1
|
Dang X, Han S, Wang X. Versatile corn starch-based sustainable food packaging with enhanced antimicrobial activity and preservative properties. J Colloid Interface Sci 2025; 694:137698. [PMID: 40286401 DOI: 10.1016/j.jcis.2025.137698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Biodegradable active packaging has garnered significant research interest owing to growing concerns over plastic pollution and food safety. However, current food packaging materials still suffer from drawbacks such as complex synthesis processes, high production costs, and inadequate safety performance in terms of antimicrobial resistance and biodegradability. Typically, their performance in preserving fresh food is also inferior to that of plastics. Herein, a versatile corn starch-based sustainable food packaging (DC) was proposed, utilizing natural corn starch (CS) and carboxymethyl chitosan (CMCS) as raw materials. The focus was on evaluating the mechanical properties, antioxidant properties, and antimicrobial activity, and to further explore the degradability and biocompatibility of the DC films, as well as their application in fruit preservation. The results confirmed the good water vapor barrier properties, antioxidant activity (DPPH scavenging of the DC4 film reached 98.10 ± 0.32 %), Ultraviolet (UV) resistance (more than 99.8 % absorption of both UV-A and UV-B radiation), water resistance, mechanical properties, and bacteriostatic and bactericidal effect (the DC4 film reached 99.67 ± 0.58 % against Escherichia coli and 99.83 ± 0.29 % against Staphylococcus aureus) of the DC. Meanwhile, the DC exhibited favorable biodegradability in the natural environment. Finally, fruit preservation experiments confirmed that the DC could significantly extend the shelf life of fresh fruits at room temperature. Overall, this research presented a sustainable and cost-effective biomass-derived packaging film that could replace conventional petroleum-based plastics, thereby reducing environmental pollution and showing significant potential for use in food packaging.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan 610041, PR China.
| | - Songyu Han
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Dang X, Han S, Du Y, Fei Y, Guo B, Wang X. Engineered environment-friendly multifunctional food packaging with superior nonleachability, polymer miscibility and antimicrobial activity. Food Chem 2025; 466:142192. [PMID: 39591781 DOI: 10.1016/j.foodchem.2024.142192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
This study was conducted primarily to develop an environment-friendly food packaging boasting several advantages, including good water vapor barrier, UV resistance, antimicrobial activity, non-leachability, and polymer miscibility. Initially, the starch-based antimicrobial agent (OCSI) was synthesized through a simple esterification reaction between oxidized corn starch (OCS) and indoleacetic acid (IAA). Subsequently, OCSI was further blended separately with environmentally-friendly materials (PVA, PBAT, PCL), and a series of environment-friendly packaging films were successfully prepared. The resulting films exhibited desirable thermal stability and 100 % barrier against both UV-A and UV-B rays. Moreover, the films presented effective barriers against water vapor, antioxidant, and antimicrobial activity against E. coli and S. aureus. Meanwhile, the films could significantly inhibit the deterioration of fresh fruits and prolong shelf life, considerably expanding their utilization in safe packaging. The environment-friendly packaging not only realized the sustainable utilization of green polymers, but also offered novel insights into the exploration of sustainable packaging.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan 610041, PR China.
| | - Songyu Han
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yongmei Du
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yufei Fei
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Boyan Guo
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
3
|
Gangadharan G, Gupta S, Kudipady ML, Puttaiahgowda YM. Gallic Acid Based Polymers for Food Preservation: A Review. ACS OMEGA 2024; 9:37530-37547. [PMID: 39281951 PMCID: PMC11391454 DOI: 10.1021/acsomega.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The extensive usage of nonbiodegradable plastic materials for food packaging is a major environmental concern. To address this, researchers focus on developing biocompatible and biodegradable food packaging from natural biopolymers, such as polysaccharides, proteins, and polyesters. These biopolymer-based packaging materials extend the shelf life of food due to their inherent antimicrobial and antioxidant properties. An important additive that enhances these beneficial effects is gallic acid (GA), a naturally occurring phenolic compound. GA exhibits potent antioxidant activity by scavenging free radicals and excellent antimicrobial activity against a wide range of bacteria by disrupting cell membranes. These gallic acid based active packaging solutions have demonstrated remarkable abilities to inhibit lipid oxidation, enzymatic browning, and microbial contamination and even retard the ripening processes in mushrooms, walnuts, strawberries, fresh-cut apples, bananas, fish, pork, and beef. This review focuses on the antioxidant, antibacterial, and food preservation capabilities of GA-incorporated biodegradable food packaging materials as an eco-friendly alternative to conventional plastic packaging.
Collapse
Affiliation(s)
- Gayathri Gangadharan
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Manas Laxman Kudipady
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
4
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
5
|
Li M, Zhou R, Wang Y, Lu Y, Chu X, Dong C. Heterologous expression of frog antimicrobial peptide Odorranain-C1 in Pichia pastoris: Biological characteristics and its application in food preservation. J Biotechnol 2024; 390:50-61. [PMID: 38789049 DOI: 10.1016/j.jbiotec.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce food spoilage and deterioration caused by microbial contamination, antimicrobial peptides (AMPs) have gradually gained attention as a biological preservative. Odorranain-C1 is an α-helical cationic antimicrobial peptide extracted from the skin of frogs with broad-spectrum antimicrobial activity. In this study, we achieved the expression of Odorranain-C1 in Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) by employing DNA recombination technology. The recombinant Odorranain-C1 showed broad-spectrum antibacterial activity and displayed a minimum inhibitory concentration within the range of 8-12 μg.mL-1. Meanwhile, Odorranain-C1 exhibited superior stability and lower hemolytic activity. Mechanistically, Odorranain-C1 disrupted the bacterial membrane's integrity, ultimately causing membrane rupture and subsequent cell death. In tilapia fillets preservation, Odorranain-C1 inhibited the total colony growth and pH variations, while also reducing the production of total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA). In conclusion, these studies demonstrated the efficient recombinant expression of Odorranain-C1 in P. pastoris, highlighting its promising utilization in food preservation.
Collapse
Affiliation(s)
- Mengru Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruonan Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanyuan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Lu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Chunming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Liu Z, Zhang M, Hao Y, Hu W, Zhu W, Wang H, Li L. Application of surface-modified functional packaging in food storage: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13343. [PMID: 38629458 DOI: 10.1111/1541-4337.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.
Collapse
Affiliation(s)
- Zhuolin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Mengmeng Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Yi Hao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Wenqing Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Weizhong Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - He Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai, China
| |
Collapse
|
7
|
Li Q, Zhou W, Yu X, Cui F, Tan X, Sun T, Li J. Preparation and characterization of zein/gelatin electrospun film loaded with ε-polylysine and gallic acid as tuna packaging system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1942-1952. [PMID: 37886811 DOI: 10.1002/jsfa.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Wenxuan Zhou
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinrui Yu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
8
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
9
|
Sang X, Wang Y, Wang J, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z. Effects of Gas Composition on the Lipid Oxidation and Fatty Acid Concentration of Tilapia Fillets Treated with In-Package Atmospheric Cold Plasma. Foods 2024; 13:165. [PMID: 38201193 PMCID: PMC10779136 DOI: 10.3390/foods13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Cold plasma (CP) is a non-thermal preservation technology that has been successfully used to decontaminate and extend the shelf life of aquatic products. However, the preservation effect of CP treatment is determined by several factors, including voltage, time, and gas compositions. Therefore, this study aimed to investigate the effects of gas composition (GasA: 10% O2, 50% N2, 40% CO2; GasB: air; GasC: 30% O2, 30% N2, 40% CO2) on the lipid oxidation of tilapia fillets treated after CP treatment. Changes in the lipid oxidation values, the percentages of fatty acids, and sensory scores were studied during 8 d of refrigerator storage. The results showed that the CP treatment significantly increased all the primary and secondary lipid oxidation values measured in this study, as well as the percentages of saturated fatty acids, but decreased the percentages of unsaturated fatty acids, especially polyunsaturated fatty acids. The lipid oxidation values were significantly increased in the GasC-CP group. After 8 d, clearly increased percentages of saturated fatty acids, a low level of major polyunsaturated fatty acids (especially linoleic (C18:2n-6)), and a decrease in the percentages of eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) were found in GasC-CP; that is, the serious oxidation of lipids was found in the high O2 concentration group. In addition, the sensory score was also lower than that of the hypoxia CP group. Therefore, high O2 concentrations can enhance lipid oxidation and the changes in the fatty acid concentration. Controlling the O2 concentration is reasonable to limit the degree to which lipids are oxidized in tilapia after the in-package CP treatment.
Collapse
Affiliation(s)
- Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.S.); (Y.W.); (Z.C.); (L.Z.); (W.D.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China;
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
10
|
Jacinto-Valderrama RA, Andrade CT, Pateiro M, Lorenzo JM, Conte-Junior CA. Recent Trends in Active Packaging Using Nanotechnology to Inhibit Oxidation and Microbiological Growth in Muscle Foods. Foods 2023; 12:3662. [PMID: 37835315 PMCID: PMC10572785 DOI: 10.3390/foods12193662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Muscle foods are highly perishable products that require the use of additives to inhibit lipid and protein oxidation and/or the growth of spoilage and pathogenic microorganisms. The reduction or replacement of additives used in the food industry is a current trend that requires the support of active-packaging technology to overcome novel challenges in muscle-food preservation. Several nano-sized active substances incorporated in the polymeric matrix of muscle-food packaging were discussed (nanocarriers and nanoparticles of essential oils, metal oxide, extracts, enzymes, bioactive peptides, surfactants, and bacteriophages). In addition, the extension of the shelf life and the inhibitory effects of oxidation and microbial growth obtained during storage were also extensively revised. The use of active packaging in muscle foods to inhibit oxidation and microbial growth is an alternative in the development of clean-label meat and meat products. Although the studies presented serve as a basis for future research, it is important to emphasize the importance of carrying out detailed studies of the possible migration of potentially toxic additives, incorporated in active packaging developed for muscle foods under different storage conditions.
Collapse
Affiliation(s)
- Rickyn A. Jacinto-Valderrama
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Cristina T. Andrade
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| |
Collapse
|
11
|
Liu C, Wan J, Wang Y, Chen G. Effects of Cold Plasma Treatment Conditions on the Lipid Oxidation Kinetics of Tilapia Fillets. Foods 2023; 12:2845. [PMID: 37569114 PMCID: PMC10417625 DOI: 10.3390/foods12152845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the effects of different cold plasma treatment conditions on the lipid oxidation kinetics of tilapia fillets. The results indicated that increasing the voltage and prolonging the treatment time of cold plasma could cause an increase in the peroxide value and thiobarbituric acid-reactive substance values of the fillets. The changes in the primary and secondary oxidation rates of the lipids in the fillets under different treatment conditions were consistent with zero-order reaction kinetics. The analysis of the fitting of the Arrhenius equation showed that the effect of treatment voltage on the activation energy of lipid oxidation was higher than that of treatment time. When the voltage was higher than 64.71 kV, the activation energy of the primary oxidation of lipids was greater than that of secondary oxidation. Within 0-5 min, the activation energy of primary oxidation first increased then decreased, and was always greater than that of secondary oxidation. Therefore, the primary lipid oxidation of tilapia was more sensitive to the treatment conditions of cold plasma.
Collapse
Affiliation(s)
- Chencheng Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiamei Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Gu Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.L.); (Y.W.); (G.C.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Khumsupan D, Lin SP, Hsieh CW, Santoso SP, Chou YJ, Hsieh KC, Lin HW, Ting Y, Cheng KC. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023; 28:4903. [PMID: 37446565 DOI: 10.3390/molecules28134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.
Collapse
Affiliation(s)
- Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404327, Taiwan
| |
Collapse
|
13
|
Lan W, Zhang B, Liu L, Pu T, Zhou Y, Xie J. Slightly acidic electrolyzed water-slurry ice: shelf-life extension and quality maintenance of mackerel (Pneumatophorus japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3787-3798. [PMID: 36224103 DOI: 10.1002/jsfa.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Different ice treatments were applied for the preservation of mackerel (Pneumatophorus japonicus). The quality changes of samples treated with flake ice (Control), slurry ice (SI) and slightly acidic electrolyzed water-slurry ice (SAEW-SI) in microbiological, physicochemical, protein characteristic, and sensory evaluation were investigated during chilled storage. RESULTS SAEW-SI showed a significant advantage for the inhibition of microbial growth, which could extend the shelf-life for another 144 h at least, compared with Control group. SAEW-SI treatment also showed a strong inhibition for the increase in pH, total volatile basic nitrogen (TVB-N), K-value, histamine and metmyoglobin (MetMb) content. Results of texture profile analysis (TPA) and water holding capacity (WHC) indicated that SAEW-SI can obviously suppress the decrease of hardness value, and have a better protective effect on muscle structure compared to flake ice and SI (P < 0.05). During the whole experiment, the highest sensory scores and a* were obtained in the SAEW-SI group, which indicated that SAEW-SI treatment could maintain better sensory characteristics. According to the results of thiobarbituric acid reactive substances (TBARS) and fluorescence spectroscopy analysis, SAEW-SI treatment could effectively retard protein degradation and lipid oxidation compared with Control and SI group. In maintaining the quality of mackerel, SAEW-SI shows a better effect than SI due to the synergistic effect of fence factors. CONCLUSION The results demonstrated that the shelf-life of mackerel could be extended and the quality of mackerel could be maintained effectively with SAEW-SI treatment during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianting Pu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
14
|
Yang X, Lan W, Xie J. Ultrasound assisted treatment improves the preservation performance of chitosan-grafted-chlorogenic acid on refrigerated sea bass (Lateolabrax japonicus) fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:900-907. [PMID: 36116017 DOI: 10.1002/jsfa.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultrasound can increase the mass transfer between preservatives and food, and enhances the effect of preservatives on food. Chitosan-grafted-chlorogenic acid (CS-g-CA) is a new synthetic compound with good antiseptic properties. Therefore, the present study evaluated the preservation performance of ultrasound-assisted CS-g-CA (GUA) coatings on refrigerated sea bass fillets in terms of changes in microorganisms, lipids, proteins, tissue structures, and moisture. RESULTS The results showed that GUA treatment effectively inhibited the growth of microorganisms in sea bass fillets. Meanwhile, the changes in total volatile basal nitrogen, thiobarbituric acid reactive substances, and pH values were all slowed down under GUA treatment, indicating that protein degradation and lipid oxidation in sea bass were inhibited. Low-field nuclear magnetic resonance and magnetic resonance imaging results indicated that the GUA retarded the conversion of mobile water to free water. In addition, GUA treatment maintained the flavor quality of fish fillets, and also inhibited the reduction of inosine monophosphate and the production of bitter substances (inosine and hypoxanthine), suppressed muscle tissue degeneration, and maintained better sensory scores. CONCLUSION Overall, GUA treatment inhibited microbial growth, protein degradation, lipid oxidation, moisture migration, decomposition of umami substances, and deterioration of sensory quality in sea bass fillets. Finally, the shelf-life of sea bass fillets with GUA treatment was extended by an additional 9 days. The results showed that ultrasonic assistance further enhanced the effect of preservatives on aquatic products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
15
|
Jiang Q, Huang S, Ma J, Du Y, Shi W, Wang M, Wang X, Zhao Y. Insight into mechanism of quality changes in tilapia fillets during salting from physicochemical and microstructural perspectives. Food Chem X 2023; 17:100589. [PMID: 36845512 PMCID: PMC9944559 DOI: 10.1016/j.fochx.2023.100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
The effects and mechanisms of salting on quality properties of tilapia fillets were investigated in the present study. Salting under high NaCl concentrations (12 % and 15 %) resulted in low water content and decreased yields, due to the salting-out effects and low pH. Water in fillets increased in the later stage of salting in 3 % and 6 % NaCl solutions (p < 0.05). The released proteins accumulated with increasing time (p < 0.05). The TBARS value increased from 0.01 to 0.20 mg/kg after 10 h in 15 % NaCl solution (p < 0.05). The quality changes were mainly correlated to the shrinking or swelling of myofibers, extracellular spaces, and existential state of muscle proteins. In consideration of fish quality and increasing call for low sodium intake, it was recommended to prepare fillets below 9 % NaCl with short times. The finding provided instructions to obtain target quality properties from tilapia by controlling salting conditions.
Collapse
Affiliation(s)
- Qingqing Jiang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China,Hunan Xiweijia Biotechnology Co. Ltd, Yueyang 414000, China
| | - Shiyu Huang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jianrong Ma
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Yufan Du
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518000, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China,Corresponding author.
| |
Collapse
|
16
|
Hosseini S, Kadivar M, Shekarchizadeh H, Abaee MS, Alsharif MA, Karevan M. Cold plasma treatment to prepare active polylactic acid/ethyl cellulose film using wheat germ peptides and chitosan. Int J Biol Macromol 2022; 223:1420-1431. [PMID: 36395951 DOI: 10.1016/j.ijbiomac.2022.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
In this study, the surface of the polylactic acid/ethyl cellulose (PLA/EC) blend film was modified by dielectric barrier discharge (DBD) plasma treatment to facilitate the spin-coating of chitosan (CH) and wheat germ bioactive peptides (PEP) obtained from enzymatic hydrolysis of defatted wheat germ protein isolate on the surface of the film. The suitable plasma treatment condition was 5 min at 20 kV according to ATR-FTIR, AFM, SEM, water angle contact, and water solubility results. Increasing the surface roughness and oxygen-containing functional groups (CO and -OH) improved coating by PEP and CH. The PEP-coated film had better antioxidant activity than CH-PEP and CH-coated films. The results of antimicrobial activity demonstrated that PEP-coated film could reduce the growth of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). The PEP-coated film had competitive antibacterial properties with CH-coated. Hence, the obtained PEP-coated PLA/EC film could be a promising candidate for antioxidant and antibacterial food packaging.
Collapse
Affiliation(s)
- Samane Hosseini
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Km 17 Tehran-Karaj Highway, Pajohesh Blvd, Tehran, Iran.
| | - Mohammad Ali Alsharif
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Karevan
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
17
|
Wen L, Xie D, Wu J, Liang Y, Zhang Y, Li J, Xu C, Lin B. Humidity-/Sweat-Sensitive Electronic Skin with Antibacterial, Antioxidation, and Ultraviolet-Proof Functions Constructed by a Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56074-56086. [PMID: 36508579 DOI: 10.1021/acsami.2c15876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most electronic skins (e-skins) show unique performance or possess sensory functions. The raw materials used for their preparation are potentially toxic or harmful, and there may be problems such as poor compatibility between the conductive fillers and polymers. In this paper, a silver-loaded nanocomposite film (PVA/CMS/vanillin/nanoAg) was prepared by the in situ reduction method in a greener route. The mechanical properties of this nanocomposite film had improved with a tensile strength of 30.95 MPa, an elongation at break of 101.9%, and a Young's modulus of 10.62 MPa. In the composite matrix, a cross-linked network was constructed based on the coordination and hydrogen bonds, which was conducive to the stability of the reduced AgNPs and AgNWs. When applied as an e-skin in humidity/sweat sensors and wearable electronics, the nanocomposite film responds to humidity within 60 s and records the electric signals of human joint movements and skin sweating with a response range of 0-140% to strain at 93% RH. This kind of e-skin has excellent antibacterial and antioxidant activities and shows an outstanding ultraviolet-proof performance, which provides a greener promising reference route for the design of wearable e-skins to monitor the health and movements of humans.
Collapse
Affiliation(s)
- Lishan Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Donghong Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Jia Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Jianfang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| |
Collapse
|
18
|
Javadifard M, Khodanazary A, Hosseini SM. The effects of chitosan-nanoclay nanocomposite coatings incorporated with gallic acid on the shelf life of rainbow trout during storage in the refrigerator. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Yang X, Lan W, Lu M, Wang Z, Xie J. Characterization of different phenolic acids grafted chitosan and their application for Japanese sea bass (Lateolabrax japonicus) fillets preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Influence of Gelatin-Chitosan-Glycerol Edible Coating Incorporated with Chlorogenic Acid, Gallic Acid, and Resveratrol on the Preservation of Fresh Beef. Foods 2022; 11:foods11233813. [PMID: 36496621 PMCID: PMC9737340 DOI: 10.3390/foods11233813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorogenic acid (CA), gallic acid (GA), and resveratrol (RES) were added to a gelatin (GEL)-chitosan (CHI)-glycerol (GLY) edible coating, and their effects on the coating of fresh beef preservation were investigated. The results revealed that CA had the most significant improvement effect on fresh beef preservation. The combination of GEL-CHI-GLY-CA preserved the color of the beef better and delayed the increase of the total volatile base nitrogen, even though its total phenolic content decreased at a faster rate during beef preservation. GA also improved the preservation effect as on the 12th day of storage, the beef samples treated with GEL-CHI-GLY-GA had the lowest thiobarbituric acid reactive substances (0.76 mg Malondialdehyde (MDA)/kg) and total viable count (6.0 log cfu/g). On the whole, though RES showed an improvement on beef preservation, the improvement was not as good as the other two polyphenols. After 12 days of storage, the beef samples treated with GEL-CHI-GLY-RES had a higher pH value (6.25) than the other two polyphenol treatmed groups. Overall, the three polyphenol-added combinations increased the shelf life of beef by approximately 3-6 days compared to the control group (treated GEL-CHI-GLY with distilled water).
Collapse
|
21
|
Tang X, Liu CL, Chen YY, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF. Combination of simultaneous extraction–hydrolysis and intermittent feeding of tara pod for efficient production of gallic acid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Wang H, Shi W, Wang X. Differential proteomic analysis of frozen tilapia (Oreochromis niloticus) fillets with quality characteristics by a tandem mass tag (TMT)-based strategy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Chumsri P, Panpipat W, Cheong L, Panya A, Phonsatta N, Chaijan M. Biopreservation of Refrigerated Mackerel ( Auxis thazard) Slices by Rice Starch-Based Coating Containing Polyphenol Extract from Glochidion wallichianum Leaf. Foods 2022; 11:3441. [PMID: 36360054 PMCID: PMC9655189 DOI: 10.3390/foods11213441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Both microbial decomposition and oxidative deterioration contribute to the qualitative degradation of fresh or minimally preserved fish, which negatively impacts the shelf-life of fish, especially those with dark flesh like mackerel. It is becoming more typical to use edible coatings to preserve the freshness of fish products. Herein, the effects of a rice starch (RS) based coating incorporated with dried crude, aqueous Mon-pu (Glochidion wallichianum) leaf extract (MPE) at varying concentrations (0, 0.02, 0.1, 0.5, and 1.0% w/w) on the quality characteristics of mackerel (Auxis thazard) slices during storage at 4 °C were investigated. Uncoated slices had a shelf-life of 6 days, whereas samples coated with RS and 0.5% MPE extended the shelf-life to 9 days by keeping the overall microbiological quality below the permitted level of 6 log CFU/g. The changes in thiobarbituric acid reactive substances (TBARS; <2 mg malondialdehyde equivalent/kg), propanal content, heme iron degradation, myoglobin redox instability, and surface discoloration (a* value and total color difference; ΔE) can all be delayed by this coating condition. Additionally, the RS-MPE coating can maintain the sensory quality of refrigerated mackerel slices and preserve the textural property (water holding capacity and hardness), as well as postpone the development of an off-odor as indicated by lowered contents of total volatile base-nitrogen (TVB-N; not exceeding the acceptable limit of 25 mg/100 g) and trimethylamine (TMA; not exceeding the acceptable limit of 10 mg/100 g). Therefore, a biopreservative coating made of RS and MPE, especially at 0.5%, can be employed to extend the shelf-life of refrigerated mackerel slices up to 9 days.
Collapse
Affiliation(s)
- Paramee Chumsri
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Lingzhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
24
|
Chen L, Jiao D, Zhou B, Zhu C, Liu J, Zhang D, Liu H. Shrimp ( Penaeus monodon) preservation by using chitosan and tea polyphenol coating combined with high-pressure processing. Food Sci Nutr 2022; 10:3395-3404. [PMID: 36249967 PMCID: PMC9548362 DOI: 10.1002/fsn3.2939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
The present work investigated the effects of high-pressure processing (200 and 400 MPa, 5 min) combined with chitosan-tea polyphenol (1.5% and 0.5% [w/v], respectively) coating to improve the quality and stability of shrimp (Penaeus monodon) during 28 days of storage. The chemical (pH, TVB-N, TBARS), microbiological, textural, chromatic characteristics, protein oxidation, and endogenous enzyme activities of shrimps were regularly evaluated. Results showed that the combination treatment exerted a better intense antimicrobial effect, stabilized shrimp's freshness, and resulted in lower pH and TVB-N than the control sample. Also, combined treated samples had better oxidative stability than a single treatment until the end of shelf life. Although combination treatment had no significant effect on endogenous proteases, the combined use of 400 MPa high-pressure and chitosan-tea polyphenol coating was most effective in inhibiting the bacteria and improved the hardness and chromatic characteristics of shrimp within the storage.
Collapse
Affiliation(s)
- Lihang Chen
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Dexin Jiao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Bihe Zhou
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Chen Zhu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Jingsheng Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Dali Zhang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Huimin Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| |
Collapse
|
25
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
26
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
27
|
Lan W, Du J, Liu L, Pu T, Zhou Y, Xie J. SA-SI Treatment: a Potential Method to Maintain the Quality and Protein Properties on Mackerel (Pneumatophorus japonicus) During Chilling Storage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02827-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Lan W, Zhao X, Wang M, Xie J. Effects of chitosan and apple polyphenol coating on quality and microbial composition of large yellow croaker (Pseudosciaena crocea) during ice storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3099-3106. [PMID: 34778959 DOI: 10.1002/jsfa.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Large yellow croaker (Pseudosciaena crocea) has important commercial value because of its high nutritional value and delicious taste. However, large yellow croaker is readily affected by microorganisms during storage, which causes the corruption of muscle tissue. Both chitosan (CS) and apple polyphenols (APs) are bio-preservatives, which can effectively inhibit the growth of microorganisms and improve the quality of large yellow croaker. The effects of 10.0 and 20.0 g L-1 CS combined with 1.0 g L-1 AP coating on the quality and microbial composition of large yellow croaker during ice storage were investigated respectively. RESULTS CS + AP coating restrained the increase of total volatile basic nitrogen (TVB-N) and biogenic amines, slowed down the rise of K-value and retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the concentration of CS. Through the analysis of high-throughput sequencing (HTS), the microbial diversity was changed respectively. The proportion of Shewanella was significantly decreased by CS + AP coating treatment and Pseudomonas was the dominant microorganism in spoiled samples. Compared with the shelf-life of the control group (8 days), 20.0 g L-1 CS combined with 1.0 g L-1 AP coating treatment could extend the shelf-life of large yellow croaker for another 8 days. CONCLUSIONS CS combined with AP coating may be considered a promising method to delay the biochemical changes of ice stored large yellow croaker and extend its shelf life. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Xinyu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Ocean University, Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
29
|
Sun Y, Lan W, Liu S, Guan Y, Zhu S, Xie J. Preparation of chitosan grafted caffeic acid coating and its effect on pompano (Trachinotus ovatus) preservation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2835-2845. [PMID: 34741318 DOI: 10.1002/jsfa.11624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The present study aimed to investigate the preservative effect of chitosan-caffeic acid grafts coating (CS-g-CA) on the quality and microbial characteristics of pompano (Trachinotus ovatus) during iced storage. CS-g-CA was prepared by a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimidehydro/N-hydroxysuccinimide coupling reaction. The grafting of CS-g-CA was confirmed by UV-visible and Fourier-transform infrared spectra. Samples were treated with distilled water (control), chitosan (CS), caffeic acid (CA) and CS-g-CA for 10 min, respectively. Microbiological [total viable count (TVC), H2 S-producing bacteria count, Pseudomonas bacteria count], physicochemical indicators [water holding capacity (WHC), cooking loss, pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), texture profile analysis, free amino acids] and sensory evaluation were investigated during ice storage at 4 °C for up to 27 days. RESULTS The results showed that the antioxidant and antibacterial activities of CS could be improved by grafting CA onto CS. CS-g-CA coating could greatly slow down the speed of water loss and maintain WHC. Furthermore, CS-g-CA coating showed superior antibacterial activities by inhibiting the growth of TVC, delayed the decline of flavor amino acids and reduced sensory change. In addition, CS-g-CA coating reduced lipid oxidation and protein degradation as indicated by the decrease in TBA and TVB-N, possibly as a result of the addition of CA into CS membrane significantly improving the antioxidant activity of CS. CONCLUSION Compared with the control group, CS-g-CA coating had the optimal effect and could enhance the shelf-life of Trachinotus ovatus for at least another 9 days. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shengyun Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
30
|
Lan W, Zhao Y, Liu J, Xie J. Effects of Chitosan-Grafted-Phenolic Acid Coating on Quality and Microbiota Composition of Vacuum-Packaged Sea Bass (Lateolabrax japonicus) Fillets during Chilled Storage. J Food Prot 2022; 85:803-814. [PMID: 35202469 DOI: 10.4315/jfp-21-341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The aim of this research was to experimentally assess the effect of chitosan (CS)-grafted phenolic acid (CS-g-PA) derivatives on the quality and microbiota composition of vacuum-packaged sea bass (Lateolabrax japonicus). Samples were treated by deionized water (CK), 1% CS, 1% CS-g-PA copolymer, and 1% CS-grafted gallic acid (CS-g-GA) copolymer for 10 min and combined with vacuum packaging stored at 4°C to analyze the microbiological and physicochemical indicators; they were also combined with 16s RNA high-throughput sequencing to explore the effects of CS derivatives on quality and microbial composition. The results showed that the treatment of CS-g-GA and CS-g-PA could retard the increase of pH, total volatile basic nitrogen, and the K value. The degradation of ATP-related compounds, production of biogenic amines, and growth of spoilage bacteria were inhibited by CS-g-GA and CS-g-PA. Moreover, CS-g-GA and CS-g-PA performed better in the inhibition of lipid oxidation by the analysis of thiobarbituric acid reactive substances and relative fluorescence intensity. According to the results of high-throughput sequencing, the diversity of microbial composition in all groups was decreased significantly during chilled storage, especially in the CK group. The predominant microorganism was Acinetobacter in the middle period of storage, while Pseudomonas and Shewanella became predominant at the end of storage. The treatment of CS-g-GA and CS-g-PA had significant effects inhibiting the growth of Shewanella during storage. On the basis of the analysis of the microorganism and physicochemical quality, compared with the CK group, CS-g-GA and CS-g-PA can maintain the good quality of sea bass fillets and prolong the shelf life for another 12 days. HIGHLIGHTS
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, People's Republic of China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Jiali Liu
- College of Food Science and Technology, Shanghai 201306, People's Republic of China
| | - Jing Xie
- College of Food Science and Technology, Shanghai 201306, People's Republic of China.,Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, People's Republic of China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| |
Collapse
|
31
|
Yudhistira B, Sulaimana AS, Punthi F, Chang CK, Lung CT, Santoso SP, Gavahian M, Hsieh CW. Cold Plasma-Based Fabrication and Characterization of Active Films Containing Different Types of Myristica fragrans Essential Oil Emulsion. Polymers (Basel) 2022; 14:polym14081618. [PMID: 35458368 PMCID: PMC9027929 DOI: 10.3390/polym14081618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myristica fragrans essential oil (MFEO) is a potential active compound for application as an active packaging material. A new approach was developed using a cold plasma treatment to incorporate MFEO to improve the optical, physical, and bacterial inhibition properties of the film. The MFEO was added as coarse emulsion (CE), nanoemulsion (NE), and Pickering emulsion (PE) at different concentrations. The PE significantly affected (p < 0.05) the optical, physical, and chemical properties compared with CE and NE films. The addition of MFEO to low-density polyethylene (LDPE) film significantly reduced water vapor permeability (WVP) and oxygen permeability (OP) and showed marked activity against E. coli and S. aureus (p < 0.05). The release rate of PE films after 30 h was 70% lower than that of CE and NE films. Thus, it can be concluded that the fabrication of active packaging containing MFEO is a potential food packaging material.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | | | - Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Chun-Ta Lung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia;
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
- Department of Medical Research, China Medical University Hospital, Taichung City 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22840385 (ext. 5010)
| |
Collapse
|
32
|
In Vitro Antibacterial Mechanism of High-Voltage Electrostatic Field against Acinetobacter johnsonii. Foods 2022; 11:foods11070955. [PMID: 35407042 PMCID: PMC8997369 DOI: 10.3390/foods11070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the antibacterial properties and mechanisms of a high-voltage static electric field (HVEF) in Acinetobacter johnsonii, which were assessed from the perspective of biochemical properties and stress-related genes. The time/voltage-kill assays and growth curves showed that an HVEF decreased the number of bacteria and OD600 values. In addition, HVEF treatment caused the leakage of cell contents (nucleic acids and proteins), increased the electrical conductivity and amounts of reactive oxygen substances (ROS) (16.88 fold), and decreased the activity of Na+ K+-ATPase in A. johnsonii. Moreover, the changes in the expression levels of genes involved in oxidative stress and DNA damage in the treated A. johnsonii cells suggested that HVEF treatment could induce oxidative stress and DNA sub-damage. This study will provide useful information for the development and application of an HVEF in food safety.
Collapse
|
33
|
Song Z, Liu H, Huang A, Zhou C, Hong P, Deng C. Collagen/zein electrospun films incorporated with gallic acid for tilapia (Oreochromis niloticus) muscle preservation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Lan W, Yang X, Gong T, Xie J. Predicting the shelf life of Trachinotus ovatus during frozen storage using a back propagation (BP) neural network model. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
The preservation effects of chitosan copolymers (gallic acid and protocatechuic acid) on sea bass (Lateolabrax japonicus) fillets. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Gong W, Guo XL, Huang HB, Li X, Xu Y, Hu JN. Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chem 2021; 356:129703. [PMID: 33848680 DOI: 10.1016/j.foodchem.2021.129703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Cold plasma as a green and expeditious tool was used to modify whey protein isolate (WPI) in order to improve its emulsion capability. The emulsion-based oleogels with antibacterial functions were then constructed using the modified WPI. The modified WPI treated with cold plasma under 10 s at 50 W power significantly lowered the oil-water interface tension. Meanwhile, the fluorescence intensity and the α-helix content of WPI reduced with the cold plasma treatment. It is noted that SEM results showed that the treated WPI had more regular dendritic structures. Such modified WPI was applied to construct oleogels loaded with thyme essential oil and coconut oil, which showed a porous uniform network structure and excellent antimicrobial activities against E.coli. As a proof of concept, this study demonstrated cold plasma could be as a new facile tool to modify food-sourced proteins and expected to enlarge their applications in oleogel productions.
Collapse
Affiliation(s)
- Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiao-Lu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
37
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Yan J, Li M, Wang H, Lian X, Fan Y, Xie Z, Niu B, Li W. Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Liu L, Lan W, Pu T, Zhou Y, Xie J. Combining slightly acidic electrolyzed water and slurry ice to prolong the shelf‐life of mackerel (
Pneumatophorus japonicus
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Liu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Tianting Pu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yuxiao Zhou
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
40
|
Lan W, Liu J, Wang M, Xie J. Effects of apple polyphenols and chitosan‐based coatings on quality and shelf life of large yellow croaker (
Pseudosciaena crocea
) as determined by low field nuclear magnetic resonance and fluorescence spectroscopy. J Food Saf 2021. [DOI: 10.1111/jfs.12887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai China
| | - Jiali Liu
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Meng Wang
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai China
| |
Collapse
|
41
|
Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities. Processes (Basel) 2020. [DOI: 10.3390/pr8070834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, different amounts of cinnamomum essential oil (CEO) were encapsulated in chitosan nanoparticles (NPs) (CS-NPs) through oil-in-water emulsification and ionic gelation. An ultraviolet-visible spectrophotometer, Fourier-transform infrared spectroscopy, synchronous thermal analysis, and X-ray diffraction were employed to analyze the CEO encapsulation. As observed by field-emission scanning electron microscopy, NP size analysis and zeta potential, the prepared CS-NPs, containing CEO (CS-CEO), were spherical with uniformly distributed sizes (diameters: 190–340 nm). The ranges of encapsulation efficiency (EE) and loading capacity (LC) were 4.6–32.9% and 0.9–10.4%, with variations in the starting weight ratio of CEO to CS from 0.11 to 0.53 (w/w). It was also found that the antioxidant activity of the CS-NPs loaded with CEO increased as the EE increased. The active ingredients of the CEO were prevented from being volatilized, significantly improving the chemical stability. The antioxidant activity of CS-CEO was higher than that of the free CEO. These results indicate the promising potential of CS-CEO as an antioxidant for food processing, and packaging applications.
Collapse
|