enrichment ratio of 29.87 after ultrasound-assisted extraction of ACN from perilla leaves. Additionally, the recovered ACN displayed promising antioxidant properties. These findings hold significant importance in the food, colorant, and pharmaceutical industries.
Collapse
Affiliation(s)
- Lin Chen
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Nan Hu
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| | - Chunquan Zhao
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaodan Sun
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Rong Han
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yanyan Lv
- Qingdao Product Quality Testing Research Institute, No. 77 Keyuanwei Fourth Road, Laoshan District, Qingdao, Shandong Province 266101, China
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, No. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
15
|
El Maaiden E, El Kahia H, Nasser B, Moustaid K, Qarah N, Boukcim H, Hirich A, Kouisni L, El Kharrassi Y. Deep eutectic solvent-ultrasound assisted extraction as a green approach for enhanced extraction of naringenin from Searsia tripartita and retained their bioactivities. Front Nutr 2023; 10:1193509. [PMID: 37404862 PMCID: PMC10315493 DOI: 10.3389/fnut.2023.1193509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Background Naringenin (NA) is a natural flavonoid used in the formulation of a wide range of pharmaceutical, fragrance, and cosmetic products. In this research, NA was extracted from Searsia tripartita using an environmentally friendly, high efficiency extraction method: an ultrasound-assisted extraction with deep eutectic solvents (UAE-DES). Methods Six natural deep eutectic solvent systems were tested. Choline chloride was used as the hydrogen bond acceptor (HBA), and formic acid, ethylene glycol, lactic acid, urea, glycerol, and citric acid were used as hydrogen bond donors (HBD). Results Based on the results of single-factor experiments, response surface methodology using a Box-Behnken design was applied to determine the optimal conditions for UAE-DES. According to the results, the optimal NA extraction parameters were as follows: DES-1 consisted of choline chloride (HBA) and formic acid (HBD) in a mole ratio of 2:1, an extraction time of 10 min, an extraction temperature of 50°C, an ultrasonic amplitude of 75 W, and a solid-liquid ratio of 1/60 g/mL. Extracted NA was shown to inhibit the activity of different enzymes in vitro, including α-amylase, acetylcholinesterase, butyrylcholinesterase, tyrosinase, elastase, collagenase, and hyaluronidase. Conclusion Thus, the UAE-DES technique produced high-efficiency NA extraction while retaining bioactivity, implying broad application potential, and making it worthy of consideration as a high-throughput green extraction method.
Collapse
Affiliation(s)
- Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Houda El Kahia
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan I University of Settat, Settat, Morocco
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Hassan I University of Settat, Settat, Morocco
| | - Nagib Qarah
- Department of Chemistry, Faculty of Education-Zabid, Hodeidah University, Hodeidah, Yemen
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Abdelaziz Hirich
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| |
Collapse
|
16
|
Zhou Y, Li J, Li Z, Ma Q, Wang L. Extraction of anthocyanins from haskap using cold plasma-assisted enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2186-2195. [PMID: 36418203 DOI: 10.1002/jsfa.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Haskap berries (Lonicera caerulea L.) are rich in anthocyanins. Cold plasma-assisted enzyme method (CPEM) is an innovative method for green extraction of anthocyanins, which was optimized by an artificial neural network-genetic algorithm (ANN-GA) to maximize the yield. In this study, seven factors were screened using by Plackett-Burman design based on single-factor experiments and optimized by ANN-GA. RESULTS The results showed that the maximum total anthocyanin content (TAC, 42.45 ± 0.25 g cyanidin-3-glucoside equivalent (C3G) kg-1 dry weight, DW) was obtained under optimal pretreatment power of 192 W, pretreatment time of 29 s and liquid-to-solid ratio of 39 mL g-1 . Cleavage and porosity appeared on the surface of the treated sample. The active ingredients and antioxidant capacity of the CPEM extracts were identified by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Compared with other extraction technologies, CPEM presents the advantages of shortening the extraction time, reducing the solvent volume, and significantly increasing active ingredients and antioxidant activity. CONCLUSION The ANN-GA has better predictive and higher accuracy than the response surface methodology (RSM) model and is more suitable for optimizing the CPEM by greatly improving the process yield and the utilization of biomass, thus contributing to the sustainability of the agri-food chain. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiangfei Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zongping Li
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Qingshu Ma
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
17
|
Ma X, Liu D, Hou F. Sono-activation of food enzymes: From principles to practice. Compr Rev Food Sci Food Saf 2023; 22:1184-1225. [PMID: 36710650 DOI: 10.1111/1541-4337.13108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023]
Abstract
Over the last decade, sono-activation of enzymes as an emerging research area has received considerable attention from food researchers. This kind of relatively new application of ultrasound has demonstrated promising potential in facilitating the modern food industry by broadening the application of various food enzymes, improving relevant industrial unit operation and productivity, as well as increasing the yield of target products. This review aims to provide insight into the fundamental principles and possible industrialization strategies of the sono-activation of food enzymes to facilitate its commercialization. This review first provides an overview of ultrasound application in the activation of food protease, carbohydrase, and lipase. Then, the recent development on ultrasound activation of food enzymes is discussed on aspects including mechanisms, influencing factors, modification effects, and its applications in real food systems for free and immobilized enzymes. Despite the far fewer studies on sono-activation of immobilized enzymes compared with those on free enzymes, we endeavored to summarize the relevant aspects in three stages: ultrasound pretreatment of free enzyme/carrier, assistance in immobilization process, and modification of the already immobilized enzyme. Lastly, challenges for the scalability of ultrasound in these target areas are discussed and future research prospects are proposed.
Collapse
Affiliation(s)
- Xiaobin Ma
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
18
|
Li J, Li Z, Ma Q, Zhou Y. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Molina AK, Corrêa RCG, Prieto MA, Pereira C, Barros L. Bioactive Natural Pigments' Extraction, Isolation, and Stability in Food Applications. Molecules 2023; 28:1200. [PMID: 36770869 PMCID: PMC9920834 DOI: 10.3390/molecules28031200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Color in food has multiple effects on consumers, since this parameter is related to the quality of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however, this can be affected by the technological treatments that are applied during its manufacturing process, as well as its storage. Therefore, the development of new food products should take into account consumer preferences, the physical properties of a product, food safety standards, the economy, and applications of technology. With all of this, the use of food additives, such as dyes, is increasingly important due to the interest in the natural coloring of foods, strict regulatory pressure, problems with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to current food market trends that focus on the consumption of healthy, organic, and natural products. It is for this reason that there is a growing demand for natural pigments that drives the food industry to seek or improve extraction techniques, as well as to study different stability processes, considering their interactions with the food matrix, in order to meet the needs and expectations of consumers.
Collapse
Affiliation(s)
- Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, Brazil
| | - Miguel A. Prieto
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
20
|
Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Co-Pigmentation Mechanism and Thermal Reaction Kinetics of Mulberry Anthocyanins with Different Phenolic Acids. Foods 2022; 11:foods11233806. [PMID: 36496612 PMCID: PMC9738322 DOI: 10.3390/foods11233806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Applying the intermolecular co-pigmentation to improve the stability of mulberry anthocyanins is an important co-pigment method. Seven co-pigments, ferulic acid (FA), caffeic acid (CA), p-hydroxybenzoic acid (HBA), protocatechuic acid (PA), gallic acid (GA), vanillic acid (VA) and vanillin (VN) were selected to investigate mulberry anthocyanin co-pigmentation thermal reaction kinetics. The strongest co-pigment reactions were observed for FA at a molar ratio of 1:20, pH 3.5 and 20 °C, with the highest hyperchromic effects (52.94%), equilibrium constant (K) values (3.51) and negative values of Gibbs free energy (ΔG°) (-3.06 KJ/mol). Co-pigments that contained more free hydroxyl groups facilitated the co-pigmentation, and methyl contributed more to color enhancement, with respect to the hydrogen group. Ultra Performance Liquid Chromatography-Quadrupole-Time Of Flight-Mass/Mass Spectrometry (UPLC-Q-TOF-MS/MS) results indicated that FA and CA formed different anthocyanin derivatives with mulberry anthocyanin. The Fourier Transform Infrared Spectroscopy (FTIR) and molecular docking confirmed that hydrogen bonding, π-π stacking and hydrophobic interaction were formed between anthocyanins and three prevalent co-pigments (FA, CA and VA). CA and C3G could form four hydrogen bonds and two π-π stackings; this was the most stable system among three phenolic acid-C3G complexes. Due to the functional effect of phenolic acids, the addition of FA and CA not only enhanced the stability and color intensity of mulberry anthocyanins but also the functionality of the processing product.
Collapse
|
22
|
Ma B, Wang K, Guo J, Zhu G, Zhao X, Zhao M, Yang X, Shao H. Anthocyanins of Asian bird cherries (
Prunus nepalensis
L.): an untapped source for natural food colorants. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bohan Ma
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Kaijie Wang
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Juntong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Ge Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Xinghua Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Mengge Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| | - Hongjun Shao
- College of Food Engineering and Nutritional Science, Shaanxi Engineering Laboratory for Food Green Processing and Security Control Shaanxi Normal University Xi'an China
| |
Collapse
|
23
|
Vo TP, Nguyen LNH, Le NPT, Mai TP, Nguyen DQ. Optimization of the ultrasonic-assisted extraction process to obtain total phenolic and flavonoid compounds from watermelon (Citrullus lanatus) rind. Curr Res Food Sci 2022; 5:2013-2021. [PMID: 36337913 PMCID: PMC9626904 DOI: 10.1016/j.crfs.2022.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
This context presents the study of ultrasonic-assisted extraction (UAE) to obtain phenolic and flavonoid compounds from watermelon rind powder (WRP). The antioxidant activity of the extracts was investigated using DPPH and ABTS+ assays. One-factor experiments were conducted to examine the effect of each factor (solid-to-liquid ratio (SLR), acetone concentration (AC), temperature, and time) on the UAE of WRP. Box-Behnken Design (BDD) model was employed to optimize the UAE conditions based on total phenolic contents (TPC), total flavonoid content (TFC), and their antioxidant activities. The optimal conditions were 1:30.50 SLR, 70.71% AC, 29.78 °C, and 10.65 min extraction time. There were no significant differences between predicted and experimental results (less than 6.0%), recommending a feasible and innovative process of deploying UAE to extract phenolics and flavonoids effectively from watermelon rind. Sonication increases the extraction of total phenolic and flavonoid contents. Sonication increases the antioxidant activity of watermelon rind extracts. Box-Behnken Design model is used to optimize ultrasonic-assisted extraction conditions.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
- Biobeau Lab Company, Binh Hung Ward, Binh Chanh District, Ho Chi Minh City, Viet Nam
| | - Le Ngoc Huong Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Phuc Thien Le
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thanh Phong Mai
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
- Corresponding author. Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
24
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Zhou X, Wu Y, Wang Y, Zhou X, Chen X, Xi J. An efficient approach for the extraction of anthocyanins from Lycium ruthenicum using semi-continuous liquid phase pulsed electrical discharge system. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Xu K, Fan G, Wu C, Suo A, Wu Z. Preparation of anthocyanin-rich mulberry juice by microwave-ultrasonic combined pretreatment. Food Sci Biotechnol 2022; 31:1571-1581. [PMID: 36278137 PMCID: PMC9582177 DOI: 10.1007/s10068-022-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
The work aims to study the process of microwave-ultrasonic combined treatment to obtain anthocyanin-rich mulberry juice. A Box-Behnken design was employed to analyze the effects of microwave time and citric acid content on the total phenol content, total anthocyanin content, hue, color intensity, DPPH and ABTS radical scavenging activities. Under the optimum conditions (microwave time of 46 s, citric acid addition of 273 mg/kg), the total phenol content, total anthocyanin content, the DPPH and ABTS radical scavenging activities reached 4.24 mg GAE/mL, 3.29 mg C3G/mL, 4.59 mg TE/mL and 11.90 mg TE/mL, respectively. Subsequently, the mulberry juice was processed with ultrasound of different frequencies. It was found that low-frequency ultrasonic treatment (25 kHz) could significantly reduce the loss of total phenolic and anthocyanin monomers and improve the antioxidant capacity of mulberry juice during storage for five weeks. Overall, mulberry juice with microwave-ultrasonic pretreatment is a natural antioxidant.
Collapse
|
27
|
Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. Extracting Total Anthocyanin from Purple Sweet Potato Using an Effective Ultrasound-Assisted Compound Enzymatic Extraction Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144344. [PMID: 35889219 PMCID: PMC9317032 DOI: 10.3390/molecules27144344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to develop an effective technique for extracting total anthocyanins from purple sweet potato (Mianzishu 9) (PSP9) by ultrasound-assisted compound enzymatic extraction (UAEE). Single-factor experiments, Plackett-Burman experimental design, and response surface methodology were utilized for optimizing extraction conditions, and the antioxidant activities were evaluated. Anthocyanins were also measured using an ultra-performance liquid chromatograph linked to a mass spectrometer (UPLC-MS). The maximum yield of total anthocyanins was 2.27 mg/g under the following conditions: the ethanol concentration was 78%, the material-to-liquid ratio was 1:15 g/mL, the enzyme ratio (cellulase: pectinase: papain) was 2:2:1 and its hydrolysis was at 41 °C, pH = 4.5, 1.5 h, the ultrasonication was at 48 °C and conducted twice for 20 min each time. In addition to higher yield, anthocyanins extracted from purple sweet potato by UAEE showed great ability to scavenge DPPH (IC50 of 0.089 μg/mL) and hydroxyl radicals (IC50 of 100.229 μg/mL). Five anthocyanins were found in the purple sweet potato extract from UAEE. Taken together, the ultrasound-assisted compound enzymatic method can rapidly and effectively extract anthocyanins with greater antioxidant capacity from purple sweet potato.
Collapse
Affiliation(s)
- Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Shuo Zhang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
- Correspondence: (G.D.); (J.L.)
| | - Kun Xu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China;
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
28
|
Ultrasound-Assisted Extraction of Anthocyanins from Malus ‘Royalty’ Fruits: Optimization, Separation, and Antitumor Activity. Molecules 2022; 27:molecules27134299. [PMID: 35807546 PMCID: PMC9268470 DOI: 10.3390/molecules27134299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Red Malus ‘Royalty’ fruits are rich in anthocyanins. This study aimed to obtain the optimal parameters for the extraction and separation of anthocyanins from Malus ‘Royalty’ fruits and to evaluate the inhibitory effect of the enriched anthocyanin fraction on gastric cancer cells. Ultrasonic-assisted extraction was used for the extraction of the anthocyanins of Malus ‘Royalty’ fruit, and the extraction results showed that the optimum parameters were an extraction temperature of 20 °C, a solid–liquid ratio of 1:6 (g/mL), ethanol and formic acid contents of 70% and 0.4%, respectively, an extraction time of 40 min, and an ultrasonic power of 300 W. The optimum extraction parameters to achieve the highest anthocyanin yield by a single-factor experiment coupled with response surface methodology were identified. The separation results showed that the AB-8 macroporous resin was a better purifying material, with 60% ethanol as an adsorbent, and the adsorption–desorption equilibrium times were 6 h and 1 h, respectively. Cyanidin-3-galactoside was the main body composition separation of anthocyanins by a high-performance liquid chromatography-diode array detector. The antitumor activity results showed that the anthocyanins of Malus ‘Royalty’ fruits have a significant inhibitory effect on the gastric cancer cell line BGC-803. The in vitro cell viability test of CCK-8 showed that the inhibitory effect on tumor cells was more significant with the increased anthocyanin concentration, with a half maximal inhibitory concentration (IC50) value of 105.5 μg/mL. The cell morphology was observed by an inverted microscope, and it was found that the backbone of BGC-803 treated with a high concentration of anthocyanins was disintegrated and the nucleoplasm was concentrated. The mechanism of apoptosis was analyzed by Western blotting, and the results showed that with increasing anthocyanin concentration in the medium, the expression levels of the proapoptotic proteins Bax and Bak increased, and the expression levels of the antiapoptotic proteins Bcl-2 and Bcl-xL decreased, which coordinated the regulation of cell apoptosis. This research suggests that the enriched anthocyanin fraction from Malus ‘Royalty’ fruits have potential antitumor and adjuvant therapeutic effects on gastric cancer.
Collapse
|
29
|
Linares G, Rojas ML. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front Nutr 2022; 9:891462. [PMID: 35685880 PMCID: PMC9171369 DOI: 10.3389/fnut.2022.891462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 01/15/2023] Open
Abstract
Ultrasound is an emerging technology, which has been highly explored in the food area to improve processes and products. When ultrasound is applied to a product with solid or fluid characteristics, the passage of acoustic waves and acoustic cavitation generates different mechanisms responsible for modifications in the original matrix of the sample. These effects of ultrasound can also be used to take advantage of by-products, for example by extracting compounds of interest, including natural pigments. Natural pigments or colorants are being highly demanded by different industries not only for color purposes but also due to their healthy properties, the greater demands in regulations and new consumer preferences. This review presents an updated critical analysis of the application of ultrasound-assisted extraction (UAE) to obtain natural pigments from food processing by-products. Initially, the ultrasound effects and mechanisms that improve the extraction of natural pigments in a fluid medium, as well as the factors that influence the extraction and the energy consumption of UAE are analyzed and described. Subsequently, the UAE application to obtain pigments belonging to the groups of carotenoids, chlorophyll, anthocyanins and betalains is evaluated. These sections detail the processing conditions, positive and negative effects, as well as possible applications of the extracted pigments. This review presents relevant information that may be useful to expand and explore new applications of ultrasound technology as well as promote the revaluation of by-products to obtain pigments that can be used in food, pharmaceutical or cosmetic industries.
Collapse
Affiliation(s)
- Guillermo Linares
- Departamento de Ciencias Agroindustriales, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Meliza Lindsay Rojas
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
| |
Collapse
|
30
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
31
|
Enzyme-assisted extraction of apricot polysaccharides: process optimization, structural characterization, rheological properties and hypolipidemic activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
José Aliaño González M, Carrera C, Barbero GF, Palma M. A comparison study between ultrasound-assisted and enzyme-assisted extraction of anthocyanins from blackcurrant ( Ribes nigrum L.). Food Chem X 2022; 13:100192. [PMID: 35498970 PMCID: PMC9039916 DOI: 10.1016/j.fochx.2021.100192] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
2 anthocyanin extraction methods have been developed in blackcurrant by EAE and UAE. The 7 major anthocyanins have been separated in less than 7 min. The composition of the extraction solvent has been the most influential variable. Optimal extraction times have been 5 min for UAE and 10 min for EAE. No differences have been observed in anthocyanin extraction with both methods.
Blackcurrant (Ribes nigrum L.) is a fruit rich in vitamins, fatty acids, minerals, essential oils and phenolic compounds, including anthocyanins. In the present work, two anthocyanin extraction methods from blackcurrant samples based on Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) have been developed. A Plackett–Burman design with seven variables has been preliminary used for both UAE and EAE in order to determine the most influential variables in each methodology. After that, a Box-Behnken design was employed to optimize the extraction methods. The composition of the extraction solvent (% EtOH in water) has been the most influential variable for both UAE and EAE. The optimal extraction times have been 5 min for UAE and 10 min for EAE. No differences have been observed in anthocyanin extraction with both methodologies. Both methods have been applied to blackcurrant-derived products and proven their suitability for quality control analysis.
Collapse
Affiliation(s)
- María José Aliaño González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
33
|
Buvaneshwaran M, Radhakrishnan M, Natarajan V. Influence of ultrasound‐assisted extraction techniques on the valorization of agro‐based industrial organic waste – A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Malini Buvaneshwaran
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| |
Collapse
|
34
|
Liu J, Cheng J, Ma Z, Liang T, Jing P. Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion. J Food Sci 2021; 87:141-152. [PMID: 34954830 DOI: 10.1111/1750-3841.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Ingredient interactions usually occur in food matrix, which may affect their functions and properties. This study aimed to investigate the interactive effects of mulberry and corn protein on pigment stability and zein digestibility. The interaction of main compounds in both ingredients, that is, cyanidin-3-O-glucoside (C3G) and zein, was characterized via their structural, morphological, thermal stability, and digestible properties using multi-spectroscopic techniques, scanning electron microscopy, high performance liquid chromatography, and in vitro digestion models. Results showed that zein exhibited a strong binding affinity for C3G via van der Waals forces and hydrogen bonds determined in fluorescence assays. The secondary structure of zein changed due to C3G binding, with a decrease in α-helix and an increase in β-sheet. The particle size of zein decreased after interacting with C3G. The zein complexation with mulberry anthocyanin-rich extracts in a simulative food system did not affect the digestibility of zein significantly but enhanced the thermal stability of pigments slightly. Specifically, anthocyanins did not change the susceptibility of zein to pepsin proteolysis, suggesting that binding sites of C3G might not be the cleavage sites of pepsins. These results provide important insight into the binding mechanism of zein and anthocyanins and might help guide the design of anthocyanin-based functional food. PRACTICAL APPLICATION: Zein, as a storage protein widely distributed in corn flour, was commonly co-existing with anthocyanins in starchy food. This study provides insights into the molecular interactions between zein and cyanidin-3-O-glucoside. However, the interaction might not impact the zein digestion but enhance anthocyanin thermal stability. The findings of this work could throw light on the selection of ingredients rich in zein and anthocyanins in the food industry.
Collapse
Affiliation(s)
- Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, China
| | - Jing Cheng
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ma
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tisong Liang
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- International Faculty of Applied Technology, Yibin University, Yibin, China.,Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Robust and recyclable magnetic nanobiocatalysts for extraction of anthocyanin from black rice. Food Chem 2021; 364:130447. [PMID: 34214946 DOI: 10.1016/j.foodchem.2021.130447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023]
Abstract
Anthocyanins, which are natural pigments and nutraceuticals, can be extracted from plant materials using enzyme-assisted methods. However, the enzymes used are often expensive, fragile, and hard to recover/reuse. In this study, cellulase and α-amylase were immobilized on amino-functionalized magnetic nanoparticles to prepare a magnetic nanobiocatalyst. The enzymes in this nanobiocatalyst exhibited higher stability and greater catalytic activity than free enzymes, including good thermal stability (50 to 70℃) and pH stability (pH 4.5-7.5). Nanobiocatalyst efficacy was demonstrated by extracting anthocyanins from black rice, with a maximum yield of 266 mg anthocyanin/100 g black rice obtained. After six reuse cycles, cellulase and α-amylase retained around 70% and 64% of their activity, respectively. Immobilization also increased their reusability. In summary, a novel magnetic nanobiocatalyst was developed for extracting anthocyanins from black rice, which may also have other applications within the food industry.
Collapse
|
36
|
Liu YY, Sun WH, Li BZ, Shang N, Wang Y, Lv WQ, Li D, Wang LJ. Value-added application of Platycodon grandiflorus (Jacq.) A.DC. roots (PGR) by ultrasound-assisted extraction (UAE) process to improve physicochemical quality, structural characteristics and functional properties. Food Chem 2021; 363:130354. [PMID: 34153679 DOI: 10.1016/j.foodchem.2021.130354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Platycodon grandiflorus (Jacq.) A.DC. roots (PGR), a Chinese herb with medicinal and edible value, was powdered by freeze drying (FD) and spray drying (SD) after maceration extraction (ME) or ultrasound-assisted extraction (UAE) to develop a new functional food product. Four PGR powders were obtained namely ME-FD, ME-SD, UAE-FD, and UAE-SD and their powder quality, structural properties, and functionalities were evaluated. UAE-FD powder had the highest powder recovery (85.3 ± 5.79%) and also presented better hydration properties due to the larger particle size compared with other three PGR powders. Four PGR powders exhibited similar thermal decomposition process, molecular structure, amorphous characteristics, amino acids composition, and taste profiles. Furthermore, the UAE-FD PGR powders presented the highest Platycodin D (3.68 ± 0.04 mg/g), total phenolic (2.84 ± 0.11 mg GAE/g), and total flavonoids content (2.11 ± 0.14 mg RE/g), resulting in best antioxidant activity (58.67 ± 2.42 μmol Trolox/g). Therefore UAE-FD is an environment-friendly technique for the production of functional PGR powder with improved nutritional and redispersion properties.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Wei-Hong Sun
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Bing-Zheng Li
- Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | - Nan Shang
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia.
| | - Wei-Qiao Lv
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
38
|
Wang L, Cai C, Liu J, Tan Z. Selective separation of the homologues of baicalin and baicalein from Scutellaria baicalensis Georgi using a recyclable ionic liquid-based liquid-liquid extraction system. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Ultrasound-Assisted Enzymatic Extraction of Anthocyanins from Raspberry Wine Residues: Process Optimization, Isolation, Purification, and Bioactivity Determination. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01976-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Tan J, Li Q, Xue H, Tang J. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: optimization, identification, and antitumor activity. J Food Sci 2020; 85:3731-3744. [PMID: 33078395 DOI: 10.1111/1750-3841.15497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Grape skins produced during the grape juice production and processing contain abundant anthocyanins and other active compounds. Consequently, this study optimized the extraction conditions for ultrasound-assisted enzymatic extraction (UAEE) of anthocyanins from grape skins via response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest anthocyanins yield (3.01 ± 0.04) mg/g from grape skins by UAEE were obtained under an extraction temperature of 50 °C, ultrasonic power of 400 W, pectinase dosage of 0.16%, and extraction time of 28 min. The AB-8 macroporous resin combined Sephadex LH-20 techniques were further employed to purify the anthocyanins extracts obtained under optimum extraction conditions (AEOEC), and the main anthocyanins were identified using high-performance liquid chromatography tandem mass spectrometry. The purified anthocyanins contained two anthocyanins in terms of delphinidin-3,5-O-diglucoside and cyanidin-3-O-rutinoside with purity of 91.35% and 92.64%, respectively. Ultimately, we further evaluated the antitumor activity of AEOEC and two purified anthocyanins on breast cancer. The results indicated that the antitumor effect of AEOEC on breast cancer MCF-7 cells was better than that of two purified anthocyanins. In addition, AEOEC could memorably increase intracellular reactive oxygen species levels and apoptosis of MCF-7 cells, and arrest MCF-7 cells in the G2/M phases. The findings provide an effective and feasible method for anthocyanins extraction and reduce the environmental burden of this waste.
Collapse
Affiliation(s)
- Jiaqi Tan
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Hongkun Xue
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| |
Collapse
|
41
|
Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods 2020; 9:foods9101409. [PMID: 33020421 PMCID: PMC7599779 DOI: 10.3390/foods9101409] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Raspberries have been reported to contain abundant anthocyanins and other active compounds. To extract anthocyanins from raspberries more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this paper. The extraction process was optimized by response surface methodology coupled with a genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins 1.378 ± 0.009 mg/g from raspberry powder via UADESE were obtained at a water content of 29%, ultrasonic power of 210 W, extraction temperature of 51 °C and extraction time of 32 min. The AB-8 macroporous resin combined with the high-speed counter current chromatography (HSCCC) method were further used to isolate and purify the anthocyanins extracts obtained under optimum extraction conditions, and the structure of purified anthocyanins components were identified by UV-Visible spectrophotometer (UV-Vis), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS/MS), 1H nuclear magnetic resonance (NMR) and 13C-NMR spectra. The two anthocyanins (cyanidin-3-glucoside with a purity of 92.25% and cyanidin-3-rutinoside with a purity of 93.07%) identified were consistent with those present in raspberries. These findings provided an effective and feasible method for extraction, isolation and purification of anthocyanins from natural plant resources.
Collapse
|
42
|
Yu W, Gao J, Hao R, Yang J, Wei J. Effects of simulated digestion on black chokeberry ( Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora. Journal of Food Science and Technology 2020; 58:1511-1523. [PMID: 33746279 DOI: 10.1007/s13197-020-04664-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
In this study, the changes of anthocyanin content, total phenols, antioxidant capacity, microbiota composition before and after digestion and intestine fermentation in stomach and intestine were studied. The results indicated that after simulated gastrointestinal digestion, compared with the original sample, the total phenol content and anthocyanin content of intestinal digestion group for 2 h (ID 2 group) decreased by 53.64% and 70.45%, respectively, DPPH inhibition rate was 32.75% and T-AOC values of the extracts decreased to 62.89U/mg. The anthocyanins were identified to be composed of cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-xyloside, and cyanidin-3-glucoside. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins significantly increased the relative richness of Bacteroides, promoted the growth of Bifidobacterium, Blautia, Faecalibacterium, and inhibited the growth of Prevotella, Megamonas, Escherichia/Shigella, etc. Anthocyanins have a positive regulatory effect on intestinal flora. These studies also provide essential information for the development of anthocyanin related health care products and drug products.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jun Gao
- Liaoning Forestry Academy, Shenyang, 110032 China
| | - Ruobing Hao
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jing Yang
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jie Wei
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| |
Collapse
|