1
|
Qin C, Jiao Y, Yang L, Wang L, Kong Z, Jiang D, Zhang J, Zhang T, Gao X. Determination of arsenic speciation of arsenic in squid and its human consumption risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5874-5883. [PMID: 39956850 DOI: 10.1007/s11356-024-35626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/19/2024] [Indexed: 02/18/2025]
Abstract
Arsenic species were quantified to further explore the biotransformation of arsenic and better explain the potential health risks. In this research, the levels of six arsenic species (AsB, AsC, MMA, DMA, As3+, and As5+) were determined in 160 squid samples by HPLC-ICP-MS. AsB was the most predominant speciation in squid tissues. The arsenic species, including AsB, AsC, and MMA, were found in all samples, followed by DMA (49.38%), As3+ (21.25%), and As5+ (2.5%). Results indicated squid samples from offshore had higher levels of AsB, AsC, MMA, and DMA. Pearson's correlation analysis found correlations between As-MMA, DMA-As5+, and AsB-MMA, which showed a clear methylation pathway. The levels of inorganic arsenic were below the standard, and no potential health risks were identified. Therefore, the application of total arsenic in our previous study to assess health risks may be biased. In future, there is a need to optimize food safety monitoring of arsenic and comprehensively grasp the basic status and change law of marine ecological environment.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Luping Yang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Lin Wang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Zhengqiao Kong
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Jiacheng Zhang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Tianliang Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, People's Republic of China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Risk assessment of small organoarsenic species in food. EFSA J 2024; 22:e8844. [PMID: 38957748 PMCID: PMC11217773 DOI: 10.2903/j.efsa.2024.8844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.
Collapse
|
3
|
Jakkielska D, Frankowski M, Zioła-Frankowska A. Speciation analysis of arsenic in honey using HPLC-ICP-MS and health risk assessment of water-soluble arsenic. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134364. [PMID: 38657508 DOI: 10.1016/j.jhazmat.2024.134364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
It is well known that arsenic is one of the most toxic elements. However, measuring total arsenic content is not enough, as it occurs in various forms that vary in toxicity. Since honey can be used as a bioindicator of environmental pollution, in the present study the concentration of arsenic and its species (As(III), As(V), DMA, MMA and AsB) was determined in honey samples from mostly Poland and Ukraine using HPLC-ICP-MS hyphenated technique. The accuracy of proposed methods of sample preparation and analysis was validated by analyzing certified reference materials. Arsenic concentration in honey samples ranged from 0.12 to 13 μg kg-1, with mean value of 2.3 μg kg-1. Inorganic arsenic forms, which are more toxic, dominated in honey samples, with Polish honey having the biggest mean percentage of inorganic arsenic species, and Ukrainian honey having the lowest. Furthermore, health risks resulting from the consumption of arsenic via honey were assessed. All Target Hazard Quotient (THQ) values, for total water-soluble arsenic and for each form, were below 1, and all Carcinogenic Risk (CR) values were below 10-4, which indicates no potential health risks associated with consumption of arsenic via honey at average or recommended levels.
Collapse
Affiliation(s)
- Dorota Jakkielska
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Frankowski
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Anetta Zioła-Frankowska
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
4
|
Chen S, Guo Q, Zhou T, Liu L. Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China. Biol Trace Elem Res 2024; 202:1802-1815. [PMID: 37526876 DOI: 10.1007/s12011-023-03779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10- 6 (T. matsutake) to 8.61 × 10- 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Tianhui Zhou
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
- School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Zhou S, Wang H, Tang J, Wang H, Yan J. Simultaneous speciation analysis of arsenic and iodine in human urine by high performance liquid chromatography-inductively coupled plasma mass spectrometry. ANAL SCI 2024; 40:555-562. [PMID: 38091252 DOI: 10.1007/s44211-023-00472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
A high-performance liquid chromatography-inductively coupled plasma mass spectrometry-based method was developed for the simultaneous determination of four iodine species (i.e. iodate, 3-iodo-tyrosine, 3,5-diiodo-tyrosine, and iodide) and six arsenic species (i.e. arsenobetaine, arsenite, dimethylarsinic acid, arsenocholine, methylarsonic acid, and arsenate) in human urine. The chromatographic separation was performed on a Dionex IonPac As7 anion exchange column. The mobile phase was initiated with 0.5 mmol/L ammonium carbonate solution, followed by 50 mmol/L ammonium carbonate/100 mmol/L ammonium nitrate solution (with 4% methanol). The limits of quantification of the analytes ranged from 0.045 to 2.26 μg/L. At three spiked levels (10.0, 20.0, 50.0 μg/L), the average recoveries (%) ranged from 87.4 to 113.1%, and the relative standard deviations (RSD, %) ranged from 0.4 to 17.2%. The ratio of the sum of six arsenic species to the total arsenic measured by ICPMS ranged from 77.4 to 121.2%, and the ratio of the sum of the four iodine species to the total iodine ranged from 70.7 to 114.7%, indicating a good agreement between these two methods for both arsenic and iodine.
Collapse
Affiliation(s)
- Shaomin Zhou
- Zhejiang University School of Medicine Women's Hospital, Hangzhou, 310051, Zhejiang, China
| | - Heng Wang
- Zhoushan Central Blood Station, Zhoushan, 316021, Zhejiang, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, Zhejiang, China.
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
6
|
Wang W, Yi Z, Liang Q, Zhen J, Wang R, Li M, Zeng L, Li Y. In Situ Deposition of Gold Nanoparticles and L-Cysteine on Screen-Printed Carbon Electrode for Rapid Electrochemical Determination of As(III) in Water and Tea. BIOSENSORS 2023; 13:130. [PMID: 36671965 PMCID: PMC9856477 DOI: 10.3390/bios13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this study, a screen-printed carbon electrode (SPCE) based on in situ deposition modification was developed for the sensitive, rapid, easy and convenient determination of As(III) in water and tea by linear sweep anodic stripping voltammetry (LSASV). The screen-printed carbon electrodes were placed in a solution consisting of As(III) solution, chlorauric acid and L-cysteine. Under certain electrical potential, the chloroauric acid was reduced to gold nanoparticles (AuNPs) on the SPCE. L-cysteine was self-assembled onto AuNPs and promoted the enrichment of As(III), thus enhancing the determination specificity and sensitivity of As(III). The method achieved a limit of determination (LOD) of 0.91 ppb (µg L-1), a linear range of 1~200 µg L-1, an inter-assay coefficient of variation of 5.3% and good specificity. The developed method was successfully applied to the determination of As(III) in tap water and tea samples, with a recovery rate of 93.8%~105.4%, and further validated by inductively coupled plasma mass spectrometry (ICP-MS). The developed method is rapid, convenient and accurate, holding great promise in the on-site determination of As(III) in tap water and tea leaves, and it can be extended to the detection of other samples.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhijian Yi
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Qiongxin Liang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junjie Zhen
- Guangdong Langyuan Biotechnology Co., Ltd., Foshan 528313, China
| | - Rui Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Mei Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Wuhan Zhongkezhikang Biotechnology Co., Ltd., Wuhan 430223, China
| | - Yongfang Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
7
|
Liu Y, Chen S, Li Q, Liu L. Changes in Arsenic Speciation in Wild Edible Fungi after Different Cooking Processes and Gastrointestinal Digestion. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020603. [PMID: 36677657 PMCID: PMC9865972 DOI: 10.3390/molecules28020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Arsenic (As) is enriched in wild edible fungi, which is one of the main important sources of As in humans' diet. In this study, two wild edible fungi were employed for investigation: (1) Pleurotus citrinopileatusone, which contains a high content of inorganic As (iAs) and (2) Agaricus blazei Murill, which contains a high content of organic As. This study investigated the changes in As content and its speciation after different daily cooking methods. We found that the content of As in Pleurotus citrinipileatus and Agaricus blazei Murill reduced by soaking plus stir-frying by 55.4% and 72.9%, respectively. The As content in Pleurotus citrinipileatus and Agaricus blazei Murill decreased by 79.4% and 93.4%, respectively, after soaking plus boiling. The content of As speciation in dried wild edible fungi reduced significantly after different treatments. Among them, iAs decreased by 31.9~88.3%, and organic As decreased by 33.3~95.3%. This study also investigated the bioaccessibility of As in edible fungi after different cooking processes via an in-vitro physiologically based extraction test (PBET). The results showed that the bioaccessibility of As was relatively high if the edible fungi were uncooked, boiled, or stir-fried. The gastric (G) bioaccessibility of As ranged from 51.7% to 93.0% and the gastrointestinal (GI) bioaccessibility of As ranged from 63.5% to 98.1%. Meanwhile, the bioaccessibility of inorganic As was found to be as high as 94.6% to 151%, which indicates that further evaluation of the potential health risks of wild edible fungi is necessary.
Collapse
Affiliation(s)
- Yang Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qianyu Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence:
| |
Collapse
|
8
|
Chen S, Liu L. Species composition and health risk assessment of arsenic in Agaricus blazei Murrill and Tricholoma matsutake from Yunnan Province, China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Zhong Y, Ji M, Hu Y, Li G, Xiao X. Progress of Environmental Sample Preparation for Elemental Analysis. J Chromatogr A 2022; 1681:463458. [DOI: 10.1016/j.chroma.2022.463458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
10
|
Erarpat S, Bodur S, Günkara ÖT, Bakırdere S. Combination of high performance liquid chromatography and flame atomic absorption spectrophotometry using a novel nebulizer interface supported T shaped slotted quartz tube for the determination of Vitamin B12. J Pharm Biomed Anal 2022; 217:114855. [DOI: 10.1016/j.jpba.2022.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022]
|
11
|
Multielemental speciation analysis of Cd2+, Pb2+ and (CH3)3Pb+ in herb roots by HPLC/ICP-DRC-MS. Validation and application to real samples analysis. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Peng C, Zhou J, Sun Y, Yin H, Chen Y, Yao L, Qi K, Huo Q, Xie F. Study on the speciation of arsenic in the genuine medicinal material honeysuckle. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Arsenic (As) accumulated in genuine medicinal materials will not only deteriorate the original medicinal properties of the medicinal materials but also harm the eater’s body. In this study, inductively coupled plasma mass spectrometry (ICP-MS) technology was used to investigate the total As content of honeysuckle in four regions, namely Fengqiu, Henan, Xinmi, Shandong, and Julu, Hebei, as well as the speciation and content of As in the roots, stems, and leaves of honeysuckle. This research shows that the total As content of honeysuckle in the four regions was 0.25–0.3 mg/kg. At 1.5 mol/L H3PO4, 200 W, we performed ultrasonic extraction for 30 min at 60°C and adopted high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) to analyze the As speciation of honeysuckle plants. The soil As speciation mainly exists in the form of As(v). In the medicinal part of honeysuckle, the amount of different As speciation is ranked in the descending order as As(v) > As(iii) > dimethyl As acid > monomethyl As acid > AsC. As(v) is the main speciation, accounting for 64.5% of the total, followed by the most toxic As(iii), which is 18.8%. As(v) absorbed by the root system of honeysuckle from the soil tends to transform to As(iii) when transported upwards, and the transformation process mainly occurs in the roots.
Collapse
Affiliation(s)
- Congnan Peng
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Juntong Zhou
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Yaxuan Sun
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Hang Yin
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Yuxin Chen
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Li Yao
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Kailin Qi
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Qing Huo
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| | - Fei Xie
- Department of Biomedicine, Biochemical Engineering College of Beijing Union University , 100023 Beijing , China
| |
Collapse
|
13
|
Barimah AO, Guo Z, Agyekum AA, Guo C, Chen P, El-Seedi HR, Zou X, Chen Q. Sensitive label-free Cu2O/Ag fused chemometrics SERS sensor for rapid detection of total arsenic in tea. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Bruggink C, Jensen D. Combining ion chromatography with mass spectrometry and inductively coupled plasma-mass spectrometry: Annual review 2020. ANALYTICAL SCIENCE ADVANCES 2021; 2:238-249. [PMID: 38716451 PMCID: PMC10989527 DOI: 10.1002/ansa.202000120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2024]
Abstract
The demand for analyzing low molecular weight polar and ionic components in body fluids, pharmaceutical formulations, food, environmental samples, and drinking water is increasing. Ion chromatography (IC) offers significant advantages over RPLC and HILIC due to a complementary chromatographic selectivity, a different retention mechanism, and a high tolerance toward complex matrices. A continuously regenerated membrane desalter simplifies the combination of IC-applications with MS- or MS/MS-detection, improving the sensitivity and specificity. Analytical workflows are streamlined, providing higher sample throughput. Combining IC with ICP-MS simplifies the speciation analysis of inorganic and organic polar components. The knowledge about the distribution of an element among chemical species in a sample is essential due to significantly different toxicological or environmental properties. This annual review evaluates the literature published from late 2019 until November 2020.
Collapse
|
15
|
Braeuer S, Borovička J, Glabonjat RA, Steiner L, Goessler W. Arsenocholine-O-sulfate: A novel compound as major arsenic species in the parasitic mushroom Tolypocladium ophioglossoides. CHEMOSPHERE 2021; 265:128886. [PMID: 33228987 DOI: 10.1016/j.chemosphere.2020.128886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The As concentrations, along with 34 other elements, and the As speciation were investigated in wild-grown samples of the parasitic mushroom Tolypocladium ophioglossoides with inductively coupled plasma mass spectrometry (ICPMS) and high performance liquid chromatography coupled to ICPMS. The As concentrations were 0.070-3.44 mg kg-1 dry mass. More remarkable was the As speciation, where up to 56% of the extracted As were found to be an unknown As species, which was marginally retained under anion- and also cation-exchange conditions. After testing several different chromatographic settings, the compound was finally isolated and identified as 2-(sulfoxyethyl) trimethylarsonium ion (in short: arsenocholine-O-sulfate) with high resolution mass spectrometry. The compound was synthesized and further quantified in all investigated samples via ion-pair chromatography coupled to ICPMS. In addition to the high abundance of arsenocholine-O-sulfate in T. ophioglossoides, small amounts of this As species were also detected in one sample of the host mushroom, Elaphomyces asperulus. In a sample of another parasitic mushroom, Ophiocordyceps sinensis, arsenocholine-O-sulfate could not be detected, but the main species was another unknown compound that was oxidized to inorganic As(V) with hydrogen peroxide. This is the first discovery of arsenocholine-O-sulfate in nature. It is possible that it is present in many other organisms, at least in low concentrations, and just has not been detected there yet because of its unusual chromatographic behavior. The existence of arsenocholine-O-sulfate brings up questions again about the biotransformation pathways of As in the environment and the specific behavior of fungi.
Collapse
Affiliation(s)
- Simone Braeuer
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria.
| | - Jan Borovička
- Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068, Husinec-Řež, Czech Republic; Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500, Prague 6, Czech Republic
| | - Ronald A Glabonjat
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Lorenz Steiner
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010, Graz, Austria
| |
Collapse
|