1
|
Lu Y, Yin X, Li M, Ma W, Du S, Wang Z, Qiu N, Zhao X. Dual-plasmonic eccentric nanostructure with prominent colorimetric and photothermal performance to detect zearalenone by dual signal immunochromatography assay. Talanta 2025; 286:127487. [PMID: 39736205 DOI: 10.1016/j.talanta.2024.127487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
In the study, an eccentric heterogeneous core-shell nanomaterial Au@Cu2-xSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%. As proof of concept, we applied Au@Cu2-xSe as a signal amplification marker in LFIA for the rapid detection of zearalenone (ZEN), enabling dual-mode quantitative detection via colorimetric and photothermal signals (CM/PT). The Au@Cu2-xSe-LFIA demonstrated a cut-off value of 10 ng/mL in colorimetric mode and 5 ng/mL in photothermal mode, representing a two fold increase in sensitivity compared to traditional AuNPs-based LFIAs. The outstanding colorimetric signal and prominent photothermal signal make the proposed Au@Cu2-xSe nanomaterial show better application prospects in CM/PT mode detection in LFIA, providing broad application prospects for the broad-spectrum detection of mycotoxins in food in the future.
Collapse
Affiliation(s)
- Yangyang Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanlu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sining Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zixuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nannan Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China.
| |
Collapse
|
2
|
Salarifar A, Rasaee MJ. SARS-CoV-2 nucleocapsid detection using a recombinant phage display-isolated single-chain fragment variable. J Immunoassay Immunochem 2025:1-19. [PMID: 40129036 DOI: 10.1080/15321819.2025.2483839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BACKGROUND Diagnosis is an important factor in controlling disease. Single-chain fragment variables (scFvs) can be used for diagnosis; however, due to their immobilization issues, their application has been limited. Herein, we isolated a SARS-CoV-2 nucleocapsid phosphoprotein (NP)-specific scFv and propose it as a diagnostic tool in the scFv-displaying phage format to overcome the immobilization issue. METHOD Spleen from NP-immunized BALB/c mice was isolated, total RNA was extracted, and cDNA was synthesized. An scFv library was constructed, using the splicing by overlap extension (SOE) PCR technique, which was cloned into the pCANTAB5E phagemid. The phage library was panned against the NP antigen, and the output phages with the highest binding capability were screened for the most qualified scFv, which was later assessed in terms of sensitivity and specificity. RESULTS The scFv-displaying phage library was panned against the recombinant NP in three rounds and 40 randomly selected colonies from the third round's outputs were screened. Alongside several clones, clone #31 was chosen as the most qualified scFv, which later exhibited favorable sensitivity and specificity against NP in further ELISA-based experiments. CONCLUSIONS Clone #31 could be utilized to develop diagnostic tools and therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Abbasali Salarifar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Chen Y, Liu X, Li J, Liu X. Development of a Sensitive Enzyme Immunoassay Using Phage-Displayed Antigen-Binding Fragments for Zearalenone Detection in Cereal Samples. Foods 2025; 14:746. [PMID: 40077448 PMCID: PMC11898766 DOI: 10.3390/foods14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, contaminates animal feed and grain crops, thereby entering the food chain and posing a significant threat to human health. Consequently, there is an urgent need for a sensitive and rapid method for detecting trace levels of ZEN. In this study, we developed a phage-displayed antigen-binding fragment (Fab-phage) and established a Fab-phage-based enzyme-linked immunosorbent assay (Fab-pELISA) for ZEN detection. Under optimal conditions, this method exhibits a half-maximal inhibitory concentration of 0.36 ng/mL, with a linear range from 0.07 to 3.89 ng/mL and a detection limit of 0.03 ng/mL. The method demonstrates high selectivity towards ZEN and good recovery rates of 97.35-122.66% with relative standard deviations not exceeding 3.5%. Furthermore, the detection results obtained using Fab-pELISA on real cereal samples are consistent with those from high-performance liquid chromatography, meeting practical application requirements. Therefore, the Fab-phage serves as a valuable biochemical reagent, and the established Fab-pELISA represents a promising analytical strategy for detecting ZEN and other trace toxic contaminants in cereals.
Collapse
Affiliation(s)
| | | | | | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China (X.L.); (J.L.)
| |
Collapse
|
4
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Li H, Yang J, Han R, Wang Y, Han X, Wang S, Pan M. Magnetic-fluorescent immunosensing platform applying AuNPs heterogeneous MIL-53(Al) composite for efficient detection of zearalenone. Food Chem 2024; 433:137369. [PMID: 37683484 DOI: 10.1016/j.foodchem.2023.137369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Rapid, sensitive, specific and stable detection of mycotoxin in food remains an extremely crucial issue. Herein, a magnetic-fluorescent immunosensing platform for the detection of zearalenone (ZEN) was proposed. The platform utilized Au nanoparticles (AuNPs) heterogeneous fluorescent metal-organic framework (MIL-53(Al)@AuNPs) labeled with ZEN-bovine serum albumin (ZEN-BSA) as signal probe and ZEN mono-antibodies coupled with magnetic NPs (MNPs-mAbs) as capture probe. Specifically, the heterogenization of AuNPs on the MIL-53(Al) surface improved its biocompatibility, and facilitated the loading of ZEN-BSA conjugates. The MNPs-mAbs could rapidly capture the target ZEN, simplify the immunoassay process and further improve the detection efficiency. The established competitive magnetic-fluorescent immunosensing platform had a wider linear response to ZEN in the range of 0.001-100 ng/mL with a lower limit of detection (LOD) at 0.0035 ng/mL, and could finish the whole detection process within 20 min, showing great potential for rapid and sensitive detection of food contaminants.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
6
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Chen Y, Shen Y, Wang H, Zhang J, Zhu J. A novel dual-channel immunochromatographic strip using up-conversion nanoparticles for simultaneous detection of AFB1 and ZEN in maize. Anal Bioanal Chem 2023; 415:4935-4947. [PMID: 37452213 DOI: 10.1007/s00216-023-04799-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Due to universal contamination and synergistic toxicity of multiple mycotoxins in foodstuff, reliable and high-throughput detection methods for multiple mycotoxins are urgently needed in corn products. In this study, a novel dual-channel immunochromatographic assay (ICA) based on improved up-conversion nanoparticles (IUCNPs) was developed for rapidly detecting aflatoxin B1 (AFB1) and zearalenone (ZEN). The synthesized IUCNPs doped by 30% Lu3+ showed a larger size, more regular structure, and brighter fluorescence intensity than conventional UCNPs. The limits of detection (LODs) of single-channel ICA test strips for AFB1 and ZEN detection were 0.01 and 0.1 ng/mL, respectively. After the optimization, the dual-channel ICA of AFB1 and ZEN in 10 min was conducted, resulting in low detection limits of 0.025 and 0.1 ng/mL, respectively. Moreover, the built assay was revealed to be highly specific for six other food-contaminated mycotoxins, and exhibited excellent accuracy, with corresponding R2 of 0.9931 and 0.9982 in calibration curves, respectively. Long-term storage experiments indicated that the dual-channel test strips had superior stability and precision. The LODs of AFB1 and ZEN in spiked maize were 0.025 and 0.25 μg/kg, demonstrating great sensitivity and matrix tolerance. Furthermore, the IUNCP-ICA was validated by high-performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained in 15 natural maize samples. Thus, the IUCNPs-ICA proposed in this work realized rapid and sensitive detection of AFB1 and ZEN, providing broad application potential in on-site screening for multiple mycotoxins in agricultural products.
Collapse
Affiliation(s)
- Yiyi Chen
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, 310018, China
| | - Yanghong Shen
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, 310018, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
9
|
Rapid and sensitive noncompetitive immunoassay for detection of aflatoxin B1 based on anti-immune complex peptide. Food Chem 2022; 393:133317. [DOI: 10.1016/j.foodchem.2022.133317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
10
|
A bifunctional AuNP probe-based enzyme-linked immunosorbent assay for facile and ultrasensitive detection of trace zearalenone in coix seed. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Qiao W, He B, Ren W, Zhao R, Suo Z, Yan H, Xu Y, Wei M, Jin H. Colloidal Au sphere and nanoflower-based immunochromatographic strips for sensitive detection of zearalenone in cereals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3831-3839. [PMID: 36168770 DOI: 10.1039/d2ay01365g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEN), also known as an F-2 toxin, is a secondary metabolite in the toxic Fusarium species with estrogen properties. ZEN and its derivatives can cause developmental and reproductive disorders in humans and other mammals. In this study, colloidal Au spheres (AuSPs) and Au nanoflowers (AuNFs) were used as signal labels to detect ZEN in cereals, and the critical factors affecting the sensitivity of the immunochromatographic strip (ICS), namely the volume of antigen, antibody, and probe quantities were optimized and compared in detail. Since the large specific surface area of AuNFs reduces the steric hindrance of proteins, it is more conducive to improving the fixation rate of antibodies and proteins. Compared with the traditional colloidal AuSP immunochromatographic strip (AuSP-ICS), the volume of the antibody used in the AuNF immunochromatographic strip (AuNF-ICS) was 0.6 times that in the AuSPs-ICS. At the same antigen volume, a lower amount of probe can achieve the desired visual detection effect and higher sensitivity. For the AuNF-ICS, the limit of detection (LOD) was as low as 0.08 ng mL-1. ZEN could be detected quickly and accurately from 0.08-10.2 ng mL-1. And the AuNF-ICS had a high degree of specificity and sensitivity to ZEN. In summary, the AuNF-ICS serves as a valuable tool in large-scale on-site detection of ZEN.
Collapse
Affiliation(s)
- Weili Qiao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
12
|
Development of a sensitive phage-mimotope and horseradish peroxidase based electrochemical immunosensor for detection of O,O-dimethyl organophosphorus pesticides. Biosens Bioelectron 2022; 218:114748. [DOI: 10.1016/j.bios.2022.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
13
|
Chen H, Ding Y, Li J, Huang L, González-Sapienza G, Hammock BD, Wang M, Hua X. New Approach to Generate Ratiometric Signals on Immunochromatographic Strips for Small Molecules. Anal Chem 2022; 94:7358-7367. [PMID: 35536756 DOI: 10.1021/acs.analchem.2c00838] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The self-calibration capability of ratiometric signals has been widely considered to enhance the accuracy, sensitivity, and anti-interference ability of immunoassays. Exploring a new approach to generate ratiometric signals can provide more options for various requirements. Herein, we integrated the negative-readout competitive and positive-readout noncompetitive immunoassays into a single assay by employing different color tracers, labeled peptidomimetic and anti-immunocomplex peptides, to create a new unconstrained ratiometric signal approach. Using an immunochromatographic strip (ICS) and a fungicide benzothiostrobin as the analytical platform and analyte, respectively, we showed that this approach can be extensively applied to fluorescence and colorimetry readouts, which have also been proven for strong anti-interference ability to an external light environment. Moreover, the enormous intuitional color changes of ratiometric fluorescent and colorimetric ICSs (RFICS and RCICS) enabled the formation of the color reference cards (like the pH paper) for visual judgment. After adaptation with a portable smartphone, the quantitative detection limits for RFICS and RCICS were 0.17 and 0.44 ng mL-1, respectively. In addition, the ICSs showed good accuracy for the detection of benzothiostrobin in spiked samples.
Collapse
Affiliation(s)
- He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Guo JB, Cheng JS, Wei TL, Wu FM, Tang GH, He QH. An Immuno-Separated Assay for Ochratoxin Detection Coupled with a Nano-Affinity Cleaning-Up for LC-Confirmation. Foods 2022; 11:1155. [PMID: 35454740 PMCID: PMC9026555 DOI: 10.3390/foods11081155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic adsorbents. The immuno-separation of fluorescent reporters by magnetic adsorbents could be completed by ochratoxin A, so the fluorescent reporters released from the immune complex indicate a linear correlation with the concentration of ochratoxin A. Furthermore, the immuno-separated ochratoxin A can be eluted from magnetic adsorbent for LC-conformation. The optimized assay showed results as follows: the quantitative range of the immuno-separated assay was 0.03-100 ng mL-1 of ochratoxin A. The recoveries for spiked samples ranged from 78.2% to 91.4%, with the relative standard deviation (RSD) being 11.9%~15.3%. Statistical analysis indicated no significant difference between the HPLC-FLD results based on commercial affinity column and by nano-affinity cleaning up.
Collapse
Affiliation(s)
- Jie-Biao Guo
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Research in Northern Guangdong, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China
| | - Jin-Sheng Cheng
- School of Innovation and Entrepreneurship, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China;
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| | - Fan-Min Wu
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Gui-Hong Tang
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| |
Collapse
|
15
|
Shi R, Zhao Z, Wang G, Zou W, Zhao F, Yang Z. Development of a noncompetitive magnetic-phage anti-immunocomplex assay for detecting of organophosphorus pesticides with a thiophosphate group. Anal Biochem 2022; 646:114632. [PMID: 35276070 DOI: 10.1016/j.ab.2022.114632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/13/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agriculture and the monitoring of their residues is very important to protect human health. Immunoassays are important tools for the analysis of small molecules. Generally, noncompetitive mode of immunoassay is considered to be more sensitive than competitive mode. In this study, peptides that can identify immunocomplex of OPs were screened from a phage display library. Subsequently, a second-generation peptide library was constructed and peptides with better performance were isolated. Then, a rapid and sensitive noncompetitive magnetic-phage anti-immunocomplex assay (MPHAIA) for OPs was developed based on the best phage-peptide and single chain antibody immunomagnetic beads. The MPHAIA showed broad specificity for OPs with a thiophosphate group. The half-saturated concentration (SC50) values and limits of detection (LODs) of MPHAIA to 12 OPs were ranged from 15.04 to 105.48 ng/mL and 4.07-14.19 ng/mL, respectively. The accuracy and reliability of MPHAIA were verified by gas chromatography-tandem mass spectrometry (GC-MS/MS) parallel analysis of six kinds of OPs in spiked cucumber samples. The recovery rates were in range of 81.2-116.3% with coefficient of variation from 4.1% to 14.1%, which were consistent with the results of GC-MS/MS.
Collapse
Affiliation(s)
- Ruirui Shi
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Zhiling Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Guanqun Wang
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Wenting Zou
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Fengchun Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China.
| | - Zhengyou Yang
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
16
|
Sun Y, Lv Y, Qi S, Zhang Y, Wang Z. Sensitive colorimetric aptasensor based on stimuli-responsive metal-organic framework nano-container and trivalent DNAzyme for zearalenone determination in food samples. Food Chem 2022; 371:131145. [PMID: 34600366 DOI: 10.1016/j.foodchem.2021.131145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Zearalenone (ZEN) poses a serious threat to human and animal health. The development of sensitive determination methods for ZEN is of great significance for ensuring the quality and safety of food. Herein, based on a stimuli-responsive aptamer-functionalized metal-organic framework (MOF) nano-container and trivalent DNA peroxidase mimicking enzyme (DNAzyme), an efficient aptasensor was constructed initially for the colorimetric determination of ZEN. The proposed aptasensor only required simple operations but exhibited outstanding specificity, reproducibility, storage stability and reusability simultaneously. Under the optimal conditions, there was a good linear relationship between the changed absorbance and logarithm concentration of ZEN within 0.01-100 ng mL-1, and the limit of detection (LOD) could reach 0.36 pg mL-1. Moreover, the proposed aptasensor was reliable in quantifying ZEN in spiked food samples. The current bioassay provides a promising scheme for constructing stable, specific and rapid colorimetric platforms with potential applications in the fields of food safety.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Liu Z, Hua Q, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem 2022; 369:131008. [PMID: 34500205 DOI: 10.1016/j.foodchem.2021.131008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
In this study, we developed a prussian blue nanoparticles (PBNPs) immunochromatographic assay (ICA) integrated with smartphone-based detection device for ZEN in cereals. PBNPs, as probe labels, were synthesized with properties of controllable structure, environment friendliness, and high affinities to antibody (Ab). PBNPs-ICA quantitative analysis was performed with a hand-held smartphone-based device coupled with a user-friendly and self-programmed detection App. This integrated strategy demonstrated high sensitivity for ZEN with a cut-off value of 10 μg/kg, a detection limit of 0.12 μg/kg, a quantitation limit of 0.27 μg/kg, and recovery rates of 92.0%-105.0% and 88.0%-98.0% for maize and wheat, respectively. The results of 20 naturally contaminated cereal samples showed good correlation (R2>0.99) between LC-MS/MS and developed system. Moreover, the stability experiment revealed that PBNPs-ICA maintained high stability and bioactivity against competitive antigen (Ag). The proposed strategy exhibited great potential for the rapid monitoring of mycotoxins or other small molecule hazards.
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qicheng Hua
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zaoqing Liang
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Zexuan Zhou
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Zhu J, Dou L, Shao S, Kou J, Yu X, Wen K, Wang Z, Yu W. An Automated and Highly Sensitive Chemiluminescence Immunoassay for Diagnosing Mushroom Poisoning. Front Chem 2022; 9:813219. [PMID: 35004629 PMCID: PMC8733245 DOI: 10.3389/fchem.2021.813219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Mushrooms containing Amanita peptide toxins are the major cause of mushroom poisoning, and lead to approximately 90% of deaths. Phallotoxins are the fastest toxin causing poisoning among Amanita peptide toxins. Thus, it is imperative to construct a highly sensitive quantification method for the rapid diagnosis of mushroom poisoning. In this study, we established a highly sensitive and automated magnetic bead (MB)-based chemiluminescence immunoassay (CLIA) for the early, rapid diagnosis of mushroom poisoning. The limits of detection (LODs) for phallotoxins were 0.010 ng/ml in human serum and 0.009 ng/ml in human urine. Recoveries ranged from 81.6 to 95.6% with a coefficient of variation <12.9%. Analysis of Amanita phalloides samples by the automated MB-based CLIA was in accordance with that of HPLC-MS/MS. The advantages the MB-based CLIA, high sensitivity, repeatability, and stability, were due to the use of MBs as immune carriers, chemiluminescence as a detection signal, and an integrated device to automate the whole process. Therefore, the proposed automated MB-based CLIA is a promising option for the early and rapid clinical diagnosis of mushroom poisoning.
Collapse
Affiliation(s)
- Jianyu Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.,School of Basic Medicine, Beihua University, Jilin, China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shibei Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqian Kou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Ma T, Liu K, Yang X, Yang J, Pan M, Wang S. Development of Indirect Competitive ELISA and Visualized Multicolor ELISA Based on Gold Nanorods Growth for the Determination of Zearalenone. Foods 2021; 10:foods10112654. [PMID: 34828935 PMCID: PMC8619891 DOI: 10.3390/foods10112654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
In this study, a zearalenone (ZEN) hapten was designed and prepared against the mycotoxin ZEN, and the original coating ZEN-ovalbumin (ZEN-OVA) was prepared by conjugation with OVA. Based on the gold nanorods (AuNRs) of uniform size and stable properties synthesized by the seed-mediated method, the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and the AuNRs growth-based multicolor ELISA for detecting ZEN toxin were further established. Under the optimal experimental conditions, the coating amount of ZEN-OVA: 0.025 μg/well, antibody (Ab) dilution factor: 32,000 times, blocking solution: 0.5% skimmed milk powder, enzyme-labeled secondary Ab diluted 10,000 times, and a pH of the PBS buffer at 7.4, the sensitivity (IC50) of the established ic-ELISA for ZEN detection reached 0.85 ± 0.04 μg/L, and the limit of detection (IC15) reached 0.22 ± 0.08 μg/L. In the multicolor ELISA based on the growth of AuNRs, as the content of ZEN increased, the mixed solution exhibited a significant color change from brownish red to colorless. ZEN concentration as low as 0.1 μg/L can be detected by the naked eye (brown red to dark gray). This study provided an effective analysis strategy for the rapid screening and accurate monitoring of the ZEN contaminant in foods.
Collapse
Affiliation(s)
- Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (T.M.); (K.L.); (X.Y.); (J.Y.); (S.W.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Magnetic dispersive solid phase extraction of ZEAralenone using Fe3O4@ hydroxy propyl methyl cellulose nanocomposite from wheat flour samples prior to fluorescence determination: Multivariate optimization by Taguchi design. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Qu C, Xin L, Yu S, Wei M. A homogeneous electrochemical aptasensor based on
DNA
assembly for zearalenone detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenling Qu
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Lingkun Xin
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Songcheng Yu
- Department of Sanitary Chemistry, College of Public Health Zhengzhou University Zhengzhou People's Republic of China
| | - Min Wei
- Department of Food Quality and Food Safety, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
23
|
Wang Y, Qiu X, Wang F, Li Y, Guo H, Nie L. Single-crystal ordered macroporous metal-organic framework as support for molecularly imprinted polymers and their integration in membrane formant for the specific recognition of zearalenone. J Sep Sci 2021; 44:4190-4199. [PMID: 34543515 DOI: 10.1002/jssc.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/07/2022]
Abstract
Zearalenone is a fungal contaminant that is widely present in grains. Here, a novel molecularly imprinted membrane based on SOM-ZIF-8 was developed for the rapid and highly selective identification of zearalenone in grain samples. The molecularly imprinted membrane was prepared using polyvinylidene fluoride, cyclododecyl 2,4-dihydroxybenzoate as a template and SOM-ZIF-8 as a carrier. The factors influencing the extraction of zearalenone using this membrane, including the solution pH, extraction time, elution solvent, elution time, and elution volume, were studied in detail. The optimized conditions were 5 mL of sample solution at pH 6, extraction time of 45 min, 4 mL of acetonitrile:methanol = 9:1 as elution solvent, and elution time of 20 min. This method displayed a good linear range of 12-120 ng/g (R2 = 0.998) with the limits of detection and quantification of this method are 1.7 and 5.5 ng/g, respectively. In addition, the membrane was used to selectively identify zearalenone in grain samples with percent recoveries ranging from 87.9 to 101.0% and relative standard deviation of less than 6.6%. Overall, this study presents a simple and effective chromatographic pretreatment method for detecting zearalenone in food samples.
Collapse
Affiliation(s)
- Yulin Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Xiuzhen Qiu
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Fuyu Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Yangyang Li
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| | - Huishi Guo
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, Guangdong, P.R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
24
|
Sun Y, Song S, Wu A, Liu L, Kuang H, Xu C. A fluorescent paper biosensor for the rapid and ultrasensitive detection of zearalenone in corn and wheat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3970-3977. [PMID: 34528940 DOI: 10.1039/d1ay01149a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN) is a kind of estrogen-like mycotoxin which contaminates primary crops and their products under natural conditions and becomes a serious hazard to human health. In this study, we prepared a sensitive and specific anti-ZEN monoclonal antibody (mAb) belonging to the IgG2b subclass, with a 50%-inhibitory concentration of 0.034 ng mL-1. A lateral flow fluorescence microsphere immunochromatographic test strip (FM-ICTS) for the rapid and ultrasensitive detection of zearalenone in corn and wheat samples was developed based on this mAb. After optimizing experimental parameters, the visual limit of detection (LOD) of the strip assay in both corn and wheat samples was 2.5 ng mL-1, and the cut-off value was 25 ng mL-1. The LOD was calculated to be 0.68 ng mL-1 in corn samples and 0.48 ng mL-1 in wheat samples. Recovery experiments showed that the test results of the strip were consistent with those of ic-ELISA. As a result, this FM-ICTS assay is reliable, simple and sensitive, and can be used for rapid detection of ZEN in corn and wheat.
Collapse
Affiliation(s)
- Yunjie Sun
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
25
|
Ding Y, Chen H, Li J, Huang L, Song G, Li Z, Hua X, Gonzalez-Sapienza G, Hammock BD, Wang M. Sortase-Mediated Phage Decoration for Analytical Applications. Anal Chem 2021; 93:11800-11808. [PMID: 34415158 DOI: 10.1021/acs.analchem.1c02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage-borne peptides and antibody fragments isolated from phage display libraries have proven to be versatile and valuable reagents for immunoassay development. Due to the lack of convenient and mild-condition methods for the labeling of the phage particles, isolated peptide/protein affinity ligands are commonly removed from the viral particles and conjugated to protein tracers or nanoparticles for analytical use. This abolishes the advantage of isolating ready-to-use affinity binders and creates the risk of affecting the polypeptide activity. To circumvent this problem, we optimized the phage display system to produce phage particles that express the affinity binder on pIII and a polyglycine short peptide fused to pVIII that allows the covalent attachment of tracer molecules employing sortase A. Using a llama heavy chain only variable domain (VHH) against the herbicide 2,4-D on pIII as the model, we showed that the phage can be extensively decorated with a rhodamine-LPETGG peptide conjugate or the protein nanoluciferase (Nluc) equipped with a C-terminal LPETGG peptide. The maximum labeling amounts of rhodamine-LPETGG and Nluc-LPETGG were 1238 ± 63 and 102 ± 16 per phage, respectively. The Nluc-labeled dual display phage was employed to develop a phage bioluminescent immunoassay (P-BLEIA) for the detection of 2,4-D. The limit of detection and 50% inhibition concentration of P-BLEIA were 0.491 and 2.15 ng mL-1, respectively, which represent 16-fold and 8-fold improvement compared to the phage enzyme-linked immunosorbent assay. In addition, the P-BLEIA showed good accuracy for the detection of 2,4-D in spiked samples.
Collapse
Affiliation(s)
- Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Guangyue Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhenfeng Li
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Gualberto Gonzalez-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
26
|
Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Mikrochim Acta 2021; 188:281. [PMID: 34331147 DOI: 10.1007/s00604-021-04919-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
The design and fabrication of a surface-enhanced Raman scattering (SERS) aptasensor for simultaneous detection of zearalenone (ZEN) and ochratoxin A (OTA) in wheat and corn samples is described. The capture and reporter probes were SH-cDNA-modified gold nanorods and SH-Apt-modified Au@Ag core-shell nanoparticles, respectively. After recognizing OTA and ZEN aptamers and complementary strands (SH-cDNA), the reporter probe generated a strong SERS signal. The preferred binding of OTA and ZEN aptamers to OTA and ZEN, respectively, caused reporter probes to release the capture probes, resulting in a linear decrease in SERS intensity. The detection of OTA showed good linearity with an R2 value of 0.986, which could be maintained across a wide concentration range (0.01 to 100 ng/mL), with the limit of detection of 0.018 ng/mL. For detection of ZEN, good linearity with an R2 value of 0.987 could be maintained across a wide concentration range (0.05 to 500 ng/mL), with 0.054 ng/mL as the limit of detection. Good accuracy (relative standard deviation < 4.2%) during mycotoxin determination as well as excellent quantitative recoveries (96.0-110.7%) during the analysis of spiked real samples was achieved. The proposed SERS aptasensor exhibited excellent performance in the detection of OTA and ZEN in real food samples. Hence, by simply changing the aptamer, this new model can be applied to the detection of multiple mycotoxins in the food industry.
Collapse
|
27
|
Zhou J, Liu Z, Yang Q, Qian W, Chen Y, Qi Y, Wang A. Multiple fluorescence immunoassay for the simultaneous detection of Zearalenone and Ochratoxin A. Anal Biochem 2021; 628:114288. [PMID: 34126058 DOI: 10.1016/j.ab.2021.114288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
A sensitive and accurate multiple fluorescence immunoassay for the simultaneous quantitative detection of Zearalenone (ZEN) and Ochratoxin A (OTA) in single spot based on multicolor quantum dots (QDs) labeling was developed for the first time. Two kinds of ZnCdSe/ZnS (core/shell) QDs with maximum emission wavelengths at 520 nm (green) and 610 nm (orange-red) were selected as marking materials, respectively. The anti-ZEN-mAb-QDs and anti-OTA-mAb-QDs were designed as the immune fluorescent probes. Fluorescence was measured at the same excitation wavelength and two different emission wavelengths to determine each target. The procedure for QDs-based multiple fluorescence labeled immunosorbent assay (M-FLISA) was developed. The 50% inhibition concentrations (IC50) of ZEN and OTA were 0.034 and 1.175 ng/mL. Moreover, the limits of detection (LOD) for the simultaneous determination were 0.0239 and 2.339 ng/g for ZEN and OTA in maize, respectively. In addition, the recoveries ranged from 93.15 to 101.90% for ZEN and from 95.29 to 102.43% for OTA, with the coefficient variation (CV) of 2.70-8.86% and 3.51-6.22% respectively. There was good consistency between the M-FLISA and high performance liquid chromatography (HPLC) results, which confirmed that the M-FLISA was suitable for the simultaneous quantitative detection of various mycotoxins.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qingbao Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
28
|
Zhou J, Li Y, Liu Z, Qian W, Chen Y, Qi Y, Wang A. Induction of anti-Zearalenone immune response with mimotopes identified from a phage display peptide library. Toxicon 2021; 199:1-6. [PMID: 34033860 DOI: 10.1016/j.toxicon.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Zearalenone (ZEN), a type of non-steroidal estrogenic mycotoxin, is mainly produced by several species of Fusarium molds. It is ubiquitous in contaminated grains and grain products all over the world, posing a serious threat to animal and human health. This study aims to screen the mimotopes of ZEN from a phage display random 12-mer peptide library and explore their immunogenicity. A monoclonal antibody (mAb) against ZEN was employed as the target for mimotope selection from a phage display random peptide library. After four rounds of panning, six mimotopes that could specifically bind to ZEN mAb were obtained. In order to explore the immunogenicity of these mimotopes, Balb/c mice were immunized with phages Z8, Z21, Z35, Z8:Z21:Z35(1:1:1) and the conjugate of ZEN-bovine serum albumin (ZEN-BSA), respectively. The titers of antibodies in the mice immunized with mimotopes were 1:3200 (Z8), 1:3200 (Z21), 1:6400 (Z35), 1:6400 (1:1:1 mixture of Z8, Z21 and Z35), and the binding between serum antibodies and ZEN-OVA could be blocked by ZEN standards. These results demonstrated that the mimotopes of ZEN could induce specific antibodies against ZEN, suggesting that these displayed peptides were immunogenic.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yanghui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
29
|
Guo JB, Wei TL, He QH, Cheng JS, Qiu XZ, Liu WP, Lan XQ, Chen LF, Guo M. A magnetic-separation-based homogeneous immunosensor for the detection of deoxynivalenol coupled with a nano-affinity cleaning up for LC-MS/MS confirmation. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jie-Biao Guo
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, People’s Republic of China
| | | | - Xiu-Zhen Qiu
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Wang-Pei Liu
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Xian-Quan Lan
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Lu-Fen Chen
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| | - Min Guo
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| |
Collapse
|
30
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Lu L, Yuan W, Xiong Q, Wang M, Liu Y, Cao M, Xiong X. One-step grain pretreatment for ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor. Anal Chim Acta 2021; 1141:83-90. [DOI: 10.1016/j.aca.2020.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
32
|
Li P, Deng S, Zech Xu Z. Toxicant substitutes in immunological assays for mycotoxins detection: A mini review. Food Chem 2020; 344:128589. [PMID: 33246689 DOI: 10.1016/j.foodchem.2020.128589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recurring mycotoxins contamination has posedaseriousthreatto food safety worldwide. Competitive immunoassays are widely used techniques for high-throughput mycotoxins detection in agricultural products and foods. However, the inevitable introduction of mycotoxin conjugates produced by chemical conjugation usually results in complicated by-products, large batch errors and threats to operators and environment. Biologically derived surrogates of mycotoxin conjugates or mycotoxin standards are renewable immunoreagents. They can serve the same function as the responding counterparts in the immunoassays. The substitute-based immunoassays exhibit satisfactory sensitivity, pose less health threats to operators and environment, and contribute to the standardization of immunoassays for mycotoxins. This review focuses on the current applications of substitute-based immunoassays, clarifies their underlying mechanisms and provides a careful comparison. Challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
33
|
Contamination of Zearalenone from China in 2019 by a Visual and Digitized Immunochromatographic Assay. Toxins (Basel) 2020; 12:toxins12080521. [PMID: 32823857 PMCID: PMC7472730 DOI: 10.3390/toxins12080521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin that needs intensive monitoring. A semi-quantitative and quantitative immunochromatographic assay (ICA) was assembled for investigating ZEN contamination in 187 samples of cereal and their products from China in 2019. The semi-quantitative detection model had a limit of detection (LOD) of 0.50 ng/mL with visual judgment and could be completely inhibited within 5 min at 3.0 ng/mL ZEN. The quantitative detection model had a lower LOD of 0.25 ng/mL, and ZEN could be accurately and digitally detected from 0.25-4.0 ng/mL. The ICA method had a high sensitivity, specificity, and accuracy for on-site ZEN detection. For investigation of the authentic samples, the ZEN-positive rate was 62.6%, and the ZEN-positive levels ranged from 2.7 to 867.0 ng/g, with an average ZEN-positive level being 85.0 ng/g. Of the ZEN-positive samples, 6.0% exceeded the values of the limit levels. The ZEN-positive samples were confirmed to be highly correlated using LC-MS/MS (R2 = 0.9794). This study could provide an efficiency and accuracy approach for ZEN in order to achieve visual and digitized on-site investigation. This significant information about the ZEN contamination levels might contribute to monitoring mycotoxin occurrence and for ensuring food safety.
Collapse
|