1
|
Abedini A, Hadian Z, Kamalabadi M, Salimi M, Koohy-Kamaly P, Basaran B, Sadighara P. Melamine and Cyanuric Acid in Milk and Their Quantities, Analytical Methods and Exposure Risk: A Systematic Review and Meta-analysis. J Food Prot 2025; 88:100454. [PMID: 39826682 DOI: 10.1016/j.jfp.2025.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Melamine, as a toxic compound, needs to be controlled in food, especially in dairy products. In this systematic study, quantities of melamine and cyanuric acid in various types of milk were investigated. A comprehensive database search was performed using the keywords pasteurized milk, milk, sterilized milk, melamine, and cyanuric acid without time limitation. A total of 24 articles related to melamine and cyanuric acid were thoroughly reviewed. The overall mean concentration of melamine in milk was estimated by meta-analysis to be 11.3 μg/L. Publication bias was not addressed in the associated assays; however, it was addressed as highly heterogeneous between studies. Subgroup analysis was carried out, and the milk type was a cause of heterogeneity. This systematic review investigated a range of melamine in milk products and discussed different analytical methods.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hadian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mahla Salimi
- Institute of Human Nutrition and Food Science, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Paliz Koohy-Kamaly
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Elik A, Demirkol Y, Ul Haq H, Boczkaj G, Sanaullah, Altunay N. Development of an orbital shaker-assisted fatty acid-based switchable solvent microextraction procedure for rapid and green extraction of amoxicillin from complex matrices: Central composite design. Food Chem 2024; 454:139785. [PMID: 38823199 DOI: 10.1016/j.foodchem.2024.139785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
In this study, a cheap, fast and simple orbital shaker-assisted fatty acid-based switchable solvent microextraction (OS-FASS-ME) procedure was developed for the extraction of amoxicillin (AMOX) in dairy products, pharmaceutical samples and wastewater prior to its spectrophotometric analysis. Fatty acid-based switchable solvents were investigated for extracting AMOX. The key factors of the OS-FASS-ME procedure were optimized using a central composite design. The linearity of OS-FASS-ME procedure was in the range 5-600 ng mL-1 with a correlation coefficient of 0.991. In five replicate experiments for 20 ng mL-1 of AMOX solution, the recovery and relative standard deviation were 95.8% and 2.2%, respectively. Limits of detection and quantification were found 1.5 ng mL-1 and 5 ng mL-1, respectively. The accuracy, precision, robustness and selectivity of the OS-FASS-ME procedure were investigated in detail under optimum conditions. The OS-FASS-ME procedure was applied to milk, cheese, wastewater, syrups and tablets. A comparison of the results obtained from the reference method and the OS-FASS-ME method showed that the OS-FASS-ME procedure can be successfully applied to complex matrices.
Collapse
Affiliation(s)
- Adil Elik
- Sivas Cumhuriyet University, Faculty of Science, Department of Chemistry, Sivas, Turkey
| | - Yağmur Demirkol
- Sivas Cumhuriyet University, Faculty of Science, Department of Biochemistry, Sivas, Turkey
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Sanaullah
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Nail Altunay
- Sivas Cumhuriyet University, Faculty of Science, Department of Chemistry, Sivas, Turkey.
| |
Collapse
|
3
|
Vaseghi Baba F, Esfandiari Z, Akbari-Adergani B, Rashidi Nodeh H, Khodadadi M. Vortex-assisted microextraction of melamine from milk samples using green short chain ionic liquid solvents coupled with high performance liquid chromatography determination. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123902. [PMID: 37804570 DOI: 10.1016/j.jchromb.2023.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Melamine is added illegally to milk and dairy products to increase the amount of apparent protein. This organic nitrogen rich chemical compound has been of great challenge in food safety based on its adverse effect on health. Therefore, the extraction and determination of melamine from milk is necessary. Recently, ionic liquid (ILs) as solvent usage has been noticeable for low melting point, low toxicity, high thermal stability, and high extraction capabilities in a wide range of separation processes. ILs are introduced as organic-inorganic salts and green solvents in microextraction preparation. Therefore, in this study, three ionic liquids ([C6mim][NTF2], [C4mim][NTF2] and [C2mim][NTF2] ILs) were prepared and employed as an extraction solvent in dispersive liquid-liquid microextraction (DLLME) of melamine from milk samples followed by HPLC-UV. The selected ILs were designed using three types of alkyl-imidazolium (as the short organic cations) and bis (tri fluoro methyl sulfonyl) imide as anion and characterized by ATR-FTIR spectra, carbon, and hydrogen Nuclear Magnetic Resonance spectroscopy (H&C-NMR) and energy-dispersive X-ray spectroscopy (EDX). These techniques confirmed the formation of functional groups, the structure of hydrogen and carbon atoms, and various elements of ionic bond between imidazolium and bis (tri fluoro methyl sulfonyl) imide. In the next step, the effect of significant parameters, including type and volume of ILs, adsorption time, pH of the sample solution, and sample volume, were optimized. Under the optimal conditions, the limits of detection (LOD), limits of quantification (LOQ), and linearity range were obtained 63.64 µg kg-1, 210.03 µg kg-1, and 210.03-1000 µg kg-1, respectively, for as prepared [C6mim][NTF2] as the best ILs. Notably, the achieved LOQ was lower than the maximum residue level (MRL) for the melamine residue in dairy products. Eventually, the proposed method was applied to detect melamine in milk samples, and the relative recoveries were examined as 79.6-105.0 %.
Collapse
Affiliation(s)
- Farzaneh Vaseghi Baba
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran Islamic Republic of Iran, Iran
| | - Hamid Rashidi Nodeh
- Food Science and Agricultural Research Center, Standard Research Institute, Karaj, Iran.
| | - Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
4
|
Elik A, Fesliyan S, Gürsoy N, Haq HU, Castro-Muñoz R, Altunay N. An air-assisted dispersive liquid phase microextraction method based on a hydrophobic magnetic deep eutectic solvent for the extraction and preconcentration of melamine from milk and milk-based products. Food Chem 2023; 426:136573. [PMID: 37329792 DOI: 10.1016/j.foodchem.2023.136573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
In the current research, a fast and sustainable air-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction followed by UV-Vis spectrophotometry measurements was optimized for the extraction and determination of melamine in milk and milk-based products. The central composite design was applied for the optimization of factors affecting the recovery of melamine. Quantitative extraction of melamine was achieved using hydrophobic magnetic deep eutectic solvents prepared from a mixture of octanoic acid, aliquat-336, and cobalt(II) chloride. The optimum conditions for extraction were found as follows: 6 extraction cycles, pH 8.2, extraction solvent volume 260 µL, and acetone volume 125 µL.Interestingly, a centrifugation step was not required to achieve phase separation. Under the optimum conditions, melamine was determined in the linear range of 3-600 ng mL-1, the limit of detection (3Sblank/m) of 0.9 ng mL-1, and the enrichment factor of 144. The validation of the method was investigated by the analysis of reference materials. Consequently, the method was successfully applied for the analysis of melamine residues in milk and milk-based products.
Collapse
Affiliation(s)
- Adil Elik
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Seçkin Fesliyan
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nevcihan Gürsoy
- Nanotechnology Engineering, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| |
Collapse
|
5
|
Kiszkiel-Taudul I, Starczewska B, Jarosz M. Microextraction of ampicillin from bovine milk using ionic liquids and deep eutectic solvents prior to its chromatographic determination with ultraviolet and tandem mass spectrometry detection. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Dou L, Zhang Y, Bai Y, Li Y, Liu M, Shao S, Li Q, Yu W, Shen J, Wang Z. Advances in Chicken IgY-Based Immunoassays for the Detection of Chemical and Biological Hazards in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:976-991. [PMID: 34990134 DOI: 10.1021/acs.jafc.1c06750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As antibodies are the main biological binder for hazards in food samples, their performance directly determines the sensitivity, specificity, and reproducibility of the developed immunoassay. The overwhelmingly used mammalian-derived antibodies usually suffer from complicated preparation, high cost, frequent bleeding of animals, and sometimes low titer and affinity. Chicken yolk antibody (IgY) has recently attracted considerable attention in the bioanalytical field owing to its advantages in productivity, animal welfare, comparable affinity, and high specificity. However, a broad understanding of the application of IgY-based immunoassay for the detection of chemical and biological hazards in food samples remains limited. Here, we briefly summarized the diversity, structure, and production of IgY including polyclonal and monoclonal formats. Then, a comprehensive overview of the principles, designs, and applications of IgY-based immunoassays for these hazards was reviewed and discussed, including food-borne pathogens, food allergens, veterinary drugs, pesticides, toxins, endocrine disrupting chemicals, etc. Thus, the trend of IgY-based immunoassays is expected, and more IgY types, higher sensitivity, and diversification of recognition-to-signal manners are necessary in the future.
Collapse
Affiliation(s)
- Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Ben T, Wu P, Zou H, Chen Y. Characterization of nitrite degradation by polyphenols in sea buckthorn (Hippophaë rhamnoides L.) by density function theory calculations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ye Y, Li S, Ping A, Wan X, Li J. Electrodeposition immobilized molybdenum disulfide quantum dots and their electrochemiluminescence application in the detection of melamine residues in milk powder. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2196-2203. [PMID: 33899838 DOI: 10.1039/d1ay00364j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, one-step hydrothermal and electrodeposition methods were used to prepare a MoS2 quantum dot (QD) solid-phase electrochemiluminescent (ECL) electrode for the detection of melamine residues in milk powder. With the assistance of chitosan, MoS2 QDs fixed by the one-step electrodeposition method show better ECL performance than those by traditional deposition methods due to better dispersibility and stability. Based on the quenching of the MoS2 QDs ECL signal by melamine, quantitative detection of melamine in the sample was performed. The structure and morphology of a MoS2-CHIT/indium tin oxide (ITO) solid-phase ECL electrode were characterized by TEM and XPS, and melamine was detected by the ECL method using a three-electrode system. The proposed sensor exhibited good linearity in the range of 1.00 × 10-11 to 1.00 × 10-7 mol L-1 (ΔI = 12 100.62 + 1009.93 lg c (mol L-1), R2 = 0.997), and the method shows the advantages of simplicity and sensitivity compared to traditional detection methods. The interference of common ions in milk powder on the modified electrode was within 5%, and the recovery rate of real sample detection was within 97-98%. As a result, the proposed method is suitable for detecting melamine residues in milk powder.
Collapse
Affiliation(s)
- Yousheng Ye
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Shasha Li
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - An Ping
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Xinjun Wan
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
9
|
Spectrophotometric determination of aflatoxin B1 in food sample: Chemometric optimization and theoretical supports for reaction mechanisms and binding regions. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|