1
|
Huang S, Feng X, Yue W, Madjirebaye P, Deng X, Fan Y, Chen J, Wu X. Effects of chemical modifications on allergenicity and functional properties of silkworm pupae proteins. Food Chem 2025; 477:143635. [PMID: 40023949 DOI: 10.1016/j.foodchem.2025.143635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Silkworm pupae proteins (SPP) have been exploited as a new functional protein, but there are still some people who are allergic to it. This study investigated the effects of different chemical modifications (phosphorylation, succinylation, deamidation, glycosylation) on SPP's allergenicity and its structural and functional impact. Spectroscopic analysis showed that all three modifications except glycosylation loosened the three-dimensional structure of SPP. Enzymatic hydrolysis studies have shown that the succinylated group can significantly enhance the hydrolysis resistance of SPP at 30 kDa, and the ability to bind IgE was maintained. Most proteins were hydrolyzed into small peptides within 30 min after combined digestion. A functional study of chemically modified SPP demonstrated that succinylation had a strong water-holding capacity. Further deamidation and phosphorylation have stupendous foaming ability and foaming stability, respectively. This discovery collectively will provide the experimental basis for developing and using silkworm pupae protein in the food industry.
Collapse
Affiliation(s)
- Songyuan Huang
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xue Feng
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Wenqi Yue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Philippe Madjirebaye
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xuchao Deng
- Shenzhen Senior High School, Shenzhen 518060, Guangdong Province, PR China
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Jiamin Chen
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
2
|
Xue H, Gao Y, Shi Z, Gao H, Xie K, Tan J. Interactions between polyphenols and polysaccharides/proteins: Mechanisms, effect factors, and physicochemical and functional properties: A review. Int J Biol Macromol 2025; 309:142793. [PMID: 40194573 DOI: 10.1016/j.ijbiomac.2025.142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Polyphenols have attracted much attention in the food industry and nutrition because of their unique biological activities. However, the health benefits of polyphenols are compromised due to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides/proteins largely determines the stability and functional characteristics of polyphenols in food processing and storage. Hence, this topic has attracted widespread attention in recent years. This review initially outlines the basic properties of polyphenols and their applications in food. Subsequently, the interaction mechanisms between polyphenols and polysaccharides/proteins are discussed in detail including non-covalent bonding, covalent modification, and conformational changes. These interactions can display profound impacts on the nutritional value, taste, stability, and safety of food. Additionally, this article also systematically reviews the influencing factors (type, concentration, temperature, pH, and other factors) of interaction between polyphenols and proteins/polysaccharides. Finally, this paper also summarizes systematically the effects of the interaction between polyphenols and polysaccharides/proteins on the physicochemical and functional properties of polyphenols/proteins. The findings provide prospects for the application of composite materials in food preservation, functional food development, and nanocarrier development, which can provide theoretical references for the in-depth development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, No. 88 East Fuxing Road, Yuetang District, Xiangtan, 411100, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
3
|
Zhang H, Zhu S, Shang D, Hamid N, Ma Q, Xiao Y, Ren L, Liu G, Sun A. Enhancing stability and physiological activity of Aronia melanocarpa L. anthocyanin by polysaccharides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3052-3063. [PMID: 39655637 DOI: 10.1002/jsfa.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND The existence of multiple phenolic hydroxyl groups in anthocyanins makes their structure unstable and leads to the degradation of anthocyanins. At present, there are few studies on the stability and physiological activity of Aronia melanocarpa L. anthocyanins by different polysaccharides. The present study investigated the effects of carboxymethyl cellulose (CMC), pectin and xanthan gum (XG) on the stability and biological activities of A. melanocarpa L. anthocyanins. RESULTS The anthocyanins of A. melanocarpa L. (AAM) were successfully extracted from A. melanocarpa L. with an extraction rate of 3.07 mg g-1 by single factor and response surface experiments. The results of scanning electron microscopy and a multispectral technique showed that AAM-polysaccharides complex was combined by hydrogen bond, cation-π interaction and electrostatic interaction. The AAM-polysaccharides complex improved the retention rate of anthocyanins after treatment with light, heating, oxidant reducing agent, metal ions and preservatives compared to the results for AAM alone. Determination of DPPH· scavenging capacity, ABTS+ scavenging capacity and total reducing capacity indicated that the presence of polysaccharide could improve the antioxidant activity of AAM in vitro. The three polysaccharides combined with AAM showed higher binding ability to taurocholate and glycocholate compared to the AAM group, with the AAM-XG binding rate being the highest at 27.61% and 20.61%, respectively. The tyrosinase inhibition rate significantly increased with the incorporation of XG, reaching 72.22%. CONCLUSION The stability and physiological activity of AAM were improved after the addition of CMC, pectin and XG in the simulated system, and the presence of XG showed greater advantages. The present study strongly suggests that anthocyanins driven by polysaccharides have a positive effect on the stability and physiological activity of anthocyanins and may also provide a research basis for the development of processing technology for anthocyanins in food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shiyu Zhu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Dansen Shang
- SINOPEC (Beijing) Research Institute of Chemical Industry, Beijing, China
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Qianli Ma
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Yuhang Xiao
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lining Ren
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Guochen Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Aidong Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Lelis CA, Andrade JC, Lima RC, Ribeiro RAP, Pacheco AFC, Pacheco FC, Leite-Junior BRC, Paiva PHC, Álvares TS, Conte-Junior CA. Pumpkin seed protein as a carrier for Astaxanthin: Molecular characterization of interactions and implications for stability. Food Chem 2025; 468:142452. [PMID: 39675276 DOI: 10.1016/j.foodchem.2024.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
This study investigated pumpkin seed protein (PSP) as a carrier for astaxanthin (AST). Interaction mechanisms revealed through fluorescence spectroscopy and molecular docking, showed that hydrogen bonds and Van der Waals forces form the PSP-AST complex. AST binding altered PSP's secondary structure, increasing α-helix (7.32 %) and β-sheet (14.49 %) content while reducing β-turn (12.55 %) and random coil (9.26 %) content. Temperature significantly affected AST degradation, with higher stability observed in the PSP-AST complex. The degradation process was non-spontaneous, with a higher activation energy for complexed AST (26.53 KJ/mol) than free AST (14.69 KJ/mol). Additionally, AST reduced PSP oxidation by 16 % in oxidative conditions, and PSP protected AST during in vitro digestion. This study provides key insights for enhancing AST stability, highlighting its potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Carini A Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil.
| | - Jelmir C Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | - Rayssa C Lima
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
| | - Renan A P Ribeiro
- Department of Natural and Earth Sciences, State University of Minas Gerais, Av. Paraná, 3001, Divinópolis, MG 35501-170, Brazil
| | - Ana Flávia C Pacheco
- Instituto de Laticínios Cândido Tostes, Empresa Agropecuária de Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora, MG 36045-560, Brazil
| | - Flaviana C Pacheco
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, Viçosa, MG 36570-900, Brazil
| | - Bruno R C Leite-Junior
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, Viçosa, MG 36570-900, Brazil
| | - Paulo Henrique C Paiva
- Instituto de Laticínios Cândido Tostes, Empresa Agropecuária de Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora, MG 36045-560, Brazil
| | - Thiago S Álvares
- Food and Nutrition Institute, Multidisciplinary Center, Nutrition Institute, Federal University of Rio de Janeiro, Macaé 27979-000, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil.
| |
Collapse
|
5
|
Ren G, He Y, Liu L, Wu Y, Jiao Q, Liu J, Cai X, Zhu Y, Huang Y, Huang M, Xie H. Effects of collagen hydrolysate on the stability of anthocyanins: Degradation kinetics, conformational change and interactional characteristics. Food Chem 2025; 464:141513. [PMID: 39395336 DOI: 10.1016/j.foodchem.2024.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Anthocyanins are desirable compounds in the food industry owing to their attractive color and high biological activity; however, their poor stability remains a substantial challenge. Here, we show that low-concentration (15 mg/mL) collagen hydrolysate (CH) exhibits a potent stabilization effect on red cabbage anthocyanins (RCAs). CH extended the half-life of RCA by 6.2-fold from 40.7 to 251.1 h. Dynamic light scattering and transmission electron microscopy confirmed the formation of CH-RCA complexes, which exhibited stronger antioxidant activity than RCA alone. Ultraviolet-vis and infrared spectra demonstrated that RCA binding resulted in a more open and disordered CH structure. Centaureidin-3-O-glucoside (C3G) exhibited high affinity for CH, with a binding ratio close to 1.5:1. 1H nuclear magnetic resonance confirmed that the main interaction sites with CH were at the C3G A- and C-rings. This study clarifies how protein hydrolysates protect against anthocyanin degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Lei Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yingjie Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Qingbo Jiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jiacheng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xinpei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
6
|
Wang W, Yang P, Gao F, Wang Y, Xu Z, Liao X. Metal-free production of natural blue colorants through anthocyanin-protein interactions. J Adv Res 2025; 68:17-29. [PMID: 38402948 PMCID: PMC11785908 DOI: 10.1016/j.jare.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION The scarcity of naturally available sources for blue colorants has driven reliance on synthetic alternatives. Nevertheless, growing health concerns have prompted the development of naturally derived blue colorants, which remains challenging with limited success thus far. Anthocyanins (ACNs) are known for providing blue colors in plants, and metal complexation with acylated ACNs remains the primary strategy to generate stable blue hues. However, this approach can be costly and raise concerns regarding potential metal consumption risks. OBJECTIVES Our study aims to introduce a metal-free approach to achieve blue coloration in commonly distributed non-acylated 3-glucoside ACNs by exploring their interactions with proteins and unveiling the underlying mechanisms. METHODS Using human serum albumin (HSA) as a model protein, we investigated the structural influences of ACNs on their blue color generation using visible absorption spectroscopy, fluorescence quenching, and molecular simulations. Additionally, we examined the bluing effects of six proteins derived from milk and egg and identified the remarkable roles of bovine serum albumin (BSA) and lysozyme (LYS). RESULTS Our findings highlighted the importance of two or more hydroxyl or methoxyl substituents in the B-ring of ACNs for generating blue colors. Cyanidin-, delphinidin- and petunidin-3-glucoside, featuring two neighboring hydroxyl groups in the B-ring, exhibited blue coloration when interacting with HSA or LYS, driven primarily by favorable enthalpy changes. In contrast, malvidin-3-glucoside, with two methoxyl substituents, achieved blue coloration through interactions with HSA or BSA, where entropy change played significant roles. CONCLUSION Our work, for the first time, demonstrates the remarkable capability of widely distributed 3-glucoside ACNs to generate diverse blue shades through interactions with certain proteins. This offers a promising and straightforward strategy for the production of ACN-based blue colorants, stimulating further research in this field.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fuqing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China.
| |
Collapse
|
7
|
Tan C, Zhu J, Shi C, Zhang X, Lu S, Wang S, Guo C, Ning C, Xue Y. Interactions with peanut protein isolate regulate the bioaccessibility of cyanidin-3-O-glucoside: Multispectral analysis, simulated digestion, and molecular dynamic simulation. Food Chem 2025; 464:141586. [PMID: 39396476 DOI: 10.1016/j.foodchem.2024.141586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Anthocyanins are susceptible to degradation owing to environmental factors. Combining them with proteins can improve their stability; however, the interaction mechanism is difficult to elucidate. This study used multispectral and molecular dynamics simulations and molecular docking methods to investigate the interaction mechanism between peanut protein isolate (PPI) and cyanidin-3-O-glucoside (C3G). The UV absorption peak and PPI turbidity increased, while the fluorescence intensity decreased with greater C3G content. Protein secondary structure changes suggested that PPI and C3G coexisted in spontaneous covalent and non-covalent interactions via static quenching. The complex structures were stable over time and C3G stably bound to the peanut globulin Ara h 3 cavity through hydrogen bonding and hydrophobic interactions. Furthermore, PPI enhanced the C3G antioxidant activity and bioaccessibility by increasing its retention rate during in-vitro simulated digestion. This study elucidates the binding mechanism of PPI and C3G and provides insight into applications of the complex in food development.
Collapse
Affiliation(s)
- Chang Tan
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Jiahe Zhu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chenyang Shi
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Xue Zhang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Lu
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Shan Wang
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China
| | - Chongting Guo
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Chong Ning
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| | - Youlin Xue
- Light Industry College, Liaoning University, Shenyang, Liaoning 110031, China.
| |
Collapse
|
8
|
Xue H, Zhao J, Wang Y, Shi Z, Xie K, Liao X, Tan J. Factors affecting the stability of anthocyanins and strategies for improving their stability: A review. Food Chem X 2024; 24:101883. [PMID: 39444439 PMCID: PMC11497485 DOI: 10.1016/j.fochx.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Anthocyanins, as the most common and widely distributed flavonoid compounds, are widely present in fruits and vegetables. Anthocyanins show various biological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, and immunomodulatory activities. Hence, anthocyanins are widely used in the fields of food and pharmaceuticals. However, anthocyanins are susceptible to environmental and processing factors due to their structural characteristics, which leads to poor storage and processing stability. Numerous studies have indicated that structural modification, co-pigmentation, and delivery systems could improve the stability and bioavailability of anthocyanins in the external environment. This article reviews the main factors affecting the stability of anthocyanins. Moreover, this review comprehensively introduces methods to improve the stability of anthocyanins. Finally, the current problems and future research advances of anthocyanins are also introduced. The findings can provide important references for deeper research on the stability, biological activities, and bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianduo Zhao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding, 071002, China
| |
Collapse
|
9
|
Yang P, Wang W, Hu Y, Wang Y, Xu Z, Liao X. Exploring high hydrostatic pressure effects on anthocyanin binding to serum albumin and food-derived transferrins. Food Chem 2024; 452:139544. [PMID: 38723571 DOI: 10.1016/j.foodchem.2024.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 μM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.
Collapse
Affiliation(s)
- Peiqing Yang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenxin Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Yongtao Wang
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaojun Liao
- Beijing Key Laboratory for Food Non-thermal processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Fruit & Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Wang D, Cui H, Zong K, Hu H, Li Y, Yang J. The effects of the interaction between cyanidin-3-O-glucoside (C3G) and walnut protein isolate (WPI) on the thermal and oxidative stability of C3G. Food Sci Nutr 2024; 12:6711-6719. [PMID: 39554342 PMCID: PMC11561789 DOI: 10.1002/fsn3.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 11/19/2024] Open
Abstract
This study explores the interaction between cyanidin-3-O-glucoside (C3G), a water-soluble pigment known for its diverse functional activities, and walnut protein isolate (WPI) as a potential stabilizing agent. Given the inherent instability of C3G, particularly its limited application in the food industry due to sensitivity to thermal and oxidative conditions, this research study aims to enhance its stability. According to the results of the fluorescence quenching experiment, C3G can efficiently quench WPI's intrinsic fluorescence through static quenching. Structural exploration revealed that C3G bound WPI via hydrophobic interaction force, with the number of bound C3G molecules (n) almost equivalent to 1. The ΔG value denoting change in Gibbs free energy for C3G binding with WPI was -8.05 kJ/mol, which indicated that the interaction between C3G and WPI is spontaneous. Moreover, the conformational structures of WPI were altered by C3G binding with a decrease in α-helix contents and an increase in β-turn, β-sheet, and random coil contents. The thermal degradation kinetics indicate that after interacting with WPI, the half-life of C3G increased by 1.62 times and 1.05 times at 80 and 95°C, respectively. The results of the oxidation stability test showed that the presence of WPI effectively reduced the discoloration and degradation of C3G caused by oxidation, and improved the oxidation stability of C3G. This study's findings will help to clarify the interaction mechanism between C3G and WPI, and broaden C3G's application scope in the food processing field.
Collapse
Affiliation(s)
- Daquan Wang
- Anhui Science and Technology UniversityChuzhouChina
| | - Haipeng Cui
- Anhui Science and Technology UniversityChuzhouChina
| | - Kaili Zong
- Anhui Science and Technology UniversityChuzhouChina
| | - Hongchao Hu
- Anhui Science and Technology UniversityChuzhouChina
| | - Yali Li
- Anhui Science and Technology UniversityChuzhouChina
| | | |
Collapse
|
11
|
Lin X, Fan Y, Li L, Chen J, Huang S, Yue W, Wu X. The Protective Effects of Silkworm ( Bombyx mori) Pupae Peptides on UV-Induced Skin Photoaging in Mice. Foods 2024; 13:1971. [PMID: 38998477 PMCID: PMC11241504 DOI: 10.3390/foods13131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Silkworm (Bombyx mori) pupae are popular edible insects with high nutritional and therapeutic value. Currently, there is growing interest in the comprehensive application of silkworm pupae. In this study, peptides that exhibited anti-photoaging activity were obtained from silkworm pupae protein, aiming to investigate the protective effects and potential mechanisms of silkworm pupae peptides (SPPs) on skin photoaging. The results showed that SPPs were composed of 900 short peptides and could effectively alleviate skin photoaging progression. They significantly eliminated excessive production of ROS and MDA; meanwhile, they also renovated the antioxidant enzyme activities. The biomarkers related to collagen synthesis and degradation, including hydroxyproline, interstitial collagenase, and gelatinase, demonstrated that SPPs could suppress collagen degradation. Histopathological results showed that SPPs could reduce the inflammatory infiltrate and the thickness of the dermis and epidermis, as well as increase the collagen bundles and muscle fibers. The histopathological and biochemical results confirmed that SPPs could alleviate photoaging by inhibiting abnormal skin changes, reducing oxidative stress, and immune suppression. Overall, these data prove the protective effects of SPPs against the photoaging process, suggesting their potential as an active ingredient in skin photoaging prevention and therapy.
Collapse
Affiliation(s)
- Xiao Lin
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Liuying Li
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Jiamin Chen
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Songyuan Huang
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (X.L.); (L.L.); (S.H.)
| | - Wenqi Yue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; (Y.F.); (J.C.); (W.Y.)
| |
Collapse
|
12
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
13
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
14
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Dong R, Huang Z, Ma W, Yu Q, Xie J, Tian J, Li B, Shan J, Chen Y. Fabrication of nanocomplexes for anthocyanins delivery by ovalbumin and differently dense sulphate half-ester polysaccharides nanocarriers: Enhanced stability, bio-accessibility, and antioxidant properties. Food Chem 2024; 432:137263. [PMID: 37657340 DOI: 10.1016/j.foodchem.2023.137263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study aimed to fabricate novel nanocomplexes for delivery of anthocyanins (ACN) utilizing ovalbumin (OVA) and sulphated-polysaccharides with varying linear charge density (κ-,ι-, λ-carrageenan and dextran sulfate: κC < ιC < λC < DS). Influence of OVA-sulphated-polysaccharides on ACN stability, antioxidant capacity, and bioaccessibility was investigated. Fabricated nanoparticlecosmeticsed superior encapsulation efficiency (94.11-96.2%) and loaded capacity (9.05-9.54%) for ACN. OVA-DS displayed the smallest particle size and turbidity, while OVA-κC-ACN exhibited the largest ones. ζ-Potential of nanoparticles raised with increasing ester-sulfate level in sulphated-polysaccharides. FT-IR, Raman and OVA conformational alterations revealed existence of intermolecular-interactions between ACN and OVA-polysaccharides. DSC and TGA showed considerable thermo-stability of self-assembled (ACN-loaded) OVA-polysaccharides. Spheroid-nanoparticles size increased after ACN-loading in SEM and CLSM. Composite nanocomplexes enhanced ACN stability and antioxidant properties under accelerated degradation conditions and simulated digestion, particularly, OVA-DS-ACN and OVA-λC-ACN. We provide a choice for reinforcing stability of hydrophilic nutraceuticals and improving its applications.
Collapse
Affiliation(s)
- Ruihong Dong
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Huang
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wenjie Ma
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jialuo Shan
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
16
|
Guo Z, Huang J, Mei X, Sui Y, Li S, Zhu Z. Noncovalent Conjugates of Anthocyanins to Wheat Gluten: Unraveling Their Microstructure and Physicochemical Properties. Foods 2024; 13:220. [PMID: 38254520 PMCID: PMC10815003 DOI: 10.3390/foods13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Intake of polyphenol-modified wheat products has the potential to reduce the incidence of chronic diseases. In order to determine the modification effect of polyphenols on wheat gluten protein, the effects of grape skin anthocyanin extract (GSAE, additional amounts of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively) on the microstructure and physicochemical properties of gluten protein were investigated. The introduction of GSAE improves the maintenance of the gluten network and increases viscoelasticity, as evidenced by rheological and creep recovery tests. The tensile properties of gluten protein were at their peak when the GSAE level was 0.3%. The addition of 0.5% GSAE may raise the denaturation temperature of gluten protein by 6.48 °C-9.02 °C at different heating temperatures, considerably improving its thermal stability. Furthermore, GSAE enhanced the intermolecular hydrogen bond of gluten protein and promoted the conversion of free sulfhydryl groups to disulfide bonds. Meanwhile, the GSAE treatment may also lead to protein aggregation, and the average pore size of gluten samples decreased significantly and the structure became denser, indicating that GSAE improved the stability of the gluten spatial network. The positive effects of GSAE on gluten protein properties suggest the potential of GSAE as a quality enhancer for wheat products.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jian Huang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (X.M.); (Y.S.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.G.); (J.H.)
| | - Zhenzhou Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
17
|
Zang Z, Tian J, Chou S, Lang Y, Tang S, Yang S, Yang Y, Jin Z, Chen W, Liu X, Huang W, Li B. Investigation on the interaction mechanisms for stability of preheated whey protein isolate with anthocyanins from blueberry. Int J Biol Macromol 2024; 255:127880. [PMID: 37944731 DOI: 10.1016/j.ijbiomac.2023.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Proteins and anthocyanins coexist in complex food systems. This research mainly studied the steady-state protective design and mechanism of the preheated protein against anthocyanins. Multispectral and molecular dynamics are utilized to illustrate the interaction mechanism between preheated whey protein isolate (pre-WPI) and anthocyanins. The pre-WPI could effectively protect the stability of anthocyanins, and the effect was better than that of the natural whey protein isolate (NW). Among them, NW after preheating treatment at 55 °C showed better protection against anthocyanin stability. Fluorescence studies indicated that pre-WPI there existed a solid binding affinity and static quenching for malvidin-3-galactoside (M3G). Multispectral data showed a significant variation in the secondary structure of pre-WPI. Furthermore, molecular dynamics simulation selects AMBER18 as the protein force field, and the results showed that hydrogen bonding participated as an applied force. Compared with NW, pre-WPI could better wrap anthocyanins and avoid damage to the external environment due to tightening of the pockets. Protein protects anthocyanins from degradation, and this protective effect is influenced by the preheating temperature of protein and the structure of protein. On the basis of the above results, it is possible to pinpoint the interaction mechanism between preheated proteins and anthocyanins.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Wuyang Huang
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
18
|
Cui H, Jiang Q, Gao N, Tian J, Wu Y, Li J, Yang S, Zhang S, Si X, Li B. Complexes of glycated casein and carboxymethyl cellulose enhance stability and control release of anthocyanins. Food Res Int 2024; 176:113804. [PMID: 38163683 DOI: 10.1016/j.foodres.2023.113804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
To improve the stability and sustained-release property of anthocyanins (ACNs), casein (CA) - dextran (DEX) glycated conjugates (UGCA) and carboxymethyl cellulose (CMC) were used to prepare ACNs-loaded binary and ternary complexes. The ACNs-loaded binary complexes (ACNs-UGCA) and ternary complexes (ACNs-UGCA-CMC) achieved by 8 min' ultrasonic treatment with 40 % amplitude. The binary and ternary complexes showed spherical structure and good dispersibility, with the average size of 121.2 nm and 132.4 nm respectively. The anthocyanins encapsulation efficiency of ACNs-UGCA-CMC increased almost 20 % than ACNs-UGCA. ACNs-UGCA-CMC had better colloidal stabilities than ACNs-UGCA, such as thermal stability and dilution stability. Simultaneously, both of the binary and ternary complexes significantly prevented anthocyanins from being degraded by heat treatment, ascorbic acid, sucrose and simulated gastrointestinal environment. The protective effect of ACNs-UGCA-CMC was more significant. Furthermore, ACNs-UGCA-CMC showed slower anthocyanins release in simulated releasing environment in vitro and a long retention time in vivo. Our current study provides a potential delivery for improving the stability and controlling release of anthocyanins.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Shugang Zhang
- Yunneng (Dalian) Biotechnology Co., Ltd., Dalian, Liaoning 116600, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
19
|
Zhang S, Deng G, Wang F, Xu H, Li J, Liu J, Wu D, Lan S. Effect of Preheating Whey Protein Concentrate on the Stability of Purple Sweet Potato Anthocyanins. Polymers (Basel) 2023; 15:3315. [PMID: 37571210 PMCID: PMC10422442 DOI: 10.3390/polym15153315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins (ANs) have strong antioxidant activities and can inhibit chronic diseases, but the instability of ANs limits their applications. The conservation of preheating whey protein concentrate (WPC) on the stability of purple sweet potato ANs was investigated. The retention of ANs in WPC-ANs was 85.88% after storage at 25 °C for 5 h. WPC-ANs had higher retention of ANs in heating treatment. The retention rates of ANs in WPC-ANs exposed to light and UV lamps for 6 h were 78.72% and 85.76%, respectively. When the concentration of H2O2 was 0.50%, the retention rate of ANs in the complexes was 62.04%. WPC-ANs' stability and antioxidant activity were improved in simulated digestive juice. The WPC-ANs connection was static quenching, and the binding force between them was a hydrophobic interaction at one binding site, according to the fluorescence quenching spectroscopy. UV-visible absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR) analysis further indicated that the secondary structure and microenvironment of amino acid residues in WPC can be impacted by the preheating temperature and preheating times of WPC. In conclusion, preheating WPC can successfully preserve the stability of purple sweet potato ANs by binding to them through a non-covalent interaction.
Collapse
Affiliation(s)
- Shuo Zhang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China;
| | - Jiagen Li
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dengfeng Wu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| | - Shitao Lan
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (S.Z.); (G.D.); (J.L.); (D.W.); (S.L.)
| |
Collapse
|
20
|
Effects of α-casein on the excretion of blueberry anthocyanins via urine and feces: Analysis of their bioavailability. Food Chem 2023; 413:135565. [PMID: 36773360 DOI: 10.1016/j.foodchem.2023.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Anthocyanins are bioactive compounds found in blueberries. However, their poor bioavailability restricts their functional activities in vivo, which is a challenging issue in the application of blueberry anthocyanins. Our current study utilized α-casein as a carrier and analyzed its influence on the excretion of blueberry anthocyanins in urine and feces in a rat model to reflect the enhanced bioavailability of blueberry anthocyanins by α-casein in vivo. The results showed that α-casein suppressed the excretive content of blueberry anthocyanins (malvidin-3-O-galacoside (M3G), cyanidin-3-O-glucoside (C3G), and delphinidin-3-O-glucoside (D3G)), increased the content of metabolites in urine (syringic acid, ferulic acid, 4-hydroxybenzoic acid, and vanillic acid), and reduced metabolite content in feces (syringic acid, ferulic acid, and gallic acid), indicating that α-casein was effective in controlling the excretion of blueberry anthocyanins and their metabolites. In summary, these results provided sufficient evidence for the positive effects of α-casein on the bioavailability of blueberry anthocyanins.
Collapse
|
21
|
Wang Y, Yang C, Zhang J, Zhang L. Interaction of preheated whey protein isolate with rose anthocyanin extracts in beverage model system: Influence on color stability, astringency and mechanism. Food Chem 2023; 412:135507. [PMID: 36716623 DOI: 10.1016/j.foodchem.2023.135507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Preheating proteins have the potential to improve anthocyanin stability. Our aim was to investigate the effect of preheated whey protein isolate (WPI) on the color stability and astringency of the beverage model system in the presence of rose anthocyanin extracts (RAEs), and to explore the mechanism of interaction between preheated WPI and RAEs. The secondary structure, particle size and transparency of WPI were obviously changed by preheating. WPI preheated at 100°C (WPI100) could effectively improve the color stability of RAEs in the beverage model system. Importantly, the WPI100-RAEs in the beverage model system exhibited the smallest particle size and the weakest astringency effect. In addition, different preheated WPIs could interact with RAEs non-covalently, and the interaction forces are hydrogen bonding and van der Waals forces, among which WPI100 had the strongest binding ability to RAEs. These results will provide a new insight into the development of protein-anthocyanin beverages.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
22
|
Lee JH, Kim TK, Kim YJ, Kang MC, Song KM, Kim BK, Choi YS. Structural, physicochemical, and immune-enhancing properties of edible insect protein isolates from Protaetia brevitarsis larvae. Food Chem X 2023; 18:100722. [PMID: 37397222 PMCID: PMC10314139 DOI: 10.1016/j.fochx.2023.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Edible insects are promising future food resources globally. Herein, the structural, physicochemical, and bio-functional properties of edible insect protein isolates (EPIs) extracted from Protaetia brevitarsis larvae were investigated. The results showed that EPIs have a high total essential amino acid content; moreover, β-sheet is the major secondary protein structure. The EPI protein solution was highly soluble and electrically stable and did not aggregate easily. In addition, EPIs exhibited immune-enhancing properties; EPI treatment of macrophages induced the activation of macrophages and consequently promoted the production of pro-inflammatory mediators (NO, TNF-α, and IL-1β). Moreover, macrophage activation of EPIs was confirmed to occur through the MAPK and NF-κB pathways. In conclusion, our results suggest that the isolated P. brevitarsis protein can be fully utilized as a functional food material and alternative protein source in the future food industry.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
23
|
Dong R, Tian J, Huang Z, Yu Q, Xie J, Li B, Li C, Chen Y. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chem 2023; 410:135375. [PMID: 36610086 DOI: 10.1016/j.foodchem.2022.135375] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
This study investigated the protective effect of β-glucan (BG), konjac glucomannan (KGM) and xanthan gum (XG) on thermo-stability and antioxidant capacities of blueberry anthocyanins (ACN) and their interaction mechanisms. Twenty-six glycosylated and acylated ACN were identified, and malvidin-3-O-galactose was predominant (36.78 %) in ACN extracts. Three polysaccharides retained colour and stability and antioxidant capabilities of ACN under thermal-treatments (XG > KGM > BG). Rheological properties (shear stress, apparent viscosity) of three polysaccharides were enhanced in presence of ACN. UV-visible spectra, SEM and DLS results indicated that co-aggregation between ACN and specific zones of these polysaccharides was formed. TGA and DSC studies confirmed that introductionof three polysaccharides, especially XG could improve thermostability of ACN. FTIR, and molecular dynamics simulations revealed that thermo-stabilization of polysaccharides-ACN conjugates might be attributedto their intermolecular interactions mainly via hydrogen bindings. The protection by water-soluble polysaccharides foresees novel anthocyanins in food products with increased heat-resistant stability.
Collapse
Affiliation(s)
- Ruihong Dong
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ziyan Huang
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center For Berry Processing, National Engineering and Technology of Research Center For Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chang Li
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
24
|
He W, Jiang Y, Chen K, Chen J, Zeng M, Qin F, Wang Z, He Z. Comparison of different ultrafiltration-recovered soy protein hydrolysate fractions and their effects on the stability of mulberry anthocyanin extract. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Li S, Wang X, Zhang X, Zhang H, Li S, Zhou J, Fan L. Interactions between zein and anthocyanins at different pH: Structural characterization, binding mechanism and stability. Food Res Int 2023; 166:112552. [PMID: 36914336 DOI: 10.1016/j.foodres.2023.112552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Zein-anthocyanin nanoparticles (ZACNPs) at different pH values were successfully developed to stabilize anthocyanins based on the self-assembly properties of zein. The structural characterization by the Fourier infrared spectroscopy, fluorescence spectroscopy, differential scanning calorimetry and molecular docking analysis showed that the interactions between anthocyanins and zein were driven by the hydrogen bonds formed between the hydroxyl and carbonyl oxygen groups on anthocyanin glycoside groups and the amino acid residues (glutamine and serine), as well as the hydrophobic interactions from the A or B ring of anthocyanins and the amino acid residues of zein. The binding energy of zein to two anthocyanin monomers cyanidin 3-O-glucoside and delphinidin 3-O-glucoside was 8.2 and 7.4 kcal/mol. Further property examinations of ZACNPs showed that the thermal stability of anthocyanins at a ratio of zein:ACN = 1:0.3 was improved by 56.64 % (90 °C, 2 h), and the storage stability increased by up to 31.11 % at pH 2. In addition, the antioxidant activity of ZACNPs (zein:ACN = 1:0.3) was significantly enhanced, and the DPPH, ABTS radical scavenging activities, FRAP and ORAC value reached 87.73 %, 87.89 %, 435.5 μg/mL, 90.58 μmol/mL at pH 4, respectively. These results suggested that combining zein to anthocyanins is a feasible method to stabilize anthocyanins.
Collapse
Affiliation(s)
- Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiang Wang
- Institute of Chemical Industry of Forest Products, CAF, Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
| | - Xiaoqian Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianzhong Zhou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
26
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
27
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
28
|
Tong Y, Li L, Meng X. Anthocyanins from Aronia melanocarpa Bound to Amylopectin Nanoparticles: Tissue Distribution and In Vivo Oxidative Damage Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:430-442. [PMID: 36562990 DOI: 10.1021/acs.jafc.2c06115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The in vivo applications of anthocyanins are limited by their instability. Nano-encapsulation using amylopectin nanoparticles (APNPs) stabilizes anthocyanins to deliver them to tissues to ameliorate their physiological functions. Herein, rats are fed four Aronia melanocarpa anthocyanins encapsulated with APNPs, and their subsequent distributions and bioactivity in nine tissues are revealed using UHPLC-MS. Among digestive tissues, the concentration of the APNP-protected cyanidin 3-O-arabinoside in the stomach is 134.54% of that of the free anthocyanin, while among non-digestive tissues, the APNP-protected cyanidin 3-O-glucoside concentration in the lungs improved by 125.49%. Concentration maxima "double peaks" in the liver and kidney arise from different modes of transport. Sustained release of anthocyanins from anthocyanin-APNPs and stable concentration curves suggest controlled delivery, with most APNPs consumed in the digestive system. APNPs did not affect the overall anthocyanin absorption time or tissues. The superoxide dismutase and malondialdehyde concentrations indicate that APNPs enhance the oxidative damage protection in vivo.
Collapse
Affiliation(s)
- Yuqi Tong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning110866, China
| |
Collapse
|
29
|
Yi J, Che H, Ren J, Yu H, Song K, Wang X, Zhao X, Wang X, Li Q. Insights into the interaction of cyclooxygenase and lipoxygenase with natural compound 3,4',5,7-Tetrahydroxyflavone based on multi-spectroscopic and metabolomics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121800. [PMID: 36067623 DOI: 10.1016/j.saa.2022.121800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood. In this study, we firstly estimated the preventive role of THF against hypoxia-induced right ventricular dysfunction. Metabolomics analysis showed there were differential metabolites involved in above process, which helped us to screen the crucial regulated enzymes of these metabolites. Molecular docking and multi-spectroscopic revealed the molecular mechanism of interaction between THF and COX/LOX. Results suggested that THF bound to COX/LOX through static quenching and these bindings were driven by hydrogen bonds. After binding with THF, the secondary structure of COX/LOX was changed. In general, this study indicated that THF inhibited COX/LOX by spontaneously forming complexes with them.
Collapse
Affiliation(s)
- Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Jiping Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Kexin Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
30
|
Wu H, Oliveira G, Lila MA. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr Rev Food Sci Food Saf 2023; 22:333-354. [PMID: 36398759 DOI: 10.1111/1541-4337.13070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Color is an important characteristic of food. Over the last 15 years, more attention has been paid to natural colorants because of the rising demand for clean-label food products. Anthocyanins, which are a group of phytochemicals responsible for the purple, blue or red hues of many plants, offer a market advantage. In addition, anthocyanin-rich foods are associated with protection against cardiovascular disease, thrombosis, diabetes, cancer, microbial-based disorders, neurological disorders, and vision ailments. However, the real health value of anthocyanins, whether as a natural colorant or a functional ingredient, is dependent on the ultimate bioaccessibility and bioavailability in the human body. Many animal and human clinical studies revealed that, after intake of anthocyanin-rich foods or anthocyanin extracts, only trace amounts (< 1% of ingested content) of anthocyanins or their predicted metabolites were detected in plasma after a standard blood draw, which was indicative of low bioavailability of anthocyanins. Protein binding to anthocyanins is a strategy that has recently been reported to enhance the ultimate bioactivity, bioaccessibility, and bioavailability of anthocyanins as compared to anthocyanins delivered without a protein carrier. Therefore, in this review, we address anthocyanin properties in food processing and digestion, anthocyanin-protein complexes used in food matrices, and changes in the bioaccessibility and bioavailability of anthocyanins when bound into anthocyanin-protein complexes in foods. Finally, we summarize the challenges and prospects of this delivery system for anthocyanin pigments.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriel Oliveira
- Department of Food Science, Federal University of Minas Gerais, Brazil
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
31
|
Studies on the interaction between homological proteins and anthocyanins from purple sweet potato (PSP): Structural characterization, binding mechanism and stability. Food Chem 2023; 400:134050. [DOI: 10.1016/j.foodchem.2022.134050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/30/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
|
32
|
The Interactional Characterization of Lentil Protein Isolate (LPI) with Cyanidin-3-O-Glucoside (C3G) and Their Effect on the Stability and Antioxidant Activity of C3G. Foods 2022; 12:foods12010104. [PMID: 36613320 PMCID: PMC9818459 DOI: 10.3390/foods12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The interaction between lentil protein isolate (LPI) and cyanidin-3-O-glucoside (C3G) was investigated via with UV−vis spectroscopy, circular dichroism, and fluorescence spectroscopy and the stability of anthocyanin was also evaluated. After LPI mixed with C3G, the turbidity and foaming capacity increased and the particle size and surface charge did not change significantly, while the surface hydrophobicity decreased significantly (p < 0.05). The fluorescence results indicated that C3G quenched the intrinsic of LPI by static quenching and LPI bound with C3G via hydrophobic effects with Ka of 3.24 × 106 M−1 at 298 K. The addition of LPI significantly (p < 0.05) slightly decreased the thermal and oxidation degradation of C3G by up to 90.23% and 54.20%, respectively, while their antioxidant activity was inhibited upon mixing. These alterations of physicochemical properties might be attributed to their structural changes during the interaction. The obtained results would be of help in stabilizing bioactive compounds and the development of functional foods.
Collapse
|
33
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
34
|
He W, Guo F, Jiang Y, Liu X, Chen J, Zeng M, Wang Z, Qin F, Li W, He Z. Enzymatic hydrolysates of soy protein promote the physicochemical stability of mulberry anthocyanin extracts in food processing. Food Chem 2022; 386:132811. [PMID: 35366632 DOI: 10.1016/j.foodchem.2022.132811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Abstract
Soy protein papain hydrolysate (SPAH) and soy protein pepsin hydrolysate (SPEH) were used as protective agents for mulberry anthocyanin extracts (MAEs) to inhibit its color fading and enhance the anthocyanin stability at pH 6.3. Both SPAH and SPEH showed a significant protective effect on total anthocyanins in MAEs solutions. 1.0 mg/mL of SPEH presented the best protective effect on MAEs by increasing its half-life from 1.8 to 5.7 days. SPAH/SPEH-cyaniding-3-O-glucoside (C3G) interactions were investigated at pH 6.3 by fluorescence, Fourier-transform infrared spectroscopy (FT-IR), and Circular Dichroism (CD). Their association was mainly driven by hydrophobic interactions, and SPEH showed a higher binding affinity for C3G than SPAH, with a KA value of 2.62 × 105 M-1 at 300 K. The second structures of SPAH and SPEH were altered by C3G, with a decrease in the β-sheets and an increase in the turns and random coils.
Collapse
Affiliation(s)
- Wenjia He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian 362000, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yuting Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuwei Liu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weiwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Zhiyong He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, Fujian 362000, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
35
|
Formation of protein-anthocyanin complex induced by grape skin extracts interacting with wheat gliadins: Multi-spectroscopy and molecular docking analysis. Food Chem 2022; 385:132702. [DOI: 10.1016/j.foodchem.2022.132702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
|
36
|
Qie X, Chen W, Wu Y, Yang T, Wang Z, Zeng M, Chen J, Douglas Goff H, He Z. Entrapment of cyanidin-3-O-glucoside in β-conglycinin: From interaction to bioaccessibility and antioxidant activity under thermal treatment. Food Chem 2022; 398:133832. [DOI: 10.1016/j.foodchem.2022.133832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
|
37
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Linares G, Rojas ML. Ultrasound-Assisted Extraction of Natural Pigments From Food Processing By-Products: A Review. Front Nutr 2022; 9:891462. [PMID: 35685880 PMCID: PMC9171369 DOI: 10.3389/fnut.2022.891462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 01/15/2023] Open
Abstract
Ultrasound is an emerging technology, which has been highly explored in the food area to improve processes and products. When ultrasound is applied to a product with solid or fluid characteristics, the passage of acoustic waves and acoustic cavitation generates different mechanisms responsible for modifications in the original matrix of the sample. These effects of ultrasound can also be used to take advantage of by-products, for example by extracting compounds of interest, including natural pigments. Natural pigments or colorants are being highly demanded by different industries not only for color purposes but also due to their healthy properties, the greater demands in regulations and new consumer preferences. This review presents an updated critical analysis of the application of ultrasound-assisted extraction (UAE) to obtain natural pigments from food processing by-products. Initially, the ultrasound effects and mechanisms that improve the extraction of natural pigments in a fluid medium, as well as the factors that influence the extraction and the energy consumption of UAE are analyzed and described. Subsequently, the UAE application to obtain pigments belonging to the groups of carotenoids, chlorophyll, anthocyanins and betalains is evaluated. These sections detail the processing conditions, positive and negative effects, as well as possible applications of the extracted pigments. This review presents relevant information that may be useful to expand and explore new applications of ultrasound technology as well as promote the revaluation of by-products to obtain pigments that can be used in food, pharmaceutical or cosmetic industries.
Collapse
Affiliation(s)
- Guillermo Linares
- Departamento de Ciencias Agroindustriales, Universidad Nacional de Trujillo, Trujillo, Peru
| | - Meliza Lindsay Rojas
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
| |
Collapse
|
39
|
Li B, Zhao Y, Wang M, Guan W, Liu J, Zhao H, Brennan CS. Microencapsulation of Roselle Anthocyanins with β‐cyclodextrin and Proteins Enhances the Thermal Stability of Anthocyanins. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Li
- Tianjin University of Commerce Tianjin China
| | | | - Meiyan Wang
- Tianjin University of Commerce Tianjin China
| | | | - Jianfu Liu
- Tianjin University of Commerce Tianjin China
| | - Hui Zhao
- Tianjin University of Commerce Tianjin China
| | - Charles S. Brennan
- Tianjin University of Commerce Tianjin China
- Royal Melbourne Institute of Technology University Melbourne Australia
| |
Collapse
|
40
|
Effect of Soybean Protein Isolate-7s on Delphinidin-3- O-Glucoside from Purple Corn Stability and Their Interactional Characterization. Foods 2022; 11:foods11070895. [PMID: 35406982 PMCID: PMC9254744 DOI: 10.3390/foods11070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are abundant in purple corn and beneficial to human health. Soybean protein isolate-7s (SPI-7s) could enhance the stability of anthocyanins. The stable system of soybean protein isolate-7s and delphinidin-3-O-glucoside complex (SPI-7s-D3G) was optimized using the Box–Behnken design at pH 2.8 and pH 6.8. Under the condition of pH 2.8, SPI-7s effectively improved the sunlight-thermal stabilities of delphinidin-3-O-glucoside (D3G). The thermal degradation of D3G conformed to the first order kinetics within 100 min, the negative enthalpy value and positive entropy value indicated that interaction was caused by electrostatic interaction, and the negative Gibbs free energy value reflected a spontaneous interaction between SPI-7s and D3G. The interaction of SPI-7s-D3G was evaluated by ultraviolet visible spectroscopy, circular dichroism spectroscopy and fluorescence spectroscopy. The results showed that the maximum absorption peak was redshifted with increasing the α-helix content and decreasing the β-sheet contents, and D3G quenched the intrinsic fluorescence of SPI-7s by static quenching. There was one binding site in the SPI-7s and D3G stable system. The secondary structure of SPI-7s had changed and the complex was more stable. The stabilized SPI-7s-D3G will have broad application prospects in functional foods.
Collapse
|
41
|
Qi X, Xu D, Zhu J, Wang S, Peng J, Gao W, Cao Y. Interaction of ovalbumin with lutein dipalmitate and their effects on the color stability of marigold lutein esters extracts. Food Chem 2022; 372:131211. [PMID: 34601423 DOI: 10.1016/j.foodchem.2021.131211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
In this study, the interaction of ovalbumin with lutein dipalmitate and the effect of ovalbumin on marigold lutein esters extracts were investigated. Lutein dipalmitate quenched the fluorescence of ovalbumin by static quenching. Binding and thermodynamic parameters proved that lutein dipalmitate bound to ovalbumin spontaneously by van der Waals force and hydrogen bond, and the complex stoichiometry was 1:1. Through three-dimensional fluorescence spectroscopy, Fourier transform infrared spectroscopy and circular dichroism experiments, the conformation of ovalbumin was unfolded, and alteration in the ovalbumin secondary structure induced by lutein dipalmitate was observed. The results of transmission electron microscopy and particle size revealed that there were spherical and nano-sized aggregates in the ovalbumin-lutein dipalmitate system, indicating the lutein dipalmitate not only could bind to ovalbumin at molecular level, but also promote the aggregation of ovalbumin. Additionally, the addition of ovalbumin had a positive effect on the stability of marigold lutein esters extracts.
Collapse
Affiliation(s)
- Xin Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Jinjin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| | | | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Hebei, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| |
Collapse
|
42
|
Ren S, Giusti MM. Comparing the effect of whey protein preheating temperatures on the color expression and stability of anthocyanins from different sources. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Sun J, Chen J, Bi Y, Xiao Y, Ding L, Bai W. Fabrication and characterization of β-cyclodextrin-epichlorohydrin grafted carboxymethyl chitosan for improving the stability of Cyanidin-3-glucoside. Food Chem 2022; 370:130933. [PMID: 34507211 DOI: 10.1016/j.foodchem.2021.130933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023]
Abstract
Cyanidin-3-glucoside (C3G), an anthocyanin constituent of fruits and vegetables. It has been proven to possess numerous health benefits with no side effects. However, the poor stability of C3G is an intractable property that limits its application. Hence, the aim of this study is to improve the stability of C3G through the formation of well dispersed nanoparticles. In this study, C3G loaded β-CD-EP-CMC nanoparticles exhibited nearly spherical with good disperse and homogeneous morphology. Results also indicated that the nanoparticles formation of grafting of C3G to β-CD-EP-CMC could significantly improve the stability of C3G to against thermal or light degradation. Collectively, current results strongly aligned with the prospective purpose that the grafting of C3G to β-CD-EP-CMC nanoparticles could be treated as an effective approach for improving the stability. This study opens a new avenue for the utilization and development of novel wall materials β-CD-EP-CMC in C3G associated nutraceutical.
Collapse
Affiliation(s)
- Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yanmei Bi
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
44
|
Wang Y, Zhang J, Zhang L. Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- School of Food Science and Technology, The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
45
|
Effects and interaction mechanism of soybean 7S and 11S globulins on anthocyanin stability and antioxidant activity during in vitro simulated digestion. Curr Res Food Sci 2021; 4:543-550. [PMID: 34458860 PMCID: PMC8379378 DOI: 10.1016/j.crfs.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the effects of soybean 7S and 11S globulins on the stability and antioxidant capacity of cyanidin-3-O-glucoside (C3G) in the simulated gastrointestinal environment, and further to elucidate their interaction mechanism. The stability and total content of anthocyanins (ACNs) before and after simulated digestion were determined by Ultraviolet–visible (UV–Vis) spectroscopic and pH differential methods, respectively, and free radical scavenging activity of C3G after simulated digestion were measured using ABTS and DPPH assays. The interaction mechanism was further investigated using molecular docking and molecular dynamics simulation. The analysis results showed that soybean 7S and 11S globulins had a protective effect on the stability of C3G during simulated digestion and improved the antioxidant capacity of C3G after simulated digestion. Soybean 11S globulin had a better effect than soybean 7S globulin in protecting the stability and antioxidant capacity of C3G against simulated gastrointestinal environment. In silico results showed that the binding interactions between C3G and 7S and 11S globulins were mainly hydrogen bonds and van der Waals forces, followed by hydrophobic interactions. Among them, ASN69 and THR101 are the key amino acid residues for 7S–C3G binding, and THR82 and PRO86 are the key amino acid residues for 11S–C3G binding. The results suggested that it may be helpful to use soybean 7S and 11S globulins as carriers to improve the stability and antioxidant activity of ACNs. 7S and 11S improved the stability of C3G during simulated digestion. 7S and 11S improved the antioxidant capacity of C3G after simulated digestion. ASN69 and THR101 are the key amino acid residues for 7S–C3G binding. THR82 and PRO86 are the key amino acid residues for 11S–C3G binding.
Collapse
|
46
|
Li T, Wang L, Zhang X, Yu P, Chen Z. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization. Food Chem 2021; 363:130367. [PMID: 34198143 DOI: 10.1016/j.foodchem.2021.130367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/03/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022]
Abstract
The complexation of rice glutelin fibrils (RGFs) with cyanidin-3-O-glucoside (C3G) at acidic condition was investigated. The RGFs at pH 3.5 had a greatest protective effect on the thermal stability of C3G. The binding of C3G for RGFs was exothermic and driven by hydrophobic and electrostatic interactions. The RGFs exhibited a stronger binding interaction with C3G than rice glutelin (RG), resulting from the exposure of hydrophobic groups and positive charges on the fibrils surface, and thus RGFs exhibited better protective effect on C3G. The interaction with C3G resulted in the rearrangement of polypeptide chain, thereby reducing the β-sheet content. The larger aggregates were observed in RG/RGFs-C3G complexes due to protein-polyphenols aggregation. It was noteworthy that the pre-formed RGFs were restructured into entangled aggregates due to the interaction. This study proposed a novel protein fibril to protect anthocyanins, expanding the application of anthocyanins as stable and functional ingredients in acidic food systems.
Collapse
Affiliation(s)
- Ting Li
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Xinxia Zhang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhengxing Chen
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
47
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
48
|
Lang Y, Tian J, Meng X, Si X, Tan H, Wang Y, Shu C, Chen Y, Zang Z, Zhang Y, Wang J, Li B. Effects of α-Casein on the Absorption of Blueberry Anthocyanins and Metabolites in Rat Plasma Based on Pharmacokinetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6200-6213. [PMID: 34044544 DOI: 10.1021/acs.jafc.1c00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blueberry anthocyanins are well known for their beneficial biological activities. However, the poor bioavailability of anthocyanins limits their functional capacity in vivo. Our current study aimed to detect the effects of α-casein on the absorption of blueberry anthocyanins and their metabolites in rats. Blueberry anthocyanins with and without α-casein were intragastrically administered to two groups of rats and their blood samples were collected within 24 h. Results illustrated that rapid absorption of anthocyanins was observed in the rat plasma, but their concentration was relatively low. With the complexation of α-casein, the maximum concentration (Cmax) of bioavailable anthocyanins and metabolites could increase by 1.5-10.1 times (P < 0.05 or P < 0.01). The promotional effect on the plasma absorption of malvidin-3-O-galactoside and vanillic acid was outstanding with the Cmax increasing from 0.032 to 0.323 and from 0.360 to 1.902 μg/mL, respectively (P < 0.01). Besides, the molecular docking models presented that anthocyanins could enter the structural cavity and interact with amino acid residues of α-casein, which was in accordance with the improved bioavailability of anthocyanins. Therefore, α-casein could assist more blueberry anthocyanins and their metabolites to enter blood circulation.
Collapse
Affiliation(s)
- Yuxi Lang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihuan Zang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
49
|
Attaribo T, Huang G, Xin X, Zeng Q, Zhang Y, Zhang N, Tang L, Sedjoah RCAA, Zhang R, Lee KS, Jin BR, Gui Z. Effect of the silkworm pupa protein-glucose conjugate on the thermal stability and antioxidant activity of anthocyanins. Food Funct 2021; 12:4132-4141. [PMID: 33978000 DOI: 10.1039/d1fo00333j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthocyanin (cyanidin-3-O-glucose) is a natural water-soluble pigment with a robust antioxidant capacity. However, its poor stability and bioavailability limits its application as a functional food ingredient. This study explored the ability of the silkworm pupa protein-glucose (Spp-Glu) conjugate, developed under wet-heating conditions, to improve the thermal stability and antioxidant activity of cyanidin-3-O-glucose (C3G) at pH 3.0 and 6.8. The characterization experiments suggested that C3G complexed with the Spp-Glu conjugate could modify the protein's microenvironment and cause unfolding of the protein's secondary structures under varied pH conditions. Spectroscopic techniques further revealed the formation of complexes via hydrophobic interactions and static quenching processes when C3G was bound to Spp or Spp-Glu. The formation of these complexes effectively attenuated C3G degradation, thereby enhancing its stability under heat treatment over a range of pH values, and the experiments measuring antioxidant activity suggested that the Spp-Glu conjugate formed does not affect the efficacy of C3G after complexation. Therefore, our study suggests that Spp-Glu has the potential to effectively protect and deliver anthocyanins during industrial application for functional food formulation.
Collapse
Affiliation(s)
- Thomas Attaribo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Gaiqun Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Qinlei Zeng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Yueyue Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Ning Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | - Liumei Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | | | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China. and Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| |
Collapse
|
50
|
Cao H, Saroglu O, Karadag A, Diaconeasa Z, Zoccatelli G, Conte‐Junior CA, Gonzalez‐Aguilar GA, Ou J, Bai W, Zamarioli CM, de Freitas LAP, Shpigelman A, Campelo PH, Capanoglu E, Hii CL, Jafari SM, Qi Y, Liao P, Wang M, Zou L, Bourke P, Simal‐Gandara J, Xiao J. Available technologies on improving the stability of polyphenols in food processing. FOOD FRONTIERS 2021; 2:109-139. [DOI: 10.1002/fft2.65] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractPolyphenols are the most important phytochemicals in our diets and have received great attention due to their broad benefits for human health by suppressing oxidative stress and playing a protective role in preventing different pathologies such as cardiovascular disease, cancer, diabetes, and obesity. The stability of polyphenols depends on their environments of processing and storage, such as pH and temperature. A wide range of technologies has been developed to stabilize polyphenols during processing. This review will provide an overview of the stability of polyphenols in relation to their structure, the factors impacting the stability of polyphenols, the new products deriving from unstable polyphenols, and the effect of a series of technologies for the stabilization of polyphenols, such as chemical modification, nanotechnology, lyophilization, encapsulation, cold plasma treatment, polyphenol–protein interaction, and emulsion as a means of improving stability. Finally, the effects of cooking and storage on the stability of polyphenols were discussed.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang Guangdong China
| | - Oznur Saroglu
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Ayse Karadag
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Zoriţa Diaconeasa
- Faculty of Food Science and Technology University of Agricultural Science and Veterinary Medicine Cluj‐Napoca Cluj‐Napoca Romania
| | | | - Carlos Adam Conte‐Junior
- Laboratory of Advanced Analyses in Biochemistry and Molecular Biology (LAABBM) Department of Biochemistry Institute of Chemistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Gustavo A. Gonzalez‐Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Mexico
| | - Juanying Ou
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Weibin Bai
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Cristina Mara Zamarioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Luis Alexandre Pedro de Freitas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering and Russell Berrie Nanotechnology Institute Technion – Israel Institute of Technology Haifa Israel
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas Manaus Brazil
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Ching Lik Hii
- Faculty of Science and Engineering University of Nottingham Malaysia Semenyih Malaysia
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute Purdue University West Lafayette Indiana USA
| | - Pan Liao
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu China
| | - Paula Bourke
- Plasma Research Group, School of Biosystems and Food Engineering University College Dublin Dublin Ireland
- School of Biological Sciences Institute for Global Food Security Queens University Belfast Belfast UK
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| |
Collapse
|