1
|
Xiong Y, Fan B, Li L, Liu Y, Wang X, Fei C, Tong L, Wang F, Huang Y. Effects of different drying methods on the structure, bioaccessibility, and bioavailability of selenium-enriched peptides from soybean sprouts. Food Chem 2025; 468:142442. [PMID: 39671918 DOI: 10.1016/j.foodchem.2024.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Selenium-enriched peptides (SePPs) were isolated from Se-enriched soybean sprouts as the selenium (Se) supplement. The preparation of SePPs was optimised, and their Se content, stability during drying, and absorption properties, were examined. The maximum in vitro antioxidant activity of SePPs was achieved after 5 h of alcalase, at 50 °C, pH 9, 3 % substrate concentration, and 5 % enzyme concentration. 58 peptides containing SeMet or SeCsy were found. Following different drying methods, the Se content dropped, and the cross-linked SePPs produced by freeze-drying had higher hydrophobicity, reduced free sulfhydryl concentration, and more potent in vitro antioxidant activity. In the Caco-2 monolayer cellular transport model, the transport efficiency of SePPs were significantly higher than those of selenite, and the binding of peptides enhanced the bioaccessibility and bioavailability of Se. The study elucidated the structure, composition, morphology bioaccessibility and bioavailabilityand of SePPs, providing support for SePPs functional food development.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
2
|
Sun S, Zhang J, Li Y, Xu Y, Yang R, Luo L, Xiang J. Effects of Sodium Selenite on Accumulations of Selenium and GABA, Phenolic Profiles, and Antioxidant Activity of Foxtail Millet During Germination. Foods 2024; 13:3916. [PMID: 39682988 DOI: 10.3390/foods13233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the influence of soaking and spraying with a sodium selenite (Na2SeO3) solution on selenium accumulation, γ-aminobutyric acid (GABA) content, phenolic compositions, and the antioxidant activity of foxtail millet sprouts. The screening results showed that foxtail millet seeds soaked with 60 mg/L of Na2SeO3 solution and sprayed with 2 mg/L of Na2SeO3 solution were the appropriate concentrations for the germination process. Compared with the spraying method, a presoaking treatment presented far higher selenium content and significantly higher (p < 0.05) selenium enrichment rates in foxtail millet sprouts. The content of free and bound phenolics, as well as GABA, were significantly (p < 0.05) increased in foxtail millet sprouts through both soaking and spraying treatments. Correspondingly, most of the individual phenolic compounds were significantly (p < 0.05) increased, especially after germination for 3 days. Trans-ferulic acid and trans-p-coumaric acid were the predominate bound phenolic acids, feruloylquinic acid and 4-p-coumaroylquinic acid were the major free-form phenolic compounds, and N-feruloyl serotonin and N-(p-coumaroyl) serotonin were the new arising phenolic derivatives caused by germination. Both the soaking and spraying treatments induced the enrichment of these individual phenolic compositions, thus increasing the total phenolic content and in vitro antioxidant activity of foxtail millet sprouts. It was indicated that selenium-enriched germination treatment should be an effective method to produce functional selenium-enriched foxtail millet sprouts with more abundant GABA and polyphenols, thus enhancing the health benefits and added value of foxtail millet.
Collapse
Affiliation(s)
- Shuaiduo Sun
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Jingjing Zhang
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Yongji Li
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Yunfeng Xu
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science & Technology, Luoyang 471023, China
| | - Runqiang Yang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210000, China
| | - Lei Luo
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Jinle Xiang
- Faculty of Food & Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science & Technology, Luoyang 471023, China
| |
Collapse
|
3
|
Cheng H, Li L, Dong J, Wang S, Wu S, Rao S, Li L, Cheng S, Li L. Transcriptome and physiological determination reveal the effects of selenite on the growth and selenium metabolism in mung bean sprouts. Food Res Int 2023; 169:112880. [PMID: 37254328 DOI: 10.1016/j.foodres.2023.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Selenium (Se) biofortification of crops has been studied to substantially improve the Se content in human dietary food intake. In the present study, Vigna radiata (mung bean) seeds were soaked in different concentrations of sodium selenite (Na2SeO3). Low concentration of selenite is conducive to seed germination and growth, and can increase the fresh weight (FW) and dry weight (DW) of sprouts. The concentration of Na2SeO3 lower than 50 mg/kg resulted in noticeable elongation in the stem and marginal elongation in root. Mung bean seeds soaked with 80 mg/kg Na2SeO3 accounted for 93.77% of organic Se after growing for about 5 days. Transcriptome data revealed that Se treatment enhances starch and sugar metabolism, along with the up-regulation of ribosomal protein and DNA synthesis related genes. Further analysis indicated that the mung bean seeds absorbed Na2SeO3 through PHT1.1 and NIP2. Se (IV) was transformed into Se (VI) and transported to stems, leaves and roots through cotyledons during the germination of bean sprouts. SULTR3;3 may play an important role in the transit process. Se (VI) or Se (IV) transported to the leaves was catalytically transformed into SeCys through SiR and CS, and SeCys is further converted to MeSeCys through SMT. Most SeCys were transformed into SeHCys through CBL, transported to plastids, and finally transformed into SeMet through Met Synthase.
Collapse
Affiliation(s)
- Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Biology and Agricultural Resources, Huanggang Normal University, Hubei Huanggang 438000, China
| | - Lei Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Jingzhou Dong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Biology and Agricultural Resources, Huanggang Normal University, Hubei Huanggang 438000, China.
| |
Collapse
|
4
|
Mejía-Ramírez F, Benavides-Mendoza A, González-Morales S, Juárez-Maldonado A, Lara-Viveros FM, Morales-Díaz AB, Morelos-Moreno Á. Seed Priming Based on Iodine and Selenium Influences the Nutraceutical Compounds in Tomato ( Solanum lycopersicum L.) Crop. Antioxidants (Basel) 2023; 12:1265. [PMID: 37371995 DOI: 10.3390/antiox12061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, β-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.
Collapse
Affiliation(s)
- Fernando Mejía-Ramírez
- Department of Horticulture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Susana González-Morales
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | | | - Francisco Marcelo Lara-Viveros
- Department of Biosciences and Agrotechnology, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Mexico
| | - América Berenice Morales-Díaz
- Robotics and Advanced Manufacturing, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ramos Arizpe 25900, Mexico
| | - Álvaro Morelos-Moreno
- National Council of Humanities, Science and Technology (CONAHCYT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| |
Collapse
|
5
|
Postharvest treatments with MnCl 2 and ZnCl 2 reduce enzymatic browning and enhance antioxidant accumulation in soya bean sprout. Sci Rep 2022; 12:18454. [PMID: 36323864 PMCID: PMC9630537 DOI: 10.1038/s41598-022-23367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Soya bean sprout is a nutrient-abundant vegetable. However, enzymatic browning of soya bean sprouts during storage remains a challenge. In this study, the effects of treatment with MnCl2 or ZnCl2 on the browning index, antioxidant nutrient accumulation, total antioxidant capacity and enzyme activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were investigated in soya bean sprouts after storage at 4 °C and 90% relative humidity for 0, 7, 14 and 21 days. The results showed that postharvest treatment with 1, 2 and 10 mM MnCl2 or ZnCl2 profoundly retarded enzymatic browning in soya bean sprouts to different extents. Compared with the control, the 10 mM MnCl2 and ZnCl2 treatments drastically enhanced ascorbic acid, total thiol and phenolic content, and enhanced FRAP (ferric-reducing ability of plasma) antioxidant capacity in stored soya bean sprouts. Moreover, the MnCl2 and ZnCl2 treatments enhanced SOD, CAT and PAL but decreased PPO and POD activities compared with the control. In addition, the Mn and Zn content in soya bean sprouts significantly increased, by approximately two- to threefold, compared with the control. This study provides a new method for improving the nutrient quality of soya bean sprouts based on postharvest Mn or Zn supplementation.
Collapse
|
6
|
Huang Y, Fan B, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Maesen P, Blecker C. Selenium Biofortification of Soybean Sprouts: Effects of Selenium Enrichment on Proteins, Protein Structure, and Functional Properties. Front Nutr 2022; 9:849928. [PMID: 35592631 PMCID: PMC9113265 DOI: 10.3389/fnut.2022.849928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Selenium (Se) biofortification during germination is an efficient method for producing Se-enriched soybean sprouts; however, few studies have investigated Se distribution in different germinated soybean proteins and its effects on protein fractions. Herein, we examined Se distribution and speciation in the dominant proteins 7S and 11S of raw soybean (RS), germinated soybean (GS), and germinated soybean with Se biofortification (GS-Se). The effects of germination and Se treatment on protein structure, functional properties, and antioxidant capacity were also determined. The Se concentration in GS-Se was 79.8-fold higher than that in GS. Selenomethionine and methylselenocysteine were the dominant Se species in GS-Se, accounting for 41.5–80.5 and 19.5–21.2% of the total Se with different concentrations of Se treatment, respectively. Se treatment had no significant effects on amino acids but decreased methionine in 11S. In addition, the α-helix contents decreased as the Se concentration increased; the other structures showed no significant changes. The Se treatment also had no significant effects on the water and oil-holding capacities in protein but increased the foaming capacity and emulsion activity index (EAI) of 7S, but only the EAI of 11S. The Se treatment also significantly increased the antioxidant capacity in 7S but not in 11S. This study indicates that the dominant proteins 7S and 11S have different Se enrichment abilities, and the protein structures, functional properties, and antioxidant capacity of GS can be altered by Se biofortification.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fengzhong Wang
| | - Philippe Maesen
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- Philippe Maesen
| | - Christophe Blecker
- Department of Food Science and Formulation, Bureau d'études Environnement et Analyses (BEAGx), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- Christophe Blecker
| |
Collapse
|
7
|
Wang SY, Zhang YJ, Zhu GY, Shi XC, Chen X, Herrera-Balandrano DD, Liu FQ, Laborda P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J Food Sci 2022; 87:1961-1982. [PMID: 35411587 DOI: 10.1111/1750-3841.16131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gui-Yang Zhu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
8
|
Huang Y, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Fan B, Maesen P, Blecker C. Influence of Selenium Biofortification of Soybeans on Speciation and Transformation during Seed Germination and Sprouts Quality. Foods 2022; 11:foods11091200. [PMID: 35563923 PMCID: PMC9104096 DOI: 10.3390/foods11091200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Selenium (Se) biofortification during seed germination is important not only to meet nutritional demands but also to prevent Se-deficiency-related diseases by producing Se-enriched foods. In this study, we evaluated effects of Se biofortification of soybeans on the Se concentration, speciation, and species transformation as well as nutrients and bioactive compounds in sprouts during germination. Soybean (Glycine max L.) seedlings were cultivated in the dark in an incubator with controlled temperature and water conditions and harvested at different time points after soaking in Se solutions (0, 5, 10, 20, 40, and 60 mg/L). Five Se species and main nutrients in the sprouts were determined. The total Se content increased by 87.3 times, and a large portion of inorganic Se was transformed into organic Se during 24 h of germination, with 89.3% of the total Se was bound to soybean protein. Methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were the dominant Se species, MeSeCys decreased during the germination, but SeMet had opposite trend. Se biofortification increased contents of total polyphenol and isoflavonoid compounds and amino acids (both total and essential), especially in low-concentration Se treatment. In conclusion, Se-enriched soybean sprouts have promising potential for Se supplementation and as functional foods.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Correspondence:
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Philippe Maesen
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| |
Collapse
|
9
|
Simultaneous determination of Fe and Zn in dried blood spot by HR-CS GF AAS using solid sampling. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|