1
|
Kang K, Zhang F, Fu F, Ouyang J, Wei Y, Lin S, Jiang C, Yu M, Yang H. Effects of quantitative marinating on meat quality, biogenic amines, and flavor compounds in crayfish meat. Front Nutr 2025; 12:1573987. [PMID: 40276529 PMCID: PMC12018247 DOI: 10.3389/fnut.2025.1573987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Stewing is a traditional processing method, commonly used for crayfish meat (Procambarus clarkii). In this study, we used a novel method called quantitative marinating (QM) to reduce industrial waste during crayfish meat processing. The taste, flavor, and aroma of crayfish meat processed by boiling (CON), stewing (SG), and QM were investigated. The results showed that crayfish meat in both SG and QM had higher L* and b* values (P < 0.05). Crayfish meat subjected to QM exhibited significantly greater hardness, gumminess, and chewiness than SG (P < 0.05), which was associated with tightly packed muscle fibers, as observed via scanning electron microscopy. Both QM and SG exhibited lower bitterness and astringency compared with CON, as tested by electronic tongue. A total of 25 types of FAAs content showed significant changes in QM and SG (P < 0.05), with the umami amino acids and total amino acids in QM increased by 19.47 and 52.97%, respectively, compared with SG. The results of flavor 5'-nucleotides showed that GMP, AMP, and IMP in QM increased by 72.87, 48.78 and 51.98% compared with SG, respectively (P < 0.05). Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) identified 31 compounds, with QM having more volatile compounds such as anethole, linalool, and 1-octanol than SG. The levels of biogenic amines of tryptamine, phenethylamine, and histamine in QM decreased significantly compared with SG (P < 0.05). In conclusion, QM significantly improved the meat color, texture profile and taste-related qualities of crayfish meat while reducing the biogenic amines in crayfish meat.
Collapse
Affiliation(s)
- Kelang Kang
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Fan Zhang
- Yuelushan Laboratory, Changsha, China
| | - Fuhua Fu
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Jie Ouyang
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Yingjuan Wei
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Shuhua Lin
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Cheng Jiang
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Meijuan Yu
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Hui Yang
- Agricultural Products Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
2
|
Wang Y, Gao B, Li Y, Shi C, Li H, You Z, Fang M, Wang C, Deng X, Shao B. Recent Advances in Nontargeted Screening of Chemical Hazards in Foodstuffs. Annu Rev Food Sci Technol 2025; 16:195-218. [PMID: 39819809 DOI: 10.1146/annurev-food-111523-121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The emergence of several chemical substances continues to enrich and facilitate the development of food science, but their irrational use also poses a threat to food safety and human health. Nontargeted screening (NTS) has become an important tool for rapid traceability and efficient identification of chemical hazards in food matrices. NTS in food analysis is highly integrated with sample pretreatment, instrumental analysis platforms, data acquisition and analysis, and toxicology. This article is a systemic review of current sample preparation, analytical platforms, and toxicity-guided NTS techniques and provides the latest advancements in workflows and innovative applications of the NTS process based on mass spectrometric techniques. High-throughput toxicity screening platforms play an important role in NTS of unknown chemical hazards of complex food matrices. Advanced machine learning and artificial intelligence are increasingly accessible fields that may effectively process large-scale screening data and advance food NTS research.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Boyan Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Li
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Changzhi Shi
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zecang You
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Chenxu Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Deng
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
| | - Bing Shao
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, China; ,
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
3
|
Guo X, Chen K, Chen L, Le TN, Zhao M, Cai H. Effects of Cold Post-Fermentation Process on Microbial Diversity and Biogenic Amines in Protease-Assisted Fermented sufu. Foods 2025; 14:735. [PMID: 40077437 PMCID: PMC11899284 DOI: 10.3390/foods14050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This study investigated the effects of enzyme-assisted low-temperature cold fermentation on sufu's microbial diversity, biogenic amine (BA) formation, and physicochemical properties. The results showed that the enzyme-assisted fermentations for both room- and low-temperature groups (RTEF30 and LTEF20, respectively) significantly increased total acid (TA), amino nitrogen (NH3-N), and enzyme activity compared to the non-enzyme fermentation at room-temperature post-fermentation (RTNF30). This indicated that enzyme-assisted fermentation effectively overcame challenges associated with low-temperature fermentation of sufu. BA analysis revealed that the LTEF20 group had the highest total BA (3.7 mg/g) and putrescine (1.8 mg/g) levels compared to other groups. Microbial analysis showed that the LTEF20 group exhibited higher microbial diversity compared to the RTEF30 group. They had the highest levels of Enterobacteriaceae (0.4131) and lactic acid bacteria in the early and late phases (0.5556) among the groups. Correlation analysis revealed significant links between sufu's physicochemical properties and microbial communities. Notably, putrescine positively correlated with Bifidobacterium, while TA negatively correlated with Enterococcus. These findings suggest that microbial activity alterations, caused by low-temperature cold fermentation, influences sufu's fermentation process and quality, guiding further studies on the regulation of biogenic amine formation.
Collapse
Affiliation(s)
- Xiaogang Guo
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (X.G.); (K.C.); (L.C.)
| | - Kaiyi Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (X.G.); (K.C.); (L.C.)
| | - Li Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (X.G.); (K.C.); (L.C.)
| | - Thanh Ninh Le
- Department of Food Science and Engineering, National University of Singapore, Singapore 117542, Singapore;
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (X.G.); (K.C.); (L.C.)
| |
Collapse
|
4
|
Jia W, Wang X, Shi L. Interference of endogenous benzoic acid with the signatures of sulfonic acid derivatives and carbohydrates in fermented dairy products. FUNDAMENTAL RESEARCH 2024; 4:1523-1532. [PMID: 39734529 PMCID: PMC11670729 DOI: 10.1016/j.fmre.2022.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Endogenous benzoic acid causes detrimental effects on public health, but the underlying mechanisms often remain elusive. Benzoic acid (0.00-40.00 mg L -1) was detected from sixty fermented goat milk samples in six replicates, indicating the existence of endogenous benzoic acid. Herein, we investigated the effects of benzoic acid on the variations of metabolome and proteome signatures in fermented goat milk via integrative metabolomics (LOQ 2.39-98.98 μg L -1) and proteomics approach based on UHPLC-Q-Orbitrap HRMS. Explicitly, benzoic acid reduced the content of taurine (7.06-4.80 mg L -1) and hypotaurine (3.86-1.74 mg L -1) due to a significant decrease in the levels of glutamate decarboxylase 1 by benzoic acid. The reduction in lactose (7.13-5.31 mg L -1) and d-galactose (4.39-3.37 mg L -1) content was related to the decrease in α-lactalbumin and β-galactosidase levels, respectively, in fermented goat milk containing 40.00 mg L -1 benzoic acid. Meanwhile, the levels of maltose (22.84-16.53 mg L -1) and raffinose (4.19-3.10 mg L -1) progressively decreased with increasing benzoic acid concentrations (0.00-40.00 mg L -1), which had detrimental effects on the nutritional quality of fermented goat milk. Additionally, the concentration of benzoic acid and fermentation temperature are the most important factors to control the loss of nutrients in fermented dairy products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Fan Z, Jia W, Du A, Shi L. Complex pectin metabolism by Lactobacillus and Streptococcus suggests an effective control approach for Maillard harmful products in brown fermented milk. FUNDAMENTAL RESEARCH 2024; 4:1171-1184. [PMID: 39431140 PMCID: PMC11489481 DOI: 10.1016/j.fmre.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Harmful Maillard reaction products (HMRPs) derived from brown fermented milk pose a potential threat to human health, but the conversion mechanism during the manufacturing process remains elusive and urgently needs to be controlled. Acrylamide (FC 2.14, adjusted p-value = 0.041), 5-hydroxymethylfurfural (FC 2.61, adjusted p-value = 0.026) and methylglyoxal (FC 2.07, adjusted p-value = 0.019) were identified as the significantly increased HMRPs after browning in this study and the analysis of proteomics integrated with untargeted metabolomics demonstrated that the degradation of HMRPs was jointly accomplished by Streptococcus thermophilus and Lactobacillus bulgaricus. The galactose oligosaccharide metabolism in Streptococcus thermophilus was identified as a key biochemical reaction for HMRPs degradation, and the hydrolysates of pectin could be utilized as prebiotics for Streptococcus thermophilus. Eighteen classes of enzymes of L. bulgaricus and Streptococcus thermophilus related to energy metabolism were upregulated in the pectin-added group, indicating that the entry of acrylamide and methylglyoxal into the tricarboxylic acid cycle was accelerated. NAD-aldehyde dehydrogenase and alanine dehydrogenase are enzymes belonging to Streptococcus thermophilus, and their downregulation accelerated the efflux of acetate, which was beneficial for the proliferation of L. bulgaricus and prevented the conversion of pyruvate to l-alanine, thus facilitating the energy metabolism. The recoveries and relative standard deviations of the intraday and interday precision experiments were 89.1%-112.5%, 1.3%-8.4% and 2.1%-9.4%, respectively, indicating that the developed approach was credible. Sensory evaluation results revealed that the brown fermented milk added with pectin had a better flavor, which was due to the fact that the supplement of polysaccharide promoted the fatty acid metabolism of lactic acid bacteria and increased the aroma substances including octoic acid and valeric acid. This study provided an insight into the formation and degradation mechanism of HMRPs in brown fermented milk, aiming to reduce the intake of advanced glycation end products in the diet.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Chai W, Wang L, Li T, Wang T, Wang X, Yan M, Zhu M, Gao J, Wang C, Ma Q, Qu H. Liquid Chromatography-Mass Spectrometry-Based Metabolomics Reveals Dynamic Metabolite Changes during Early Postmortem Aging of Donkey Meat. Foods 2024; 13:1466. [PMID: 38790766 PMCID: PMC11119072 DOI: 10.3390/foods13101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Metabolic changes in donkey meat during the early postmortem period have not been previously reported. METHODS The LC-MS-based metabolomics technique was conducted to understand the metabolic profiles and identify the key metabolites of donkey meat in the first 48 h postmortem. RESULTS The pH values showed a decreasing trend followed by an increasing trend. Shear force was the lowest at 4 h and the highest at 24 h (p < 0.05). For the metabolome, some candidate biomarker metabolites were identified, such as adenine, inosine, n-acetylhistidine, citric acid, isocitrate, and malic acid. Predominant metabolic pathways, such as citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism, and purine metabolism, were affected by aging time. Overabundant n-acetylhistidine was identified in LT, declined at 12 h postmortem aging, and then increased. This may explain the significantly lower pH at 12 h postmortem. Adenine was higher at 4 h postmortem, then declined. Decreased ADP may indicate a fast consumption of ATP and subsequent purine metabolism in donkey meat. CONCLUSIONS The results of this study provided new insights into early postmortem aging of donkey meat quality.
Collapse
Affiliation(s)
- Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Liyuan Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Tong Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Tianqi Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Miao Yan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China; (L.W.); (T.L.); (T.W.); (X.W.); (M.Y.); (M.Z.); (C.W.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Honglei Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
Benli H, Şahin P, Ağçam E. Incorporating bay leaf extract ( Laurus nobilis L.) and determining the quality attributes of Turkish fermented sausage (sucuk). Food Sci Nutr 2024; 12:2473-2487. [PMID: 38628223 PMCID: PMC11016401 DOI: 10.1002/fsn3.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
This study aimed at investigating the quality attributes of Turkish fermented sausage (sucuk) incorporated with bay leaf extract obtained as a natural antioxidant and a source of phytochemicals. Five different bay leaf extracts were obtained with distilled water and 60%, 70%, 80%, and 90% ethanol. The total phenolic contents and antioxidant activity values indicated that ultrasound-assisted 70% ethanol extract was the most suitable extract. Furthermore, five groups of sucuks were manufactured with the addition of bay leaf extract (1, 5, and 10 mL/kg), ascorbic acid (500 mg/kg), and control. The extracts were produced similar pH values when compared to control and ascorbic acid samples. The treatments had no significant effect on moisture contents of sucuks. Bay leaf extracts produced comparable color, texture profile analysis, and TBARS values to control and ascorbic acid samples. Biogenic amine contents (mg/kg dry weight) of sucuks including tryptamine (6.43-30.66), 2-phenylethylamine (2.24-32.04), putrescine (2.19-7.98), cadaverine (3.28-12.21), histamine (7.01-11.38), tyramine (3.27-71.07), spermidine (4.44-8.01), and spermine (53.96-68.25) were mostly within the lower ranges typically associated with sucuk. However, the lowest cadaverine values observed at the end of storage in the bay leaf extract added samples indicated that bay leaf extract might be effective in decreasing cadaverine values during storage. The addition of bay leaf extract caused similar sensory attributes to the control and ascorbic acid samples. This study revealed that Turkish fermented sucuks could be effectively incorporated with bay leaf extracts without a negative effect on the quality attributes or consumer acceptability.
Collapse
Affiliation(s)
- Hakan Benli
- Department of Food Engineering, Faculty of EngineeringCukurova UniversityAdanaTurkey
| | - Pelin Şahin
- Department of Food Engineering, Faculty of EngineeringCukurova UniversityAdanaTurkey
| | - Erdal Ağçam
- Department of Food Engineering, Faculty of EngineeringCukurova UniversityAdanaTurkey
| |
Collapse
|
8
|
Wang H, Sui Y, Liu J, Liu H, Qin L, Kong B, Chen Q. Screening and evaluating microorganisms with broad-spectrum biogenic amine-degrading ability from naturally fermented dry sausage collected from Northeast China. Meat Sci 2024; 210:109438. [PMID: 38290305 DOI: 10.1016/j.meatsci.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to screen autochthonous strains with broad-spectrum biogenic amine (BA) degradation ability from traditional dry sausages and to evaluate their BA-degrading ability in dry sausages. A total of 120 strains were isolated from dry sausages collected from various regions in Northeast China, and 35 of 120 isolates were identified as non-BA producing strains by the in vitro agar method. The random amplified polymorphic DNA polymerase chain reaction technique genotyped these 35 isolates into 18 biotypes. Moreover, high performance liquid chromatography (HPLC) quantification showed that six strains (Latilactobacillus sakei MDJ6; Lactiplantibacillus plantarum SH7; Weissella hellenica DQ9; Staphylococcus saprophyticus JX18 and SYS8; and Macrococcus caseolyticus SYS11) of the 18 biotypes exhibited broad-spectrum BA-degrading ability, all of which had various levels of amine oxidase activity with monoamine oxidase and diamine oxidase activities ranged of 6.60-619.04 and 26.32-352.81 U/mg protein, respectively. These six strains were subsequently inoculated into dry sausages and the results showed that they exhibited varying degrees of BA-degrading ability, of which strain Lat. sakei MDJ6 allowed to have less BA production on dry sausage with a final concentration of 61.33 mg/kg.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of Food-Borne Pathogen Growth and Biogenic Amine Synthesis by Spice Extracts. Foods 2024; 13:364. [PMID: 38338500 PMCID: PMC10855824 DOI: 10.3390/foods13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Food-borne pathogens and their toxins cause significant health problems in humans. Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of 1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established. In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines (BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs, followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting the growth of FBPs and limiting the production of AMN, TMA, and BAs.
Collapse
Affiliation(s)
- Ferhat Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Killa-Roha 402116, Maharashtra State, India;
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Balcali, 01330 Adana, Turkey (E.K.)
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
10
|
Pei H, He W, Wang Y, Zhang Y, Yang L, Li J, Ma Y, Li R, Li S, Li Q, Li J, Hu K, Teng H, Hu X, Zou L, Liu S, Yang Y. Insight into a natural novel histidine decarboxylase gene deletion in Enterobacter hormaechei RH3 from traditional Sichuan-style sausage. J Food Sci 2024; 89:566-580. [PMID: 38126118 DOI: 10.1111/1750-3841.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Histamine (HIS) is primarily formed from decarboxylated histidine by certain bacteria with histidine decarboxylase (hdc) activity and is the most toxic biogenic amine. Hdc, which is encoded by the hdc gene, serves as a key enzyme that controls HIS production in bacteria. In this paper, we characterized the changes in microbial and biogenic amines content of traditional Sichuan-style sausage before and after storage and demonstrated that Enterobacteriaceae play an important role in the formation of HIS. To screen for Enterobacteriaceae with high levels of HIS production, we isolated strain RH3 which has a HIS production of 2.27 mg/mL from sausages stored at 37°C for 180 days, using selective media and high-performance liquid chromatography. The strain RH3 can produce a high level of HIS after 28 h of fermentation with a significant hysteresis. Analysis of the physicochemical factors revealed that RH3 still retained its ability to partially produce HIS in extreme environments with pH 3.5 and 10.0. In addition, RH3 exhibited excellent salt tolerance (6.0% NaCl and 1.0% NaNO2 ). Subsequently, RH3 was confirmed as Enterobacter hormaechei with hdc gene deletion by PCR, western blot, and whole-genome sequencing analysis. Furthermore, RH3 exhibited pathogenicity rate of 75.60% toward the organism, indicating that it was not a food-grade safe strain, and demonstrated a high level of conservation in intraspecific evolution. The results of this experiment provide a new reference for studying the mechanism of HIS formation in microorganisms. PRACTICAL APPLICATION: This study provides a new direction for investigating the mechanism of histamine (HIS) formation by microorganisms and provides new insights for further controlling HIS levels in meat products. Further research can control the key enzymes that form HIS to control HIS levels in food.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yilun Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, P. R. China
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Jinhai Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yixuan Ma
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, P. R. China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| |
Collapse
|
11
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
12
|
Jia W, Wu X, Liu N, Xia Z, Shi L. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chem 2023; 409:135322. [PMID: 36584532 DOI: 10.1016/j.foodchem.2022.135322] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Postharvest senescence and quality deterioration of fresh tea leaves occurred due to the limitation of processing capacity. Refrigerated storage prolongs the shelf life of fresh tea. In this study, quantitative fusion omics delineated the translational landscape of metabolites and proteins in time-series (0-12 days) refrigerated tea by UHPLC-Q-Orbitrap HRMS. Accurate quantification results showed the content of amino acids, especially l-theanine, decreased with the lengthening of the storage duration (15.57 mg g-1 to 7.65 mg g-1) driven by theanine synthetase. Downregulation of enzyme 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase expression led to methionine degradation (6.29 µg g-1 to 1.78 µg g-1). Refrigerated storage inhibited serine carboxypeptidase-like acyltransferases activity (59.49 % reduction in 12 days) and induced the polymerization of epicatechin and epigallocatechin and generation of procyanidin dimer and δ-type dehydrodicatechin, causing the manifestation of color deterioration. A predictive model incorporating zero-order reaction and Arrhenius equation was constructed to forecast the storage time of green tea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
13
|
Jia W, Wu X, Shi L. Naturally forming benzoic acid orientates perilipin to facilitate glyceride-type polyunsaturated fatty acid degradation via fermentation behavior. J Dairy Sci 2023; 106:1650-1671. [PMID: 36710193 DOI: 10.3168/jds.2022-22381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 01/29/2023]
Abstract
Naturally forming benzoic acid in fermented dairy products accumulates in organisms and biomagnifies through collateral transport. The association between benzoic acid agglomeration and susceptible lipid nutrients remains obscure. Horizontal analysis of lipidomic alteration in response to benzoic acid was conducted and the spatially proteomic map was constructed using label-free quantitative proteomics. From synergistic integration of multi-omics in benzoic acid accumulated fermented goat milk model, the biological processes of significant proteins mostly focused on glyceride-type polyunsaturated fatty acids degradation (143.818 ± 0.51 mg/kg to 104.613 ± 0.29 mg/kg). As a physiological barrier shield, perilipin, which is coated on the surface of lipid droplets, protects triacylglycerols from cytosolic lipases, thus preventing triglyceride hydrolysis. The expression of perilipin decreased by 90% compared with the control group, leading to the decrease of triglycerides. Benzoic acid suppressed phosphatidylethanolamines and phosphatidylcholines synthesis by attenuating choline phosphotransferase and ethanolamine phosphotransferase. Less diglyceride generated by the dephosphorylation of phosphatidic acid entered choline phosphotransferase and ethanolamine phosphotransferase-mediated glycerophospholipid metabolisms. Fermentation of goat milk at a low temperature and less incubation time leads to the production of less benzoic acid and mitigation of lipid nutrient loss. The present study delineated the molecular landscape of fermented goat milk containing endogenous benzoic acid and further dissected the trajectory guiding lipid alteration to advance control of benzoic acid residue.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021 China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
| |
Collapse
|
14
|
Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem 2023; 404:134541. [DOI: 10.1016/j.foodchem.2022.134541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
|
15
|
Charmpi C, Thamsborg KKM, Mikalsen SO, Magnussen E, Sosa Fajardo A, Van der Veken D, Leisner JJ, Leroy F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Int J Food Microbiol 2023; 386:110023. [PMID: 36463775 DOI: 10.1016/j.ijfoodmicro.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Skerpikjøt is a traditionally ripened sheep leg product from the Faroe Islands, constituting a relatively underexplored microbial ecosystem. The objective of this study is to achieve a deeper understanding of the microbial composition of this artisanal product. Nine ripened hind legs, obtained from three different producers, were assessed regarding their bacterial communities and contents of biogenic amines, including both surface and core samples. Biogenic amine concentrations were generally low, although one sample had a somewhat elevated concentration of cadaverine. Bacterial diversity was investigated by culture-dependent and culture-independent techniques. Gram-positive catalase-positive cocci (GCC) constituted the most abundant group. Within this group, Staphylococcus equorum was the most prevailing species, followed by Kocuria sp., Mammaliicoccus vitulinus, and Staphylococcus saprophyticus. Lactic acid bacteria prevailed in only one sample and were mainly represented by Latilactobacillus curvatus. Enterobacterial communities were characterised by the prevalence of Serratia proteamaculans. Despite the majority of GCC, Clostridium putrefaciens was the most abundant bacterial species in some core samples. Taken together, the culture-dependent and culture-independent identification methods gave complementary results.
Collapse
Affiliation(s)
- Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Kristian Key Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eyðfinn Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Ana Sosa Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Jørgen J Leisner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium.
| |
Collapse
|
16
|
Jia W, Wang X, Shi L. Endogenous hydrocortisone caused metabolic perturbation and nutritional deterioration of animal-derived food in a dose-dependent manner. Food Chem 2023; 401:134145. [DOI: 10.1016/j.foodchem.2022.134145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
|
17
|
Jia W, Di C, Shi L. Applications of lipidomics in goat meat products: Biomarkers, structure, nutrition interface and future perspectives. J Proteomics 2023; 270:104753. [PMID: 36241023 DOI: 10.1016/j.jprot.2022.104753] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Goat meat, as a superior product including low lipids, low cholesterol contents and high-quality proteins, becomes the superior food for the national market. With the increasing demand for goat meat, the production, sensory quality and physicochemical properties of goat meat are also widely observed. Following significant discoveries on the mechanism determining goat meat quality, further research on complex and interactive factors leading to changes of goat meat quality is increasingly based on data-driven "omics" methods, such as lipidomics, which can rapidly identify and quantify >1000 lipid species at same time facilitating comprehensive analyses of lipids in tissues. Molecular mechanism and biomarkers indicating the changes of goat meat quality, authentication, meat analogue, nutrition and health by lipidomics are feasible. According to the analysis results of the classes and of different biomarkers lipids of goat meat quality, the main processes involved the biosynthesis of unsaturated fatty acids, associations with lipids and proteins, lipid oxidation, lipid hydrolysis, lipid degradation, lipid deposition and lipid denaturation, which have been translated into advanced technologies for identifying the goat meat adulteration and faux meat rapidly and accurately. SIGNIFICANCE: In this review, the research of lipidomics technology, past applications, recent findings and common on the recent advances of lipidomics in the quality assessment of mutton products by lipidomics with MS approaches have been summarized. The information reported in review can serve as a reference to characterize the lipids found in mutton, clarify the application of lipidomics to the field of mutton products and provide new perspectives in producing superior quality mutton products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Sun L, Guo W, Zhai Y, Zhao L, Liu T, Yang L, Jin Y, Duan Y. Screening and the ability of biogenic amine-degrading strains from traditional meat products in Inner Mongolia. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Dergal NB, Douny C, Gustin P, Abi-Ayad SMEA, Scippo ML. Monitoring of Biogenic Amines in Tilapia Flesh ( Oreochromis niloticus) by a Simple and Rapid High-Performance Thin-Layer Chromatography Method. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2154628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nadir Boudjlal Dergal
- Laboratory of Biotechnology for Food Security and Energetic, Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Oran, Algeria
| | - Caroline Douny
- Laboratory of Food Analysis (LADA), Fundamental andApplied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| | - Pascal Gustin
- Department of Functional Sciences, Unit of Pharmacology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sidi-Mohammed El-Amine Abi-Ayad
- Laboratory of Aquaculture and Bioremediation (AQUABIOR), Department of Biotechnology, Faculty of Natural and Life Sciences, University of Oran 1, Oran, Algeria
| | - Marie-Louise Scippo
- Laboratory of Food Analysis (LADA), Fundamental andApplied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Jia W, Wu X, Shi L. Hydrocortisone-Containing Animal-Derived Food Intake Affects Lipid Nutrients Utilization. Mol Nutr Food Res 2022; 66:e2200487. [PMID: 36261391 DOI: 10.1002/mnfr.202200487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Indexed: 01/18/2023]
Abstract
SCOPE As the tremendous increases in consumption of animal-derived food, endogenous hydrocortisone migrating along the food chain to organism arouses extensive attention. This study aims to investigate the cumulative impacts of dietary hydrocortisone intake and mechanistic understanding on metabolism of lipid nutrients. METHODS AND RESULTS A total of 120 porcine muscles samples with different concentrations of hydrocortisone are collected at three time points. An operational food chain simulation framework is constructed and 175 lipid molecules are identified by UHPLC-Q-Orbitrap HRMS. Compared to the control group, 66 lipid molecules are significantly different, including 17 triglycerides and 31 glycerophospholipids. Integrated analyses of lipidomics and proteomics indicate that hydrocortisone promotes adipose triglyceride lipase and hormone sensitive lipase activity to precondition for triglycerides hydrolysis. Quantitative lipidomics analysis shows the presence of hydrocortisone decreases the concentration of docosahexaenoic acid (3.66 ± 0.15-3.09 ± 0.12 mg kg-1 ) and eicosapentanoic acid (0.54 ± 0.09-0.48 ± 0.06 mg kg-1 ). A noteworthy increase of most saturated triglycerides concentration with the prolonging of time is observed. CONCLUSIONS Hydrocortisone originating from animal-derived food induces glycerophospholipids degradation and triglycerides hydrolysis through promoting adipose triglyceride lipase, hormone sensitive lipase, and phosphoglycerate kinase activity and further intervenes lipid nutrients utilization.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.,Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
21
|
Gao X, Li C, He R, Zhang Y, Wang B, Zhang ZH, Ho CT. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Jia W, Wang X, Shi L. Endogenous benzoic acid interferes with the signatures of amino acids and thiol compounds through perturbing N-methyltransferase, glutamate-cysteine ligase, and glutathione S-transferase activity in dairy products. Food Res Int 2022; 161:111857. [DOI: 10.1016/j.foodres.2022.111857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022]
|
23
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon 2022; 8:e10456. [PMID: 36105466 PMCID: PMC9465362 DOI: 10.1016/j.heliyon.2022.e10456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Biogenic amines (BAs) are a group of molecules naturally present in foods that contain amino acids, peptides, and proteins as well as in biological systems. In foods, their concentrations typically increase during processing and storage because of exposure to microorganisms that catalyze their formation by releasing amino acid decarboxylases. The concentrations of BAs above certain values are indicative of unsafe foods due to associate neuronal toxicity, allergenic reactions, and increase risks of cardiovascular diseases. There are therefore various strategies that focus on the control of BAs in foods mostly through elimination, inactivation, or inhibition of the growth of microorganisms. Increasingly, there are works on bioactive compounds that can decrease the concentration of BAs through their antimicrobial activity as well as the inhibition of decarboxylating enzymes that control their formation in foods or amine oxidases and N-acetyltransferase that control the degradation in vivo. This review focusses on the role of food-derived bioactive compounds and the mechanism by which they regulate the concentration of BAs. The findings are that most active molecules belong to polyphenols, one of the largest groups of plant secondary metabolites, additionally other useful +compounds are present in extracts of different herbs and spices. Different mechanisms have been proposed for the effects of polyphenols depending on the model system. Studies on the effects in vivo are limited and there is a lack of bioavailability and transport data which are important to assess the importance of the bioactive molecules.
Collapse
Affiliation(s)
- Patrick Blondin Tsafack
- Nutrition and Functional Food, School of Biosciences and Veterinary Medicine, University of Camerino, Via A. D'Accorso, 16, Camerino, Italy
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
25
|
Fan Z, Jia W, Du A, Shi L. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Res Int 2022; 159:111666. [DOI: 10.1016/j.foodres.2022.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
|
26
|
Jia W, Du A, Fan Z, Wang Y, Shi L. Effects of Short-Chain Peptides on the Flavor Profile of Baijiu by the Density Functional Theory: Peptidomics, Sensomics, Flavor Reconstitution, and Sensory Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9547-9556. [PMID: 35866578 DOI: 10.1021/acs.jafc.2c02549] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effect of peptides on the flavor profile of Baijiu is unclear as a result of their trace concentrations in the complex matrix, and therefore, the study involving the interaction mechanism between peptides and flavor compounds is limited. In this study, short-chain peptides (amino acid number between 2 and 4, SCPs) associated with the Feng-flavor Baijiu (FFB) were comprehensively analyzed by a dedicated workflow using ultra-high-performance liquid chromatography Q Orbitrap high-resolution mass spectrometry, flavor reconstitution experiments, sensory analysis, and density functional theory (DFT) analysis. The concentrations of 96 SCPs intimately related with six different grades of honey aroma intensity in FFB were quantified (0.12-155.01 μg L-1) after multivariable analysis, Spearman's correlation analysis (ρ ≥ 0.7), and confirmation with synthetic standards, and 32 dominant odorants with an odor activity value of ≥1 in FFB with the highest intensity of honey aroma were quantified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The results of flavor reconstitution experiments and sensory analysis indicated that the SCPs can obviously influence the honey aroma with amplifying the fruity, sweet, and flora flavor odor characters (p < 0.05) while significantly reducing the acidic character (p < 0.001), which could be attributed to the most stable complex structure between SCPs and odor-active compounds calculated by DFT being butanoic acid, followed by β-damascenone, 3-methylbutanal, and ethyl hexanoate, and the multiple sites as a hydrogen bond donor or acceptor in SCPs can form a stable ternary structure with water and ethanol inside the peptide chain or carboxyl terminal of SCPs, consequently improving the stability of the Baijiu system. The results highlighted the important role of SCPs on the volatiles in Baijiu and laid the foundation for further facilitating the sensory quality of Baijiu products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Yongbo Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
27
|
Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246:123511. [DOI: 10.1016/j.talanta.2022.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
28
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Jia W, Di C, Zhang R, Shi L. Hydrogen bonds and hydrophobicity with mucin and α-amylase induced honey aroma in Feng-flavor Baijiu during 16 years aging. Food Chem 2022; 396:133679. [PMID: 35849986 DOI: 10.1016/j.foodchem.2022.133679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Honey aroma is one of the most significant factors of Feng-flavor Baijiu, which is also an essential element to attract consumers. However, the evaluation and chemical basis of honey aroma is unclear. Palmitoleic acid, lagochilin, phomotenone and ethyl behenate were confirmed to be the strongest contributors to honey aroma by time-intensity analysis and UHPLC-Q-Orbitrap-MS. Predictive modeling was developed for processing honey aroma intensity responses in order to obtain significant Feng-flavor Baijiu rankings. In this study, the effects of ex-vivo saliva on Feng-flavor Baijiu were investigated for the first time. Mucin and α-amylase, as major proteins in ex-vivo saliva, were applied to simulate molecular docking of ethyl benzoate. Mucin and α-amylase modified the aroma release, which depended on hydrogen bonds and hydrophobic interactions, respectively. It is blazing a trail in the field in sensory experience of Feng-flavor Baijiu as well as contributes to our understanding of Feng-flavor Baijiu drinking process.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
30
|
Bai S, You L, Wang Y, Luo R. Effect of Traditional Stir-Frying on the Characteristics and Quality of Mutton Sao Zi. Front Nutr 2022; 9:925208. [PMID: 35811981 PMCID: PMC9260384 DOI: 10.3389/fnut.2022.925208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
The effects of stir-frying stage and time on the formation of Maillard reaction products (MRP) and potentially hazardous substances with time in stir-fried mutton sao zi were investigated. Furosine, fluorescence intensity, Nε-(1-carboxymethyl)-L-lysine (CML), Nε-(1-carboxyethyl)-L-lysine (CEL), polyaromatic hydrocarbons PAHs), heterocyclic aromatic amines (HAAs), and acrylamides (AA) mainly presented were of stir-fried mutton sao zi. The furosine decreased after mixed stir-frying (MSF) 160 s due to its degradation as the Maillard reaction (MR) progressed. The fluorescent compound gradually increased with time during the stir-frying process. The CML and CEL peaked in MSF at 200 s. AA reached its maximum at MSF 120 s and then decreased. All the 5 HAAs were detected after MSF 200 s, suggesting that stir-frying mutton sao zi was at its best before MSF for 200 s. When stir-frying exceeded the optimal processing time of (MSF 160 s) 200 s, the benzo[a]pyrene peaked at 0.82 μg/kg, far lower than the maximum permissible value specified by the Commission of the European Communities. Extended stir-frying promoted MRP and some hazardous substances, but the content of potentially hazardous substances was still within the safety range for food.
Collapse
Affiliation(s)
- Shuang Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yongrui Wang
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Ruiming Luo
- School of Food and Wine, Ningxia University, Yinchuan, China
- *Correspondence: Ruiming Luo,
| |
Collapse
|
31
|
Wójcik W, Łukasiewicz-Mierzejewska M, Damaziak K, Bień D. Biogenic Amines in Poultry Meat and Poultry Products: Formation, Appearance, and Methods of Reduction. Animals (Basel) 2022; 12:1577. [PMID: 35739911 PMCID: PMC9219487 DOI: 10.3390/ani12121577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Poultry meat is a source of many important nutrients, micro- and macro-elements, and biologically active substances. During meat storage, many physicochemical changes take place, also affecting the content of biologically active substances, including biogenic amines.They are formed as a result of three processes: decarboxylation of amino acids by microorganisms, reductive amination, and transamination of aldehydes and ketones, and as a result of activity of body tissues. Excessive consumption of biogenic amines shows toxic properties. The increasing consumption of poultry meat and the lack of established limits for biogenic amine content is a major challenge for scientists, producers, and consumer organisations, which have not yet established limits for biogenic amine content in meat (including poultry meat). Analyses of biogenic amine content in meat account for less than 10% of scientific papers, which raises the scope of the problem of limiting biogenic amines in meat. Among the methods of amine reduction are methods of destroying or reducing microorganisms' high hydrostatic pressure (HHP), ozonisation, radiation, or the use of essential oils.
Collapse
Affiliation(s)
- Wojciech Wójcik
- Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (K.D.); (D.B.)
| | | | | | | |
Collapse
|
32
|
Bontzolis C, Plioni I, Dimitrellou D, Boura K, Kanellaki M, Nigam PS, Koutinas A. Isolation of antimicrobial compounds from aniseed and techno‐economic feasibility report for industrial‐scale application. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Iris Plioni
- Department of Chemistry University of Patras 26504 Patras Greece
| | - Dimitra Dimitrellou
- Department of Food Science and Technology Ionian University 28100 Argostoli Kefalonia Greece
| | | | - Maria Kanellaki
- Department of Chemistry University of Patras 26504 Patras Greece
| | - Poonam S. Nigam
- Biomedical Sciences Research Institute Ulster University Coleraine Northern Ireland UK
| | | |
Collapse
|
33
|
Liu Y, Yang Y, Li B, Lan Q, Zhao X, Wang Y, Pei H, Huang X, Deng L, Li J, Li Q, Chen S, He L, Liu A, Ao X, Liu S, Zou L, Yang Y. Effects of lipids with different oxidation levels on protein degradation and biogenic amines formation in Sichuan-style sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
35
|
Ren H, Deng Y, Wang X. Effect of a compound starter cultures inoculation on bacterial profile and biogenic amine accumulation in Chinese Sichuan sausages. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Effect of collagen casing on the quality characteristics of fermented sausage. PLoS One 2022; 17:e0263389. [PMID: 35113961 PMCID: PMC8812867 DOI: 10.1371/journal.pone.0263389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Fermented sausage is popular all over the world for its rich nutrition and unique flavor. Sausage casing is one of the key factors affecting the quality of fermented sausage. However, there is little information involved in this field. Methods In this study, collagen casings were used as a wrapping material, and natural casings (pig casings) were used as a control. The effects of the two types of casings on biogenic amine content and other quality characteristics of fermented sausage were analyzed with increasing the storage time. Results The results showed that with storage time increasing, the hardness and gumminess of fermented sausage in collagen casing (CC) group were higher than those in pig casing (PC) group (P<0.05), while the elasticity in CC group was lower than that in PC group (P<0.05). In the processing and storage period, there was no significant difference in the type and content of flavor substances between the two groups. More importantly, the contents of tryptamine, putrescine, cadaverine, histamine, tyramine and phenyethylamine in fermented sausage of CC group were lower than those in PC group (P<0.05). Conclusion In conclusion, this study revealed that CC could improve the quality characteristics of fermented sausage and reduce the content of biogenic amines in fermented sausage, which provides a theoretical basis for the choice of casings in industrial production in the future.
Collapse
|
37
|
Jia W, Wu X, Zhang R, Shi L. UHPLC-Q-Orbitrap-based lipidomics reveals molecular mechanism of lipid changes during preservatives treatment of Hengshan goat meat sausages. Food Chem 2022; 369:130948. [PMID: 34474291 DOI: 10.1016/j.foodchem.2021.130948] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
As preservative are extensively applied to prevent the quality degradation of Hengshan goat meat sausages, safety assessment based on lipid and elucidation of dynamic change mechanism is urgently needed. The effect of preservatives on lipidome profiles of sausages was investigated using UHPLC-Q-Orbitrap. Totally, 9 subclasses of 70 characteristic lipids (Cer, DG, LPC, PC, PE, PI, PS, SM, TG) were quantified accurately (LOD with 0.68-2.96 μg kg-1, LOQ with 2.25-9.79 μg kg-1, RSD < 3%). The decrease of TG concentration was the most significant, from 1072.43 mg kg-1 in preservative-free samples to 838.53, 786.41 and 681.35 mg kg-1 in natamycin, potassium sorbate and sodium diacetate treated samples, respectively. With regard to preservation and nutrition, natamycin was a potential preservative than two other preservatives. Significant lipid variables were primarily associated with glycerophospholipid and sphingolipid metabolism. Integration of both techniques provided a guide for meat industries to control spoilage with innovative strategies.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
38
|
Jia W, Fan Z, Shi Q, Zhang R, Wang X, Shi L. LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation of goat meat. Food Res Int 2021; 150:110721. [PMID: 34865750 DOI: 10.1016/j.foodres.2021.110721] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
The current study applied an untargeted metabolomics approach by ultra high performance liquid chromatography quadrupole-orbitaltrap high resolution mass spectrometry (UHPLC-Q-Oritrap-MS) to identify the chemical composition of irradiated goat meat and investigate the effect of irradiation on its metabolic profile and meat quality. A total of 103 metabolites were identified as differential metabolites responsible for metabolic changes in irradiated goat meat, which were involved in phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and purine metabolism. Differential metabolites comprising amino acids, nucleotides and their derivatives were determined as the discriminating factors responsible for the meat quality during irradiation. Specifically, the levels of L-phenylalanine, L-isoleucine, L-histidine, guanosine, guanine, creatinine, glutathione and nicotinic acid were increased while inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) were decreased. Overall, except for L-phenylalanine and guanine, other related metabolites significantly decreased with storage. This study contributes to a comprehensive understanding of the effect of irradiation doses and storage time on goat meat metabolism at the molecular level, so as to assess the quality of irradiated goat meat. Satisfactory results with linearity (R2 > 0.995), precision (RSD less than 8.9%) and recovery (83%-106%) were obtained, demonstrating that the untargeted mebabolomics approach was appropriate for monitoring the changes of small molecular metabolites in irradiated goat meat and irradiation is a feasible method for goat meat preservation.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qingyun Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
39
|
Jia W, Fan Z, Du A, Shi L. Untargeted foodomics reveals molecular mechanism of magnetic field effect on Feng-flavor Baijiu ageing. Food Res Int 2021; 149:110681. [PMID: 34600683 DOI: 10.1016/j.foodres.2021.110681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
Ageing is a time-consuming step in Baijiu manufacture, stimulating an urgent requirement of optimization. Variation of artificial aged Feng-flavor Baijiu by inhomogeneous alternating magnetic field was investigated through quantitative foodomics combined with confirmed ultra high performance liquid chromatography quadrupole-orbitaltrap high resolution mass spectrometry (UHPLC-Q-Orbitrap). A total of 153 substances were identified with significant variables (p < 0.05, VIP > 1) and 16 metabolic pathways related to Feng-flavor Baijiu functions were obtained. The method showed good accuracy with recovery values between 80.4% and 117.4% and precision lower than 9.8% for all characteristic substances. Limit of detection (LOD) was ranging between 1.6 and 10.0 μg/L with R2 ≥ 0.99. Factor analysis demonstrated that ageing degree of magnetized samples increased with rise of magnetic field intensity and the maximum effect was equivalent to 12.81 years of natural ageing. The results of stoichiometric analysis revealed that regulation of magnetic field on proportion in Baijiu was mainly performed through entropy and the hydrogen bond strength of Baijiu molecules. Sensory evaluation illustrated that score of Baijiu samples reached the highest at 150 mT, demonstrating that magnetic field treatment can be considered as an optimized ageing means for Feng-flavor Baijiu.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
40
|
Jia W, Zhang R, Liu L, Zhu Z, Mo H, Xu M, Shi L, Zhang H. Proteomics analysis to investigate the impact of diversified thermal processing on meat tenderness in Hengshan goat meat. Meat Sci 2021; 183:108655. [PMID: 34403850 DOI: 10.1016/j.meatsci.2021.108655] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
During the thermal processing, proteins of Hengshan goat meat undergo structural modifications such as degradation, oxidation and denaturation, ultimately affect the palatability and acceptability. The results of several objective metrics demonstrated that thermal processing exhibited significant impacts on the tenderness of goat meat. The 551, 84, 72, and 121 proteins were identified in the control and thermal processed groups (boiled, steamed, and roasted), respectively. Compared with the control group, the 101, 98, and 109 differentially-expressed proteins were explored in the treatment groups. Furthermore, the functions of metabolic and skeletal muscle proteome were investigated and discussed. Sensory evaluation and proteomics analysis showed that steaming and boiling treatment had no significant effect on the tenderness of goat meat, while roasting significantly reduced the tenderness, indicating that the available thermal processing methods to ensure the tenderness of goat meat were steaming and boiling treatments. Thus, the established proteomics database of goat meat provided the valuable reference for rational selection of thermal processing methods.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Zhang
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
41
|
Molecular mechanism associated with the use of magnetic fermentation in modulating the dietary lipid composition and nutritional quality of goat milk. Food Chem 2021; 366:130554. [PMID: 34284188 DOI: 10.1016/j.foodchem.2021.130554] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Standard fermentation (SF) mainly affected the metabolism of glycerophospholipid and sphingolipid, and increased the total lipid content of goat milk. Content of total lipid was decreased by magnetic fermentation compared with SF, mainly due to triacylglycerol and diacylglycerol. Comprehensive characteristic of lipids dynamic changes during standard and magnetic fermentation was performed using high-throughput quantitative lipidomics. Totally, 488 lipid molecular species covering 12 subclasses were detected, and triacylglycerol was the highest levels, followed by diacylglycerol and phosphoethanolamine in the whole fermentation stage. Specifically, except for ceramide and simple Glc series, the content of all polar lipids in SF was dropped and neutral lipids subjoined. Compared with SF, the decrease of triacylglycerol (1752.47 to 784.78 μg/mL), diacylglycerol (60.36 to 24.89 μg/mL) and simple Glc series (4.36 to 2.40 μg/mL) were observed, while ceramide (6.54 to 25.87 μg/mL) increased, suggesting magnetic fermentation as effective approach to potentially improve the nutritional of goat milk.
Collapse
|
42
|
Effect of nisin and potassium sorbate additions on lipids and nutritional quality of Tan sheep meat. Food Chem 2021; 365:130535. [PMID: 34256226 DOI: 10.1016/j.foodchem.2021.130535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Nisin and potassium sorbate as preservatives are used in a broad range of meat. A lipidomic evaluation was performed on Tan sheep meat treated by two types of preservatives. The addition of potassium sorbate resulted in higher lipid losses compared with nisin treatment. Furthermore, 106 significant lipids of 12 lipid classes (PC, PS, LPS, LPC, PE, PI, LPE, TG, Cer, DG, SM, Sph) with variable importance in projection scores greater than 1.0 were detected and qualified to distinguish different preservatives added meat using UHPLC-Q-Orbitrap MS/MS. LOD and LOQ were 0.12-0.32 μg kg-1 and 0.35-0.89 μg kg-1, indicating high sensitivity and excellent analytical characteristics in the study. Nisin was confirmed to be the better preservative for prolonging the shelf life of Tan sheep meat while reducing the loss of nutrients. These results could provide a strong cornerstone for future research on preservatives in meat products.
Collapse
|
43
|
Jia W, Zhang R, Zhu Z, Shi L. LC-Q-Orbitrap HRMS-based proteomics reveals potential nutritional function of goat whey fraction. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
Jia W, Zhang M, Du A, Zhang R, Xu M, Shi L. Accurate Quantification of Sulfonamide Metabolites in Goat Meat: A New Strategy for Minimizing Interaction between Sheep Serum Albumin and Sulfonamide Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6556-6568. [PMID: 34080416 DOI: 10.1021/acs.jafc.1c02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To date, the determination of sulfonamide metabolites in animal-derived food has universal disadvantages of low throughput and no integrated metabolites involved. In this study, a powerful and reliable strategy for high-throughput screening of sulfonamide metabolites in goat meat was proposed based on an aqueous two-phase separation procedure (ATPS) combined with ultrahigh-performance liquid chromatography quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap). Noncovalent interactions including van der Waals force, hydrogen bonding, and hydrophobic effect were determined to be staple interactions between the sulfonamide metabolites and sheep serum albumin by fluorescence spectroscopy and molecular docking technology, and an 80% acetonitrile-water solution/(NH4)2SO4 was used as ATPS in order to release combined sulfonamide metabolites and minimize the influence of sheep serum albumin. Sulfonamide metabolites in the matrix were screened based on a mechanism of mass natural loss and core structure followed by identification combined with the pharmacokinetic. The developed strategy was validated according to EU standard 2002/657/EC with CCα ranging from 0.07 to 0.98 μg kg-1, accuracy recovery with 84-107%, and RSDs lower than 8.9%. Eighty seven goat meat samples were used for determination of 26 sulfonamides and 8 potential metabolites. On the basis of the established innovative process, this study has successfully implemented the comprehensive detection of sulfonamide metabolites, including N4-acetylated substitution, N4-hydroxylation, 4-nitroso, azo dimers, oxidized nitro, N4 monoglucose conjugation, β-d-glucuronide, and N-4-aminobenzenesulfonyl metabolites, which were shown to undergo oxidation, hydrogenation, sulfation, glucuronidation, glucosylation, and O-aminomethylation.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
45
|
Jia W, Liu Y, Shi L. Integrated metabolomics and lipidomics profiling reveals beneficial changes in sensory quality of brown fermented goat milk. Food Chem 2021; 364:130378. [PMID: 34153599 DOI: 10.1016/j.foodchem.2021.130378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Fermentation and thermal processing can improve the sensory properties of foods. Chemical composition of fermented brown goat milk was investigated using an integrated lipomics and metabonomic method while the effects of changes in chemical composition on sensory quality were also explored. After fermentation, organic acid, peptide and medium- and long-chain fatty acid contents in brown goat milk samples increased significantly. A total of 108 metabolites and 174 lipids related to sensory quality were identified. Heterocyclic compounds, as intermediates of Maillard reaction, modified colour, taste, and aroma, while changes in triglyceride content reduced the impact of off-odour, greatly improving sensory quality of fermented brown goat milk. This study provided new approaches for examining goat milk sensory quality and insights into how these can be modified to further diversify dairy products on the market.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Yuyang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
46
|
Lorencová E, Salek RN, Buňková L, Szczybrochová M, Černíková M, Buňka F. Assessment of biogenic amines profile in ciders from the Central Europe region as affected by storage time. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Jia W, Zhang R, Zhu Z, Shi L. A High-Throughput Comparative Proteomics of Milk Fat Globule Membrane Reveals Breed and Lactation Stages Specific Variation in Protein Abundance and Functional Differences Between Milk of Saanen Dairy Goat and Holstein Bovine. Front Nutr 2021; 8:680683. [PMID: 34124126 PMCID: PMC8193056 DOI: 10.3389/fnut.2021.680683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large variations in the bioactivities and composition of milk fat globule membrane (MFGM) proteins were observed between Saanen dairy goat and Holstein bovine at various lactation periods. In the present study, 331, 250, 182, and 248 MFGM proteins were characterized in colostrum and mature milk for the two species by Q-Orbitrap HRMS-based proteomics techniques. KEGG pathway analyses displayed that differentially expressed proteins in colostrum involved in galactose metabolism and an adipogenesis pathway, and the differentially expressed proteins in mature milk associated with lipid metabolism and a PPAR signaling pathway. These results indicated that the types and functions of MFGM proteins in goat and bovine milk were different, and goat milk had a better function of fatty acid metabolism and glucose homeostasis, which can enhance our understanding of MFGM proteins in these two species across different lactation periods, and they provide significant information for the study of lipid metabolism and glycometabolism of goat milk.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| |
Collapse
|
48
|
Unmodified cellulose filter paper, a sustainable and affordable sorbent for the isolation of biogenic amines from beer samples. J Chromatogr A 2021; 1651:462297. [PMID: 34111676 DOI: 10.1016/j.chroma.2021.462297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
While current trends in Green Analytical Chemistry aim at reducing or simplifying sample treatment, food usually comprises complex matrices where direct analysis is not possible in most cases. In this context, sample treatment plays a pivotal role. Biogenic amines are naturally formed in many foodstuffs due to the action of microorganisms, while their presence has been associated with adverse health effects. In this work, the extraction of seven biogenic amines (cadaverine, histamine, phenylethylamine, putrescine, spermidine, spermine, and tyramine) from beer samples has been simplified using laboratory filter paper as sorbent without any further modification. The analysis of the eluates by direct infusion mass spectrometry reduces the time of analysis, increasing the sample throughput. This simple but effective method enabled the determination of the analytes with limits of detection as low as 0.06 mg L-1 and relative standard deviations better than 11.9%. The suitability of the method has been assessed by analyzing eight different types of beers by the standard addition method.
Collapse
|
49
|
Jia W, Li R, Wu X, Liu S, Shi L. UHPLC-Q-Orbitrap HRMS-based quantitative lipidomics reveals the chemical changes of phospholipids during thermal processing methods of Tan sheep meat. Food Chem 2021; 360:130153. [PMID: 34034056 DOI: 10.1016/j.foodchem.2021.130153] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/14/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022]
Abstract
Thermal processing affects the lipid compositions of meat products. The study determined the effects of boiled, steamed and roasted processing methods on the lipidomics profiles of Tan sheep meat with a validated UPLC-Q-Orbitrap HRMS combined lipid screening strategy method. Combined with sphingolipid metabolism, the boiled approach was the suitable choice for atherosclerosis patients for more losses of sphingomyelin than ceramide in meat. The similarly less losses of phosphatidylcholine and lysophosphatidylcholine showed in glycerophospholipid metabolism implied that steamed Tan sheep meat was more suitable for the populations of elderly and infants. Furthermore, a total of 90 lipids with significant difference (VIP > 1) in 6 lipid subclasses (sphingomyelin, ceramide, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamines, triacylglycerol,) were quantified among raw and three types of thermal processed Tan sheep meat, further providing useful information for identification of meat products with different thermal processing methods (LOD with 0.14-0.31 μg kg-1, LOQ with 0.39-0.90 μg kg-1).
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruiting Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Shuxing Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
50
|
Jia W, Zhang R, Liu L, Zhu Z, Xu M, Shi L. Molecular mechanism of protein dynamic change for Hengshan goat meat during freezing storage based on high-throughput proteomics. Food Res Int 2021; 143:110289. [PMID: 33992389 DOI: 10.1016/j.foodres.2021.110289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
As traditional frozen storage leads to the degradation of meat quality, elucidation of dynamic change mechanism is urgently needed. Proteomic differences in postmortem frozen storage time (0, 30 and 60 days) of Hengshan goat meat at -18 °C were studied by label-free proteomics based on high resolution quadrupole-Orbitrap mass spectrometry. A total of 492 proteins were identified, of which 485 proteins were quantified, and the difference of 199 proteins was observed. The analysis of the differentially expressed proteins related to quality observed that triosephosphate isomerase and peroxiredoxin-6 were potential biomarkers for goat meat discoloration. Troponin and myosin can represent the tenderness of goat meat. Heat shock protein 70 can be used as water-retaining proteins in goat meat. Bioinformatics analysis suggested that the distinguishingly expressed proteins were involved in glycolysis and the ubiquitin-proteasome pathway revealing that the strong degradation of proteins, which cause of the degradation of long-term frozen meat quality. These results could enrich and beyond the existing knowledge of frozen meat, expecting to have a further understanding of the changes of meat quality at the molecular level.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mudan Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|