1
|
Liu S, Shao L, Dong Y, Gong J, Yang X, Li F, Xu X, Wang H. Hydrolysis of myofibrillar proteins by protease AprA secreted from Pseudomonas fragi: Preference for degrading Ala-linked peptide bonds. Food Chem 2025; 479:143756. [PMID: 40073553 DOI: 10.1016/j.foodchem.2025.143756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Extracellular proteases of bacteria have attracted attention in recent years. Alkaline protease AprA secreted from Pseudomonas fragi has been shown to cause spoilage in chilled meat and to degrade myofibrillar proteins (MPs), but the spoilage mechanism was unknown. AprA possessed a high affinity for substrate proteins (Km = 1.40 mg/mL, Vmax = 11.20 mg/mL/min) and was controlled by metal ions and inhibitors. AprA exhibited strong hydrolytic activity on MPs, with alterations in secondary structure, tertiary structure and sulfhydryl content. Molecular docking and molecular dynamics revealed that AprA bound to actin and myosin heavy chain (MHC) through hydrogen bonds, hydrophobic interaction and salt bridges, respectively. AprA exhibited a broad spectrum of cleavage, with a relative preference for Ala-linked peptide bonds, according to peptide release kinetics. The above results reveal the mechanism of bacterial spoilage of chilled meat at low temperatures. Of course, this provides a theoretical basis for targeted control of the meat spoilage caused by AprA.
Collapse
Affiliation(s)
- Silu Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Dong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinqi Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fang Li
- Anhui Konka Tongchuang Household Appliances Co., Ltd., Chuzhou 239000, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Yang X, Yu T, Shen Y, Liu H, Cheng Y, Dai R, Yan D, Gao J, Chen H, Wu Y. Irradiation alters the structure and reduces the sensitization of sesame proteins in the liquid state. Food Funct 2025; 16:2474-2486. [PMID: 40019315 DOI: 10.1039/d4fo05355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Irradiation is extensively utilized in food processing as an effective and convenient method. At present, numerous studies have investigated the potential of irradiation to reduce food allergenicity. The objective of this study was to investigate the effects of irradiation treatment on the structure and allergenicity of liquid and solid sesame proteins. Sesame protein extracts and lyophilized powders were irradiated at doses of 0, 2.5, 5, 7.5, and 10 kGy, respectively. The effects of irradiation on sesame proteins were investigated by CD spectroscopy, fluorescence spectroscopy, indirect competitive ELISA, western blot and degranulation experiments on KU812 cells. The experimental results demonstrated that irradiation had a more pronounced effect on liquid sesame proteins. Irradiation altered the secondary structure and increased the surface hydrophobicity, with the α-helix content decreasing from 14.27% to 13.53% and the β-sheet content increasing from 33.91% to 39.53%. Additionally, protein aggregation resulted in a reduction of free sulfhydryl groups. Following irradiation, the IC50 value obtained by indirect competitive ELISA increased from 0.695 μg mL-1 to 18.546 μg mL-1, while the release of cellular β-Hex and IL-6 was reduced, indicating that irradiation diminished the IgE binding capacity of liquid sesame proteins and their ability to induce cell degranulation. Western blotting results corroborated the findings from the ELISA assay. In conclusion, irradiation modifies the structure and reduces the potential allergenicity of liquid sesame proteins.
Collapse
Affiliation(s)
- Xintong Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Youdou Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ruoyan Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Dongxia Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
3
|
Fang L, Han X, Zhang Y, Hui T, Ding L, Dai W, Han Y, Zheng M, Xing G. Does Transglutaminase Crosslinking Reduce the Antibody Recognition Capacity of β-Lactoglobulin: An Analysis from Conformational Perspective. Molecules 2025; 30:685. [PMID: 39942789 PMCID: PMC11820178 DOI: 10.3390/molecules30030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Food allergies are a global concern, with β-lactoglobulin (β-LG) in bovine milk being a major allergenic protein. This study investigated the effects of transglutaminase (TGase)-mediated crosslinking on the antibody recognition capacity (ARC) and structural properties of β-LG, with the aim of developing hypoallergenic dairy products. β-LG solutions were treated with TGase at varying concentrations (0, 5, 10, 15, and 20 U/g) and durations (0, 6, 18, 24, and 42 h), followed by analysis using electrophoresis, enzyme-linked immunosorbent assay (ELISA), and spectroscopy. The results demonstrated that treatment with TGase at 20 U/g significantly reduced the ARC and immunoglobulin E (IgE) binding capacity of β-LG to 90.0 ± 0.4% and 58.4 ± 1.0%, respectively, with the optimal ARC reduction observed after 6 h of treatment (86.7 ± 1.2%, p < 0.05). Although electrophoresis did not reveal significant crosslinking of β-LG, ultraviolet absorption, fluorescence intensity, and hydrophobicity all increased with prolonged crosslinking time, while sulfhydryl content fluctuated irregularly. These findings suggest that β-LG underwent varying degrees of structural modification, which led to the masking of antigenic epitopes during the early stages (0-24 h), followed by their re-exposure at the later stage (42 h). Overall, these results highlight the potential of TGase to reduce β-LG potential allergenicity, presenting a promising strategy for the development of hypoallergenic dairy products.
Collapse
Affiliation(s)
- Lei Fang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xun Han
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yue Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tianran Hui
- UCL Division of Medicine, University College London, London WC1E 6BT, UK
| | - Lingling Ding
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Wenlu Dai
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yujie Han
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Maoqiang Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
4
|
Hu X, Wang H, Hu Y, Wen P, Wu X, Tu Z. Modulating allergenicity of prawn tropomyosin (penaeus chinensis) via pulsed electric field-induced conformational changes. Food Chem 2025; 463:141376. [PMID: 39321652 DOI: 10.1016/j.foodchem.2024.141376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The effect of electric field intensities (EFIs, 5-20 kV/cm) and treatment times (0.5-2 h) on allergenicity and spatial conformation of prawn tropomyosin was evaluated. The results demonstrated that the IgG and IgE binding capacity of tropomyosin maximally increased by 24.34 % and 29.16 % respectively, followed by a subsequent decrease after 20 kV/cm treatment for 1 h. Interestingly, 5-10 kV/cm treatments significantly decreased the α-helix content (P < 0.05) and fluorescence intensity, while 20 kV/cm treatment promoted extensive spiralization, resulting in a tightly packed structure. The increased flexibility further exposed the hydrolysis sites and strengthened the gastrointestinal digestibility of tropomyosin. Additionally, molecular dynamic simulation indicated that extended EFIs increased structural flexibility and depolymerized the tropomyosin dimers through destroying intermolecular hydrogen bonds (formed within arginine and glutamate), which allowed tropomyosin to be easily recognized by IgG/IgE. Whereas, decrease of solvent-accessibility surface area (SASA), hydrophobic surface area induced conformation folded and caused epitopes masked.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Xiongchen Wu
- Jiangxi Agricultural Development Group Co., Ltd, Nanchang, Jiangxi, 330038, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
5
|
Yang H, Shi Q, Wang Z, Chen X, Min F, Meng X, Tong P, Wu Y, Chen H. The Effect of Lipids on the Structure and Function of Egg Proteins in Response to Pasteurization. Foods 2025; 14:219. [PMID: 39856886 PMCID: PMC11764683 DOI: 10.3390/foods14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, the consumption of liquid eggs has failed to meet the expectations of the public due to growing concerns regarding food safety and health. It is well known that there are interactions between the components in liquid eggs, and the interaction effect on the structure and functional properties of the proteins and antigenicity remains unclear. To investigate egg component interactions, we focused on four major egg lipids, namely phosphatidylcholine, palmitic acid, oleic acid, and linoleic acid, as well as four major egg proteins, including ovalbumin, ovotransferrin, ovomucoid, and lysozyme. The protein structural changes were analyzed using polypropylene gel electrophoresis, circular dichroism, ultraviolet absorption spectra, and exogenous fluorescence spectra, and the functional properties were assessed through solubility measurements and particle size analysis, while protein antigenicity was evaluated using an enzyme-linked immunosorbent assay. All the results revealed that oleic acid had the most significant effect on proteins' secondary and tertiary structures, particularly affecting ovalbumin and ovotransferrin. Linoleic acid substantially increased the solubility of ovalbumin and ovomucoid, while palmitic acid significantly influenced the particle size of ovalbumin and lysozyme. Thus, we found that different lipids exhibit distinct effects on egg protein properties during pasteurization conditions, with oleic acid showing the most substantial impact on protein structure and antigenicity.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Meng X, Tu ZC, Wen PW, Hu YM, Wang H. Investigating the Mechanism of Microwave-Assisted Enzymolysis Synergized with Magnetic Bead Adsorption for Reducing Ovalbumin Allergenicity through Biomass Spectrometry Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833376 DOI: 10.1021/acs.jafc.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Ping-Wei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
7
|
Zhang W, Yang Y, Su Y, Gu L, Chang C, Li J. Investigating the mechanism of antioxidants as egg white powder flavor modifiers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2621-2629. [PMID: 37985210 DOI: 10.1002/jsfa.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The uses of egg white powder (EWP) are restricted because of its odor. It is necessary to find a method to improve its flavor. In this paper, three different antioxidants - green tea extract (GTE), sodium ascorbate (SA), and glutathione (GSH) - were selected to modify the flavor. The physicochemical and structural properties of EWP were investigated to study the mechanism of the formation and release of volatile compounds. RESULTS Antioxidants can modify the overall flavor of EWP significantly, inhibiting the generation or release of nonanal, 3-methylbutanal, heptanal, decanal, geranyl acetone, and 2-pemtylfuran. A SA-EWP combination showed the lowest concentration of 'off' flavor compounds; GTE-EWP and GSH-EWP could reduce several 'off' flavor compounds but increased the formation of geranyl acetone and furans. The changes in the carbonyl content and the amino acid composition confirmed the inhibition of antioxidants with the oxidative degradation of proteins or characteristic amino acids. The results of fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy provided structural information regarding EWP, which showed the release of volatile compounds decreased due to structural changes. For example, the surface hydrophobicity increased and the protein aggregation state changed. CONCLUSIONS Antioxidants reduce the 'off' flavor of EWP in two ways: they inhibit protein oxidation and Maillard reactions (they inhibit formation of 3-methylbutanal and 2-pemtylfuran) and they enhance the binding ability of heat-denatured proteins (reducing the release of nonanal, decanal, and similar compounds). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weijian Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, PR China
| |
Collapse
|
8
|
Lan M, Li T, Li L, Wang S, Chen J, Yang T, Li Z, Yang Y, Zhang X, Li B. Ultrasonic treatment treated sea bass myofibrillar proteins in low-salt solution: Emphasizing the changes on conformation structure, oxidation sites, and emulsifying properties. Food Chem 2024; 435:137564. [PMID: 37776650 DOI: 10.1016/j.foodchem.2023.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
The physiochemical properties, structure characteristics, oxidation, and emulsifying properties of myofibrillar proteins (MPs) in low salt solution after treated by the ultrasound were investigated. The solubility, mean diameters, sulfhydryl content, and carbonyl contents of MPs after ultrasonic treatment increased, while the turbidity decreased. The surface hydrophobicity of MPs with 200 W-600 W treatment increased, but decreased at 800 W treatment. The circular dichroism analysis revealed that α-helix content increased, while β-sheet and random coil content decreased after ultrasonic treatment. Fluorescence spectroscopy indicated the fluorescence intensities of MPs were increased after ultrasonic treatment. SDS-PAGE results showed more protein polymers due to myosin heavy chain (MHC) aggregation via disulfide bonds. Based on LC-MS/MS result, the myosin heavy chain was susceptible to oxidation, with monooxidation being the main oxidative modification. Finally, the emulsions stabilized by ultrasonically treated MPs, especially those treated at 800 W, exhibited decreased particle size, improved uniformity, and enhanced stability.
Collapse
Affiliation(s)
- Meijuan Lan
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tongshuai Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Tangyu Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiru Li
- Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, China
| | - Yipeng Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Chen H, Bian Z, Wen P, Wang H, Hu Y, Tu Z, Liu G. Insight into the molecular mechanism underlying the enhancement of antioxidant activity in ovalbumin by high-energy electron beam irradiation. Food Chem 2024; 433:137384. [PMID: 37688822 DOI: 10.1016/j.foodchem.2023.137384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The effects of high-energy electron beam irradiation (HE-EBI) at various doses (0, 25, 50, 75, and 100 kGy) on the antioxidant activity of ovalbumin (OVA) were studied, and the molecular mechanism was investigated. The results showed that the antioxidant activity of HE-EBI-treated OVA was significantly enhanced in a dose-dependent manner. The irradiated OVA structure gradually unfolded to form a "honeycomb" structure, exposing the buried hydrophobic and free sulfhydryl groups inside the molecule. Two oxidation sites (M35 and T170), adjacent to the antioxidant peptide were identified by mass spectrometry, possibly exposing the antioxidant peptide through structural deconvolution. In addition, aspartic residues generated dicarbonyl compound under high-energy electron beam stress, and its accumulation further enhanced the antioxidant activity. Conclusively, HE-EBI can enhance the antioxidant activity of OVA through ionization effects, providing valuable information for the potential application of HE-EBI in the food industry.
Collapse
Affiliation(s)
- Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhongyue Bian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Guangxian Liu
- Jiangxi Academy of Agricultural Sciences, Nanchang 330299, China.
| |
Collapse
|
10
|
Hu Y, Chen H, Yang Y, Zhang S, Xie Z, Liu J, Jiang Q, Liu J, Wen P. Comparison of ovalbumin glycation induced by high-temperature steaming and high-temperature baking: A study combining conventional spectroscopy with high-resolution mass spectrometry. Food Res Int 2023; 173:113279. [PMID: 37803592 DOI: 10.1016/j.foodres.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
High-temperature steaming (HTS) and high-temperature baking (HTB)-induced ovalbumin (OVA)-glucose glycation (140 °C, 1-3 min) were compared, and the different mechanisms were evaluated by changes in protein conformation, glycation sites and average degree of substitution per peptide molecule (DSP) values as well as the antioxidant activity of glycated OVA. Conventional spectroscopic results suggested that in comparison with HTB, HTS promoted protein expansion, increased β-sheet content and made OVA structure more orderly. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis showed that 10 glycation sites were found under HTB, while 4 new glycation sites R111, R200, R219 and K323 appeared under HTS, and 2 of them (R219 and K323) were located in internal β-sheet chains. The antioxidant activities of glycated OVA increased with increasing treatment time, and HTS showed stronger enhancement effect than HTB. Furthermore, the DSP values were generally higher under HTS than HTB. Compared with HTB, HTS with high penetrability could enhance the change of OVA primary structure and spatial conformation, making the protein structure more unfolded and stable, leading to more protein-sugar collisions occurred in inner OVA molecular and significantly promoted glycation. In conclusion, HTS is a promising method for high-temperature short-time glycation reaction, with drastically increasing the protein antioxidant activities.
Collapse
Affiliation(s)
- Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yifan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
11
|
Liu WL, Wang H, Hu YM, Wang XM, Chen HQ, Tu ZC. Mechanism of the Allergenicity Reduction of Ovalbumin by Microwave Pretreatment-Assisted Enzymolysis through Biological Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15363-15374. [PMID: 37797215 DOI: 10.1021/acs.jafc.3c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Ovalbumin (OVA) is a major allergen in hen eggs. Enzymolysis has been demonstrated as an efficient method for reducing OVA allergenicity. This study demonstrates that microwave pretreatment (MP) at 400 W for 20 s assisting bromelain enzymolysis further decreases the allergenicity of OVA, which was attributed to the increase in the degree of hydrolysis and promoted the destruction of IgE-binding epitopes. The results showed that MP could promote OVA unfolding, expose hydrophobic domains, and disrupt tightly packed α-helical structures and disulfide bonds, which increased the degree of hydrolysis by 7.28% and the contents of peptides below 1 kDa from 43.55 to 85.06% in hydrolysates compared with that for untreated OVA. Biological mass spectrometry demonstrated that the number of intact IgE-binding epitope peptides in MP-assisted OVA hydrolysates decreased by 533 compared to that in hydrolysis without MP; consequently, their IgG/IgE binding rates decreased more significantly. Therefore, MP-assisted enzymolysis may provide an alternative method for decreasing the OVA allergenicity.
Collapse
Affiliation(s)
- Wen Li Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yue Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xu Mei Wang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hai Qi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zong Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
12
|
Shen M, Yang X, Wang Z, Sha X, Zhang X, Sun J. The Impact of AAPH-Induced Oxidation on the Functional and Structural Properties, and Proteomics of Arachin. Molecules 2023; 28:6277. [PMID: 37687106 PMCID: PMC10489151 DOI: 10.3390/molecules28176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to investigate the effect of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation on the functional, structural properties and proteomic information of arachin. The results showed that moderate oxidation improved the water/oil holding capacity of proteins and increased the emulsifying stability, while excessive oxidation increased the carbonyl content, reduced the thiol content, altered the structure and thermal stability, and reduced most of the physicochemical properties. Through LC-QE-MS analysis, it was observed that oxidation leads to various modifications in arachin, including carbamylation, oxidation, and reduction, among others. In addition, 15 differentially expressed proteins were identified. Through gene ontology (GO) analysis, these proteins primarily affected the cellular and metabolic processes in the biological process category. Further Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the "proteasome; protein processing in the endoplasmic reticulum (PPER)" pathway was the most significantly enriched signaling pathway during the oxidation process of arachin. In conclusion, this study demonstrated that AAPH-induced oxidation can alter the conformation and proteome of arachin, thereby affecting its corresponding functional properties. The findings of this study can potentially serve as a theoretical basis and foundational reference for the management of peanut processing and storage.
Collapse
Affiliation(s)
- Mingjuan Shen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Xi Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Xiaomei Sha
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
13
|
Zhou E, Xue X, Xu H, Zhao L, Wu L, Li Q. Effects of covalent conjugation with quercetin and its glycosides on the structure and allergenicity of Bra c p from bee pollen. Food Chem 2023; 406:135075. [PMID: 36462363 DOI: 10.1016/j.foodchem.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Profilin family members are potential pan-allergens in foods, presenting public health hazards. However, studies on the allergenicity modification of profilin allergens are limited. Herein, quercetin and its glycosides (isoquercitrin and rutin) were applied to modify the allergenicity of a profilin allergen (Bra c p) from Brassica campestris bee pollen. Results showed that only quercetin can be closely covalently bound to Bra c p among the three, and the binding site was located at the Cys98 residue. After covalently conjunction, the relative content of α-helix structure in Bra c p was reduced by 40.05%, while random coil was increased by 42.89%; moreover, the Tyr and Phe residues in Bra c p were masked. These structural changes could alter the conformational antigenic epitopes of Bra c p, resulting in its allergenicity reduction. Our findings might provide a technical foundation for reducing the allergenicity of bee pollen and foods containing profilin family allergens.
Collapse
Affiliation(s)
- Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Haoxie Xu
- Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
14
|
Mao JH, Zhang K, He YF, Liu J, Shao YH, Tu ZC. Molecular structure, IgE binding capacity and gut microbiota of ovalbumin conjugated to fructose and galactose:A comparative study. Int J Biol Macromol 2023; 234:123640. [PMID: 36801289 DOI: 10.1016/j.ijbiomac.2023.123640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Ovalbumin (OVA) was modified by fructose (Fru) and galactose (Gal) to study the structure, IgG/IgE binding capacity and effects on human intestinal microbiota of the conjugated products. Compared with OVA-Fru, OVA-Gal has a lower IgG/IgE binding capacity. The reduction of OVA is not only associated with the glycation of R84, K92, K206, K263, K322 and R381 in the linear epitopes, but also with conformational epitope changes, manifested as secondary and tertiary structural changes caused by Gal glycation. In addition, OVA-Gal could alter the structure and abundance of gut microbiota at phylum, family, and genus levels and restore the abundance of bacteria associated with allergenicity, such as Barnesiella, Christensenellaceae_R-7_group, and Collinsela, thereby reducing allergic reactions. These results indicate that OVA-Gal glycation can reduce the IgE binding capacity of OVA and change the structure of human intestinal microbiota. Therefore, Gal glycation may be a potential method to reduce protein allergenicity.
Collapse
Affiliation(s)
- Ji-Hua Mao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kai Zhang
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330049, China
| | - Ying-Fei He
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
15
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
16
|
Liu GX, Tu ZC, Wang H, Hu Y, Yang WH. Co-60 gamma irradiation induced ovalbumin-glucose glycation and allergenicity reduction revealed by high-resolution mass spectrometry and ELISA assay. Food Chem 2023; 399:134013. [DOI: 10.1016/j.foodchem.2022.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
17
|
Effect of Oxidative Modification by Peroxyl Radical on the Characterization and Identification of Oxidative Aggregates and In Vitro Digestion Products of Walnut ( Juglans regia L.) Protein Isolates. Foods 2022; 11:foods11244104. [PMID: 36553844 PMCID: PMC9777859 DOI: 10.3390/foods11244104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Walnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new findings. SDS-PAGE and spectral analysis were used to identify structural changes in the protein after oxidative modification, and LC-MS/MS was used to identify the digestion products. The findings demonstrated that as the AAPH concentration increased, protein carbonyl content increased from 2.36 to 5.12 nmol/mg, while free sulfhydryl content, free amino content, and surface hydrophobicity decreased from 4.30 nmol/mg, 1.47 μmol/mg, and 167.92 to 1.72 nmol/mg, 1.13 μmol/mg, and 40.93 nmol/mg, respectively. Furthermore, the result of Tricine-SDS-PAGE in vitro digestion revealed that protein oxidation could cause gastric digestion resistance and a tendency for intestinal digestion promotion. Carbonyl content increased dramatically during the early stages of gastric digestion and again after 90 min of intestine digestion, and LC-MS/MS identified the last digestive products of the stomach and intestine as essential seed storage proteins. Oxidation causes walnut proteins to form aggregates, which are then re-oxidized during digestion, and proper oxidative modification may benefit intestinal digestion.
Collapse
|
18
|
Li Y, Zhang S, Ding J, Zhong L, Sun N, Lin S. Evaluation of the structure-activity relationship between allergenicity and spatial conformation of ovalbumin treated by pulsed electric field. Food Chem 2022; 388:133018. [PMID: 35468466 DOI: 10.1016/j.foodchem.2022.133018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate the effect of pulsed electric field (PEF) treatment on ovalbumin (OVA) induced allergens and reveal potential allergy regulatory mechanisms. At 10 kV/cm, OVA-induced allergic symptoms were significantly reduced, and the capacity of OVA to bind with specific IgG1 and IgE was reduced by 10.32% and 3.61%, respectively. Furthermore, the degranulation of RBL-2H3 cells and allergen activity were also reduced by 4.63% and 22.15%, respectively. Interestingly, the α-helix content was reduced by 5.81% and the fluorescence intensity was increased by 6.90% with PEF treatment. At 10 kV/cm, water contact angle and surface hydrophobicity increased by 8.40% and 0.18%, respectively, indicating that PEF treatment increased the exposure of hydrophobic amino acid residues. PEF treatment alters the hydrogen bonding and hydrophobic interactions in the protein, which masks the binding sites of sensitized epitopes, and consequently reduces allergies.
Collapse
Affiliation(s)
- Yinli Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co. Ltd, Ganzhou 341100, PR China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
19
|
Bian ZY, Tu ZC, Wang H, Hu YM, Liu GX. Investigation of the Mechanism of 60Co Gamma-Ray Irradiation-Stimulated Oxidation Enhancing the Antigenicity of Ovalbumin by High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9477-9488. [PMID: 35881501 DOI: 10.1021/acs.jafc.2c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
60Co gamma-ray irradiation-induced antigenicity changes in ovalbumin (OVA) were investigated, and the molecular mechanism was analyzed. Irradiation treatment at 0-100 kGy could significantly enhance the IgG/IgE binding ability of OVA in a dose-dependent paradigm by concomitant oxidative modification, which exhibited color browning and an increase in carbonyl content caused by high-penetrable rays. More allergenic epitopes of OVA were exposed after irradiation treatment reflected by structural changes including the unfolding of tertiary structure, the conversion of α-helix structures to β-sheet and random coil structures, and the cleavage of several peptide bonds. Meanwhile, three oxidation sites of K46, T49, and N260 located in key linear epitopes were observed, which might increase the allergenic ability of OVA via the disaggregation of noncovalent bonds and the unwinding of α-helix structures. Conclusively, irradiation may enhance the potential allergenicity of OVA by oxidative modification, which provides theoretical guidance for effectively controlling the oxidation of proteins in the irradiation process.
Collapse
Affiliation(s)
- Zhong-Yue Bian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guang-Xian Liu
- Institute of Food Science and Technology, Jiangxi Academy of Agricultural Sciences, Nanchang 330299, Jiangxi, China
| |
Collapse
|
20
|
Lipid oxidation induced egg white protein foaming properties enhancement: The mechanism study revealed by high resolution mass spectrometry. Food Res Int 2022; 152:110713. [PMID: 35181111 DOI: 10.1016/j.foodres.2021.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/25/2023]
Abstract
Lipid oxidation often occurs during egg white protein (EWP) storage and processing periods. Here, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was performed to simulate lipid oxidation to probe the oxidation effects on foaming and structural properties of EWP. Results indicated that EWP structure became unfolding and flexible after oxidation, resulting in more hydrophobic groups and negative charge exposed and soluble aggregates formed, which revealed by the results of DLS and AFM. Additionally, high resolution mass spectrometry results evidenced that ovotransferrin and lysozyme trended to be new oxidation targets with the AAPH concentration increasing, and the oxidation sites inside lysozyme proved that EWP unfolding and exposure of internal hydrophobic amino acids, which were related to the enhancement of EWP foaming properties. Overall, our study provided a further analysis of the lipid induced oxidation of EWP, which may contribute to provide a more accurate strategy for enhancing protein foaming properties in food industry.
Collapse
|
21
|
Effect of Peroxyl Radical-Induced Oxidation on Functional and Structural Characteristics of Walnut Protein Isolates Revealed by High-Resolution Mass Spectrometry. Foods 2022; 11:foods11030385. [PMID: 35159534 PMCID: PMC8834345 DOI: 10.3390/foods11030385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the structural and functional properties of oxidated walnut protein isolates (WPI) by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). The oxidation degree, changes in structural characteristics, processing properties, and protein modifications of WPI were measured. The results showed that oxidation significantly induced structural changes, mainly reflected by the increasing carbonyl content, and decreasing sulfhydryl and free amino groups. Moreover, the secondary structure of WPI was altered in response to oxidation, and large aggregates formed through disulfide cross-linking and hydrophobic interactions. Almost all the property indicators were significantly decreased by oxidation except the foaming property and water/oil holding capacity. Mass spectrometry analysis showed that 16 different modifications occurred in amino acid side chains, and most of the protein groups with higher numbers of modifications were found to be associated with allergies, which was further confirmed by the reduction in antigenicity of the major allergen (Jug r 1) in WPI. Meanwhile, we used oxidation-related proteins for gene ontology (GO) enrichment analyses, and the results indicated that 115, 204 and 59 GO terms were enriched in terms of biological process, molecular function, and cellular component, respectively. In conclusion, oxidation altered the groups and conformation of WPI, which in turn caused modification in the functional properties correspondingly. These findings might provide a reference for processing and storage of walnut protein foods.
Collapse
|
22
|
Wen PW, Tu ZC, Hu YM, Wang H. Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg Ovomucoid. Foods 2022; 11:foods11020238. [PMID: 35053970 PMCID: PMC8774878 DOI: 10.3390/foods11020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the effects of an emerging and efficient heating technology, superheated steam (SS), on the allergenicity and molecular structure of ovomucoid (OVM). OVM was treated with 120–200 °C of SS for 2 to 10 min. The allergenicity (IgG/IgE binding abilities and cell degranulation assay) and molecular structure (main functional groups and amino acids modification) changes were investigated. The IgG-binding ability of OVM decreased and the releases of β-hex and TNF-γ were inhibited after SS treatment, indicating that the protein allergenicity was reduced. Significant increases in oxidation degree, free SH content and surface hydrophobicity were observed in SS-treated OVM. The protein dimer and trimer appeared after SS treatment. Meanwhile, obvious changes occurred in the primary structure. Specifically, serine can be readily modified by obtaining functional groups from other modification sites during SS treatment. Moreover, the natural OVM structure which showed resistance to trypsin digestion was disrupted, leading to increased protein digestibility. In conclusion, SS-induced OVM aggregation, functional groups and amino acids modifications as well as protein structure alteration led to reduced allergenicity and increased digestibility.
Collapse
Affiliation(s)
- Ping-Wei Wen
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
- Correspondence: ; Tel.: +86-791-8812-1868; Fax: +86-791-8830-5938
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| |
Collapse
|
23
|
Liu J, Chai J, Yuan Y, Zhang T, Saini RK, Yang M, Shang X. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: Structural, functional, and degradation properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Li T, Bu G, Xi G. Effects of heat treatment on the antigenicity, antigen epitopes, and structural properties of β-conglycinin. Food Chem 2020; 346:128962. [PMID: 33418407 DOI: 10.1016/j.foodchem.2020.128962] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 01/12/2023]
Abstract
In this study, the effects of heat treatment on antigenicity, antigen epitopes, and structural changes in β-conglycinin were investigated. Results showed that the IgG (Immunoglobulin G) binding capacity of heated protein was inhibited with increased temperature, although IgE (Immunoglobulin E) binding capacity increased. Linear antigen epitopes generally remained intact during heat treatment. After heat treatment, β-conglycinin was more easily hydrolyzed by digestive enzymes, and a large number of linear epitopes was destroyed. In addition, heat denaturation of β-conglycinin led to the formation of protein aggregates and reduction of disulfide bonds. The contents of random coils and β-sheet of heated β-conglycinin decreased, but the contents of β-turn and α-helix increased. Moreover, the protein structure of heated β-conglycinin unfolded, more hydrophobic regions were exposed, and the tertiary structure of β-conglycinin was destroyed. Heat treatment affected the antigenicity and potential sensitization of β-conglycinin by changing its structure.
Collapse
Affiliation(s)
- Tanghao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Guanpeng Xi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
25
|
Xiong YL, Guo A. Animal and Plant Protein Oxidation: Chemical and Functional Property Significance. Foods 2020; 10:E40. [PMID: 33375649 PMCID: PMC7824645 DOI: 10.3390/foods10010040] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Protein oxidation, a phenomenon that was not well recognized previously but now better understood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies. This review presents a historical perspective of food protein oxidation research and provides an inclusive discussion of the impact of chemical and enzymatic oxidation on functional properties of meat, legume, cereal, dairy, and egg proteins based on the literature reports published in recent decades.
Collapse
Affiliation(s)
- Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| | | |
Collapse
|
26
|
Insight into the mechanism of urea inhibit ovalbumin-glucose glycation by conventional spectrometry and liquid chromatography-high resolution mass spectrometry. Food Chem 2020; 342:128340. [PMID: 33069536 DOI: 10.1016/j.foodchem.2020.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
The inhibition effect of urea on ovalbumin (OVA) glycation was investigated, and the mechanism was evaluated through the changes in protein structure as well as glycation sites and average degree of substitution per peptide molecule (DSP) by conventional spectrometry and liquid chromatography-high resolution mass spectrometry (LC-HRMS). A urea concentration of 3 M was chosen as the optimum condition. Ultraviolet and fluorescence spectra suggested that both glycation and urea treatment could unfold the OVA, but urea inhibited the glycation-induced protein unfolding. Circular dichroism spectra showed that urea treatment could increase the β-sheet content and reduce the α-helix content of OVA. LC-HRMS indicated that the number of glycation sites was reduced from 15 to 3, and DSP values decreased with urea treatment. In conclusion, urea could significantly inhibit the OVA-glucose glycation, and the sites competition as well as structure unfolding inhibition resulted from urea could be the main factors.
Collapse
|
27
|
Du PC, Tu ZC, Wang H, Hu YM, Zhang JJ, Zhong BZ. Investigation of the effect of oxidation on the structure of β-lactoglobulin by high resolution mass spectrometry. Food Chem 2020; 339:127939. [PMID: 33152852 DOI: 10.1016/j.foodchem.2020.127939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/24/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
In this work, high-resolution mass spectrometry was used to identify the oxidation sites and forms of β-lactoglobulin (β-Lg) induced by hydrogen peroxide with 1.5% concentration, and the influence of oxidation sites on the structure of β-Lg was discussed from the molecular level. Twelve kinds of oxidation products and 36 oxidation sites were identified, including sulfoxidation in sulfur-containing amino acid residue, hydroxylation in aromatic group residue, deamination in amino-containing amino acid etc. The destruction of hydrogen bonds and disulfide bonds in β-Lg caused by oxidation is the main factor causing its structural changes, which were manifested in the decrease of β-sheet component and increase of β-turns and random coil contents, intrinsic fluorescence intensity and surface hydrophobicity. In addition, several peptides as potential oxidative markers were found to be capable of monitoring the degree of oxidation of β-Lg. In short, this work provided insights into structural changes of β-Lg by oxidation.
Collapse
Affiliation(s)
- Peng-Cheng Du
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China.
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing-Jing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Bi-Zhen Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|