1
|
Chen X, Wang C, Zheng QY, Hu WC, Xia XH. Emerging advances in biosensor technologies for quorum sensing signal molecules. Anal Bioanal Chem 2025; 417:33-50. [PMID: 39609273 DOI: 10.1007/s00216-024-05659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Quorum sensing is a physiological phenomenon of microbial cell-to-cell information exchange, which relies on the quorum sensing signal molecules (QSSMs) to communicate and coordinate collective processes. Quorum sensing enables bacteria to alter their behavior as the population density and species composition of the bacterial community change. Effective detection of QSSMs is paramount for regulating microbial community behavior. However, traditional detection methods face the shortcomings of complex operation, high costs, and lack of portability. By combining the advantage of biosensing and nanomaterials, the biosensors play a pivotal significance in QSSM detection. In this review, we first briefly describe the QSSM classification and common detection techniques. Then, we provide a comprehensive summary of research progress in biosensor-based QSSM detection according to the transduction mechanism. Finally, challenges and development trends of biosensors for QSSM detection are discussed. We believe it offers valuable insights into this burgeoning research area.
Collapse
Affiliation(s)
- Xi Chen
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Chen Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Yin Zheng
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Chao Hu
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Frigoli M, Lowdon JW, Donetti N, Crapnell RD, Banks CE, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule ( S)- N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers. ACS OMEGA 2024; 9:36411-36420. [PMID: 39220512 PMCID: PMC11359617 DOI: 10.1021/acsomega.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC-MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at C f = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 × 101-1 × 103 nM and a limit of detection (LoD) of 31.78 ± 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor's potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Joseph W. Lowdon
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Nicolas Donetti
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Robert D. Crapnell
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E. Banks
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Thomas J. Cleij
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Hanne Diliën
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Kasper Eersels
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Bart van Grinsven
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
3
|
Sun Y, Mu J, Wang Y, Lü C, Zou LW. Rational synthesis of 1,3,4-thiadiazole based ESIPT-fluorescent probe for detection of Cu 2+ and H 2S in herbs, wine and fruits. Anal Chim Acta 2024; 1297:342379. [PMID: 38438245 DOI: 10.1016/j.aca.2024.342379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Here, 1,3,4-thiadiazole unit was employed as novel excited state intramolecular proton transfer (ESIPT) structure to prepare favorable fluorescent probe. High selectivity and rapid response to Cu2+ was obtained and the settling reaction was also used to recover ESIPT characteristics of probe to achieve sequential detection of H2S. Remarkable color change of solution from colorless to bright yellow and fluorescence emission from green to dark realized the visual detection of Cu2+ by naked eyes and transition of probe into portable fluorescent test strips. As expected, L-E could be utilized to quantitatively sense Cu2+ and H2S in different actual water and food samples including herbs, wine and fruits. The limits of detection for Cu2+ and H2S were as low as 34.5 nM and 38.6 nM. Also, probe L-E achieved real-time, portable, on-site quantitative detection of Cu2+ via a colorimeter and a smartphone platform with limit of detection to 90.3 nM.
Collapse
Affiliation(s)
- Yu Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Jie Mu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yongchen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China.
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
4
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Ling J, Zhang W, Xiang P, Liao Y, Li J, Zhang Z, Ding Y. Trace detection of methcathinone in sewage using targeted extraction based on magnetic molecularly imprinted polymers coupled with liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4777-4784. [PMID: 37698227 DOI: 10.1039/d3ay01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Methcathinone, a new psychoactive substance (NPS), poses a serious threat to public health. Therefore, there is an urgent need to develop a reliable, selective, sensitive and simple analytical technique for monitoring trace amounts of this target NPS in complex matrices. For this purpose, magnetic molecularly imprinted polymers (MMIPs) based on MIPs combined with nano-sized magnetic Fe3O4 were developed for the specific enrichment of methcathinone in wastewater. The binding properties and selectivity of MMIPs toward methcathinone were evaluated and compared with non-imprinted polymer (MNIPs). For sensitive and selective extraction and determination of the target methcathinone, magnetic solid-phase extraction (MSPE) based on MMIPs was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under optimized conditions, the proposed method was successfully used for the detection of methcathinone in wastewater, which provided a low limit of detection of 0.3 ng L-1 and a limit of quantification of 1.0 ng L-1 with relative standard deviations of less than 6.89% for intra- and inter-day analyses. Good linearity in the range of 1-2000 ng L-1 with a coefficient of determination (R2) greater than 0.98 was observed. Moreover, a certified reference material of water sample was successfully analyzed with satisfactory results and the recoveries of spike experiments ranged from 96.35-116.7%.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Wenqi Zhang
- Hebei Province Public Security Department Criminal Police Corps, Shijiazhuang, Hebei, China
| | - Ping Xiang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yingyuan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Jiahao Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | | | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
7
|
Hu G, Wu T, Liu Z, Gao S, Hao J. Application of molecular imprinting technology based on new nanomaterials in adsorption and detection of fluoroquinolones. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2467-2479. [PMID: 37183439 DOI: 10.1039/d3ay00353a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Irrational use of fluoroquinolones (FQs) can lead to allergic reactions, adverse reactions to the heart and damage of the liver; thus, it is of great significance to establish rapid, sensitive and accurate detection methods for FQs. Molecularly imprinted polymers (MIPs) with specific structures synthesized by molecular imprinting technology (MIT) are widely used for the detection of FQs due to their high specificity, high sensitivity and stable performance. Recently, new functional nanomaterials with different morphologies and sizes, which can provide rich sites for surface chemical reactions, have attracted more and more attention of the researchers. Thus, the application status and development prospects of MIT based on new nanomaterials in the adsorption and detection of FQs were summarized in this study, providing a theoretical basis and technical guarantee for the development of new and efficient food safety analysis strategies based on MIPs.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Tianqi Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
8
|
Chen J, Jiang J, Liang J, Wu H, Chen L, Xu Z, Lei H, Li X. Bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite-based lateral flow immunoassay for ultrasensitive detection of streptomycin and dihydrostreptomycin in milk, muscle, liver, kidney, and honey. Food Chem 2023; 406:135022. [PMID: 36455313 DOI: 10.1016/j.foodchem.2022.135022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
In this study, bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite (MQNs) were synthesized, and firstly used to develop a lateral flow immunoassay (LFIA) for streptomycin (STR) and dihydrostreptomycin (DHSTR) detection in milk, muscle, liver, kidney, and honey simultaneously. The fluorescence signal of MQNs was 9-fold stronger than that of the original quantum dots. The detection limits of the established MQNs-LFIA for STR and DHSTR in five samples were 0.08-1.78 μg/kg, the quantitation limits were 0.26-5.87 μg/kg, the recoveries were between 85.0% and 120.0%, and the coefficient of variations were between 0.8% and 19.3%, respectively. The sensitivity was up to 42-fold more sensitive than the reported LFIAs. The single blind test results of 25 samples were consistent with that of the confirmation method (R2 ≥ 0.99). Besides, a portable reader was self-developed and used for rapid quantification. Our study demonstrated MQNs as a promising signal-amplifying tag can be used for ultrasensitive detection of chemical contaminants in foods.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Chen
- Shenzhen Zhenrui Biological Technology Co., Ltd., Shenzhen 518109, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Pan Q, Gao Z, Meng H, Guo X, Zhang M, Tang Y. A Novel Sulfonamide, Molecularly Imprinted, Upconversion Fluorescence Probe Prepared by Pickering Emulsion Polymerization and Its Adsorption and Optical Sensing Performance. Molecules 2023; 28:molecules28083391. [PMID: 37110624 PMCID: PMC10143443 DOI: 10.3390/molecules28083391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
A novel, molecularly imprinted, upconversion fluorescence probe (UCNP@MIFP) for sulfonamide sensing was fabricated by Pickering emulsion polymerization using UCNP@SiO2 particles as the stabilizer and sulfamethazine/sulfamerazine as the co-templates. The synthesis conditions of the UCNP@MIFP were optimized, and the synthesized probe was characterized by scanning electron microscopy, Fourier transform infrared spectrometer, thermogravimetric analyzer, and fluorescence spectrometer. The UCNP@MIFPs showed a good adsorption capacity and a fast kinetic feature for the template. The selectivity experiment revealed that the UCNP@MIFP has a broad-spectrum molecular recognition capability. Good linear relationships were obtained over the concentration range of 1-10 ng/mL for sulfamerazine, sulfamethazine, sulfathiazole, and sulfafurazole, with low limits of detection in the range of 1.37-2.35 ng/mL. The prepared UCNP@MIFP has the potential to detect four sulfonamide residues in food and environmental water.
Collapse
Affiliation(s)
- Qidi Pan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhe Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - He Meng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xianghua Guo
- Qian'an Agricultural and Rural Bureau, Qian'an 064400, China
| | - Meitian Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
10
|
Chi H, Liu G. Carbon nanomaterial-based molecularly imprinted polymer sensors for detection of hazardous substances in food: recent progress and future trends. Food Chem 2023; 420:136100. [PMID: 37062085 DOI: 10.1016/j.foodchem.2023.136100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The presence of various harmful substances in food is significantly risky to human health. Therefore, simple, rapid, and selective food hazard analysis tools have become a focus of sensing research. At present, molecularly imprinted polymers (MIPs) have attracted more and more attention because of their easy preparation and high selectivity. Due to their simple preparation, low cost, large specific surface area, and high conductivity, carbon nanomaterial can be used as sensing substrate carriers. Therefore, the combination of carbon nanomaterial with MIPs has attracted great attention. This paper summarizes the development, composition, and preparation methods of MIPs, as well as the latest research progress in carbon nanomaterials for the detection of various food hazards using sensors. In addition, the practical applications of carbon nanomaterial-based MIP sensors, their current challenges and future trends, and the ongoing efforts devoted to developing new and efficient carbon nanomaterial-based MIP sensing platforms are also introduced.
Collapse
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Liu R, Ko CC. Molecularly Imprinted Polymer-Based Luminescent Chemosensors. BIOSENSORS 2023; 13:295. [PMID: 36832061 PMCID: PMC9953969 DOI: 10.3390/bios13020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. These advantages have drawn great attention during the past two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review, we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors, as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis. The limitations and prospects for the future development of MIP-based luminescent chemosensors will also be discussed.
Collapse
|
12
|
Zhang H, Kang Z, Zhu H, Lin H, Yang DP. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160284. [PMID: 36403831 DOI: 10.1016/j.scitotenv.2022.160284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials-based photoelectrochemical (PEC) detection is becoming a rapidly-developing analytical technique in chemical and biological assays due to its unique advantages of easy miniaturization, high sensitivity, and rapid turnaround time. Herein, a molecularly imprinted polymer-assisted PEC sensor based on ZnO/C nanocomposite was successfully fabricated for the highly sensitive and selective determination of chloramphenicol (CAP). Benefiting from the hydrophilic functional groups (-OH, -COOH) and large surface area of bio-templated ZnO/C nanocomposite, the tight grafting of MIP with excellent recognition ability on substrate is easier and more stable than traditional PEC sensor, thus significantly increasing the performance. Under optimal conditions, the PEC sensor exhibited significant CAP detection performance in the range of 0.01-5000 ng mL-1 with a detection LOD of 5.08 pg mL-1 (S/N = 3) and successfully applied to the detection of CAP in milk sample. Our results show that ZnO/C nanocomposite and MIP can act as an efficient photo-responsible matrix to fabricate PEC sensor, providing important application potentials for pollutants control in food and environment.
Collapse
Affiliation(s)
- Huafang Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Zewen Kang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hu Zhu
- School of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Da-Peng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| |
Collapse
|
13
|
Liu Y, Tan L, Wang K, Wang J. Molecularly imprinted probe based on CdTe QDs and magnetic nanoparticles for selective recognition of malachite green in seawater and its sensing mechanisms. Mikrochim Acta 2022; 190:8. [PMID: 36472666 DOI: 10.1007/s00604-022-05579-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
A magnetic molecularly imprinted probe (MMIP@QD) was synthesized by reverse microemulsion method using CdTe QDs, Fe3O4, and molecularly imprinted polymer as the fluorophore, magnetic carrier, and recognition sites, respectively. The nanoparticle was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and vibrating sample magnetometry (VSM). In the optimal experimental condition, fluorescent emission intensity (measured at excitation wavelengths of 350 nm) was quenched linearly with increasing malachite green (MG) concentration from 0.8 to 28.0 μM with LOD of 0.67 μM. Simultaneously, it was observed that the maximum absorption wavelength was blue shifted gradually with the increase of MG concentration. The inner filter effect, static quenching, and band gap transition were interpreted as the mechanisms of fluorescence quenching and wavelength shift. Thermodynamic studies indicated that the quenching reaction proceeded spontaneously. The developed sensor was applied to detect MG in seawater samples. Satisfactory recoveries of MG in spiked seawater ranged from 83.6 to 122.1% with RSD < 1.8%.
Collapse
Affiliation(s)
- Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Kunpeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
14
|
A smartphone-based ratiometric fluorescence and absorbance dual-mode device for Rhodamine B determination in combination with differential molecularly imprinting strategy and primary inner filter effect correction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
16
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
17
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Chen J, Jin Y, Ren T, Wang S, Wang X, Zhang F, Tang Y. A novel terbium (III) and aptamer-based probe for label-free detection of three fluoroquinolones in honey and water samples. Food Chem 2022; 386:132751. [PMID: 35334319 DOI: 10.1016/j.foodchem.2022.132751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
Fluoroquinolones, a family of synthetic broad-spectrum antibiotics, are widely used in clinical medicine, farm animals and aquaculture. Residues of fluoroquinolones in samples have attracted much attention because of growing food safety and public health concerns. Here, a novel Tb3+ ion-enrofloxacin aptamer coordination probe was prepared to develop a sensitive and rapid label-free fluorescence assay for specific detection three fluoroquinolones. In presence of the target, Tb3+ ion- enrofloxacin aptamer probe specifically bound with enrofloxacin, norfloxacin and ciprofloxacin, leading to a sharp increase in fluorescence emission of the probe. Under the optimized conditions, fluorescence increased linearly in the 1.0-100.0 ng/mL range for the three fluoroquinolones, with 0.053 ng/mL limit of detection for ciprofloxacin, 0.020 ng/mL limit of detection for norfloxacin and 0.061 ng/mL limit of detection for enrofloxacin. Satisfactory recovery (80.10-102.48%) in spiked honey and water samples were obtained for the three fluoroquinolones with relative standard deviations between 0.21% and 5.44% (n = 3).
Collapse
Affiliation(s)
- Jin'ai Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Yuting Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Taotao Ren
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
19
|
Deng D, Fang X, Duan D, Li K. A gel fluorescence sensor based on CDs@SiO 2/FeS 2@MIPs for the visual detection of p-chlorophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1721-1729. [PMID: 35445668 DOI: 10.1039/d1ay01849c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a critical need for the rapid detection of p-chlorophenol produced by pesticide abuse and industrial wastewater discharge, which has been an urgent problem in the realm of environmental protection. Here, a green and environmentally friendly method was developed to prepare stable and low toxicity quantum dots. First, blue-green fluorescent FeS2 quantum dots (B-FeS2 QDs) were prepared with FeCl3·6H2O (an iron source) and L-cysteine (a capping agent) by the solvothermal method. By combining B-FeS2 QDs with orange carbon dots (O-CDs), a CDs@SiO2/FeS2@MIPs visual fluorescence sensor for the selective detection of p-chlorophenol was constructed. Under optimum conditions, this sensor exhibited a detection limit of 1.265 μM with a linear range of 5.00-50.00 μM and was successfully applied to detect p-chlorophenol in real samples. Moreover, this sensor was successfully applied to visual semi-quantitative detection of p-chlorophenol. This work demonstrated that these sensors, based on FeS2 QDs and CDs, had potentials for in situ and visual detection of environmental contaminants.
Collapse
Affiliation(s)
- Di Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiaoyu Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ding Duan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Magnetic graphene oxide−based covalent organic frameworks as novel adsorbent for extraction and separation of triazine herbicides from fruit and vegetable samples. Anal Chim Acta 2022; 1219:339984. [DOI: 10.1016/j.aca.2022.339984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 01/06/2023]
|
21
|
Zhong K, Yao Y, Sun X, Wang Y, Tang L, Li X, Zhang J, Yan X, Li J. Mitochondria-Targeted Fluorescent Turn-On Probe for Rapid Detection of Bisulfite/Sulfite in Water and Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5159-5165. [PMID: 35420802 DOI: 10.1021/acs.jafc.2c00820] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bisulfite (HSO3-)/Sulfite (SO32-) is widely used as a food additive, but excessive use often leads to serious consequences, so the detection of HSO3-/SO32- is of great importance. In this paper, a novel 1,4-diethylpiperazine-modified coumarin-benzopyran derivative (probe QLP) has been synthesized and characterized. In PBS (10 mM, pH = 7.4), QLP displays good selectivity and is sensitive for HSO3-/SO32- over various analytes with fluorescent "OFF-ON" rapid responding (2 min), long-wavelength emission (600 nm), and a detection limit of 177 nM. With the treatment of HSO3-/SO32-, the color of the QLP solution obviously changes from blue-green to yellow, and the fluorescent color of QLP changes from colorless to amaranth. The fluorescence-enhanced mechanism is qualitatively evaluated by density functional theory calculations using the CAM-B3LYP/6-31G (d) method, which reveals that the photoinduced electron transfer leads to the fluorescence emission of the QLP-SO3H adduct. Importantly, nontoxic QLP can be used to detect HSO3-/SO32- in sugar, natural water samples, and living cells and localized to the mitochondria and monitor the mitochondrial HSO3-/SO32- level.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Yuan Yao
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Yutong Wang
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Jianrong Li
- College of Chemistry and Material Engineering; College of Food Science and Technology, Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| |
Collapse
|
22
|
Kailasa SK, Koduru JR. Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 33:e00153. [DOI: 10.1016/j.teac.2021.e00153] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Development of fluorescence sensor and test paper based on molecularly imprinted carbon quantum dots for spiked detection of domoic acid in shellfish and lake water. Anal Chim Acta 2022; 1197:339515. [DOI: 10.1016/j.aca.2022.339515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
|
24
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
25
|
Jin Y, Yan R, Wang S, Wang X, Zhang X, Tang Y. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Mikrochim Acta 2022; 189:96. [PMID: 35147788 DOI: 10.1007/s00604-022-05182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17-99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7-6.2% (n = 3).
Collapse
Affiliation(s)
- Yuting Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
26
|
Ling J, Zhang W, Cheng Z, Ding Y. Recyclable Magnetic Fluorescence Sensor Based on Fe 3O 4 and Carbon Dots for Detection and Purification of Methcathinone in Sewage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3752-3761. [PMID: 35014257 DOI: 10.1021/acsami.1c20170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sensitive, rapid, and low-cost detection of drug traces in sewage is very important for drug monitoring and control. In this study, a dual functional and recyclable magnetic fluorescent molecularly imprinted polymers (MFMIPs) sensor with high sensitivity for rapid detection and purification of methcathinone in sewage was developed. MFMIPs was prepared via molecular imprinting and conjugation with carbon dots as a fluorescent reporter on Fe3O4 (Fe3O4-MIPs@CDs). With strong recognition and adsorption toward methcathinone by the specific cavities on the surface of MFMIPs, the fluorescence of the sensor could dramatically be quenched once anchored with methcathinone. Under optimal conditions, the MFMIPs sensor presented high sensitivity with a linear range of 0.5-100 nM and a detection limit of 0.2 nM, which would be used to monitor drug prevalence and consumption within a certain region. This sensor was applied to the assay of methcathinone in sewage samples collected from Yuebeiyuan, Yanghu, and Xujiahu sewage pumping stations of Yuelu District. The calculated concentrations of methcathinone were 4.80, 15.33, and 8.59 nM in sewage samples, which were in good agreement with data tested by LC-MS/MS. For another function, MFMIPs exhibited purification toward methcathinone and the adsorption capacity was about 0.27 mg/g in a real sewage sample. Moreover, the sensor could be recycled and reused at least five times with the aid of an external magnetic field. Collectively, with good analytical performance and excellent recognition and selectivity to methcathinone, the proposed sensing system based on the magnetic core and molecularly imprinted polymers would open a door to establish highly sensitive and effective sensing systems for sewage analysis and purification.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqi Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Zijia Cheng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
27
|
Mukunzi D, Habimana JDD, Li Z, Zou X. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Crit Rev Food Sci Nutr 2022; 63:6034-6068. [PMID: 35048762 DOI: 10.1080/10408398.2022.2027338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
Collapse
Affiliation(s)
- Daniel Mukunzi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Li M, Qian ZJ, Peng CF, Wei XL, Wang ZP. Ultrafast Ratiometric Detection of Aflatoxin B1 Based on Fluorescent β-CD@Cu Nanoparticles and Pt 2+ Ions. ACS APPLIED BIO MATERIALS 2022; 5:285-294. [PMID: 35014825 DOI: 10.1021/acsabm.1c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid detection of aflatoxin B1 (AFB1) is a very important task in food safety monitoring. However, it is still challenging to achieve highly sensitive detection without antibody or aptamer biomolecules. In this work, a rapid detection of aflatoxin B1 was achieved using a ratiometric fluorescence probe without antibody or aptamer for the first time. In the ratiometric fluorescence system, the fluorescence emission of AFB1 at 433 nm was significantly enhanced due to the β-cyclodextrin-AFB1 host-guest interaction and the complexation of AFB1 and Pt2+. Meanwhile, the inclusion of aflatoxin B1 also quenched the fluorescence emission of β-CD@Cu nanoparticles (NPs) at 650 nm based on inner filter effect mechanism. On the basis of the above effects, the ratiometric detection of aflatoxin B1 was achieved in the range of 0.03-10 ng/mL with a low detection limit of 0.012 ng/mL (3σ/s). In addition, the β-CD@Cu NPs based nanoprobe could achieve stable response within 1 min to AFB1. The above ratiometric detection also demonstrated excellent application potential in the rapid on-site detection of AFB1 in food due to the advantages of convenience, rapidness, and high accuracy.
Collapse
Affiliation(s)
- Min Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhi-Juan Qian
- Nanjing Customs District Light Industry Products and Children's Products Inspection Center, Yangzhou 225009, P. R. China
| | - Chi-Fang Peng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin-Lin Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Zhou-Ping Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
29
|
Cui Y, Su A, Feng J, Dong W, Li J, Wang H, Ni X, Jiang Y. Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120293. [PMID: 34455374 DOI: 10.1016/j.saa.2021.120293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
A fluorescence probe based on carbon dots (CDs) coated with silica molecularly imprinted polymer (MIPs) was synthesized for selective and sensitive determination of cetirizine (CTZ). Green source carbon dots were firstly derived from orange peels through a microwave method, and had the merits of eco-friendly and low toxicity. Then a thin silica film was formed on the surface of CDs by reverse microemulsion technique, and molecularly imprinted polymer coated on silica-carbon dots. In this scene, CTZ, 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were employed as a template, a functional monomer and cross linker, respectively. The obtained CDs-MIPs can selectively bind CTZ through the specific interaction between recognition sites and template, and obey photoinduced electron transfer fluorescence quenching mechanism. Fluorescence dropped linearly in the range of 0.5-500 ng mL-1, under the optimal conditions, with a detection limit of 0.41 ng mL-1. Furthermore, the proposed method was successfully intended for the determination of trace CTZ in human saliva and urine samples without the interference of other molecules and ions. And recoveries ranged from 95.8% to 99.8% with relative standard deviation less than 3.0%.
Collapse
Affiliation(s)
- Yixuan Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Aoxuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Jingying Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Weichong Dong
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Junmei Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Xiaoyu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China.
| |
Collapse
|
30
|
An Q, Bao S, Li X, Sun J, Su Z. An anthracene-based microporous metal–organic framework for adsorbing CO 2 and detecting TNP sensitivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anthracene-based microporous MOF of CUST-607 was synthesized by a solvothermal method. CUST-607 possesses a large surface area and shows strong adsorption toward CO2. In the fluorescence experiments, CUST-607 exhibits total quenching for TNP.
Collapse
Affiliation(s)
- Qingbo An
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun, People's Republic of China
| | - Siqi Bao
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun, People's Republic of China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun, People's Republic of China
| | - Jing Sun
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun, People's Republic of China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun, People's Republic of China
| |
Collapse
|
31
|
Soylu MÇ, Azgin ST. Sensitive Multi‐Detection of
Escherichia coli
by Quartz Crystal Microbalance with a Novel Surface Controllable Sensing Method in Liquid Organic Fertilizer Produced by Sewage Sludge. ChemistrySelect 2021. [DOI: 10.1002/slct.202102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mehmet Çağrı Soylu
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab) Department of Biomedical Engineering Erciyes University Kayseri 38039 Turkey
| | - Sukru Taner Azgin
- Department of Environmental Engineering Erciyes University Kayseri 38039 Turkey
| |
Collapse
|
32
|
Wang S, Zhao Q, Li J. Fast Determination of Carbamates in Environmental Water Based on Magnetic Molecularly Imprinted Polymers as Adsorbent. J Chromatogr Sci 2021; 59:584-595. [PMID: 33677500 DOI: 10.1093/chromsci/bmab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Indexed: 11/14/2022]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) were prepared with isoprocarb as template molecule and applied to extraction of carbamates pesticides in different water samples. This method based on magnetic solid-phase extraction (SPE) avoided the time-consuming column-passing process of loading large volume samples in conventional SPE. In the study, only 0.1 g MMIPs could be used to obtain satisfactory recoveries, due to the high-surface area and excellent adsorption capacity of these nano-magnetic adsorbents. Owing to the excellent selectivity of MMIPs, in high-performance liquid chromatography-mass spectrometry analysis, the matrix effects of this technique were obviously lower than the conventional SPE method. Under the optimal conditions, the detection limits of carbamates were in the range of 2.7-11.7 ng L-1. The relative standard deviations of intra-day and inter-day were 2.5-7.4% and 3.6-8.4%, respectively. At all the spiked level, the recoveries of four analyzed carbamates in environmental water samples were in the range of 74.2-94.2%. The significant positive results were achieved in the proposed method for the determination of four carbamates in water samples from different lakes and rivers. In the three samples we tested, the carbaryl was found in the lake water obtained from Yitong River, and the content was 2.4 ng L-1.
Collapse
Affiliation(s)
- Shimiao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Jian Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
33
|
Zhong K, Hu X, Zhou S, Liu X, Gao X, Tang L, Yan X. Mitochondria-Targeted Red-Emission Fluorescent Probe for Ultrafast Detection of H 2S in Food and Its Bioimaging Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4628-4634. [PMID: 33876940 DOI: 10.1021/acs.jafc.1c00862] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) contributes to human health and prolongs the storage time of postharvest fruits and vegetables. At the same time, H2S can cause a negative impact on some foodstuffs and beverages, so an efficient probe to detect H2S is needed. Herein, a fluorescent turn-on responding probe SPy-DNs for H2S detection has been designed and synthesized. SPy-DNs exhibited a red emission (608 nm), large Stokes shift (111 nm), and a detection limit of a nanomolar level (356 nM) in a dimethylformamide/phosphate-buffered saline (DMF/PBS) (1:1, v/v, 10 mM, pH 7.4) solution. SPy-DNs can detect H2S with ultrafast response within 4 s, which is faster than the response of other reported probes. In addition, the applicability of SPy-DNs to detect H2S has been determined in the actual water samples, targeted mitochondria, and imaged H2S in living cells. Moreover, SPy-DNs was successfully used as a tool to judge H2S levels in beer, which indicates that SPy-DNs possesses the advantage of rapid detection of H2S in foodstuffs.
Collapse
Affiliation(s)
- Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiaoling Hu
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Shiyi Zhou
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xiuying Liu
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Xue Gao
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University; Food Safety Key Lab of Liaoning Province; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, China
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
34
|
Meng Y, Jiao Y, Zhang Y, Lu W, Wang X, Shuang S, Dong C. Facile synthesis of orange fluorescence multifunctional carbon dots for label-free detection of vitamin B 12 and endogenous/exogenous peroxynitrite. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124422. [PMID: 33183837 DOI: 10.1016/j.jhazmat.2020.124422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, orange emission fluorescent multifunctional carbon dots (O-CDs) were designed for the label-free detection of vitamin B12 (VB12),endogenous/exogenous peroxynitrite (ONOO-) sensing, cell imaging, and fluorescent flexible film preparation. The O-CDs with excitation-independent were prepared using safranine T and ethanol as precursors via one-step hydrothermal process. VB12 was utilized as a quencher to quench the fluorescence of O-CDs due to the internal filtration effect (IFE). Two-segment linear ranges are 1-65 μM and 70-140 μM, and the detection limit was calculated as 0.62 μM. Besides, ONOO- can reduce the fluorescence intensity of O-CDs based on static quenching (SQ). The linear ranges are 0.3-9 μM and 9-48 μM, and the detection limit was 0.06 μM. Moreover, the O-CDs were exploited as a cellular imaging reagent for intracellular VB12 and endogenous/exogenous ONOO- imaging owing to its great biocompatibility, low toxicity and strong photostability. These results indicate that O-CDs have the potential to be used as a sensitive fluorescence probe to rapidly monitor VB12 and endogenous/exogenous ONOO- with high selectivity in living cells. Also, the as-proposed O-CDs can be employed to fabricate O-CDs/PVA composites as fluorescent flexible films. All of the above prove that the O-CDs present great prospect in multiple applications such as biosensing, cellular labeling, biomedical optical imaging, and fluorescent films.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Wang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
35
|
Yang Y, Yan W, Wang X, Yu L, Zhang J, Bai B, Guo C, Fan S. Development of a molecularly imprinted photoelectrochemical sensing platform based on NH 2-MIL-125(Ti)-TiO 2 composite for the sensitive and selective determination of oxtetracycline. Biosens Bioelectron 2021; 177:113000. [PMID: 33485152 DOI: 10.1016/j.bios.2021.113000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
In this work, a molecularly imprinted photoelectrochemical (MIP-PEC) sensor based on a novel PEC composite of metal-organic frameworks (MOFs) and TiO2 (NH2-MIL-125(Ti)-TiO2) was established for the ultrasensitive and selective detection of oxytetracycline (OTC). This is the first attempt of applying MOFs in the construction of MIP-PEC sensor. The NH2-MIL-125(Ti)-TiO2 was synthesized by a simple one-step solvothermal method and modified onto the surface of indium tin oxide (ITO) electrode as the photosensitive layer. Subsequently, molecularly imprinted polymer (MIP) was modified as recognition element by electropolymerization. The NH2-MIL-125(Ti)-TiO2 showed an enhanced photocurrent response due to stronger light absorption capacity and matched energy band. Furthermore, MIP greatly improved the selectivity and sensitivity of the constructed PEC sensor. The photocurrent response of the MIP-PEC sensor was reduced after OTC recognition because the specific binding of OTC to the imprinted cavities blocked the electron transfer of the electrode. Under optimal experimental conditions, the MIP-PEC sensor exhibited a wide detection range from 0.1 nM to 10 μM with a low limit of detection (LOD) of 60 pM, as well as certain reproducibility, stability and good applicability in real samples. The proposed sensor provides ideas for the application of MOFs in the construction of PEC sensors and will offer an alternative method for the detection of other pollutants in the field of food safety.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China.
| |
Collapse
|
36
|
Qi Z, Lu R, Wang S, Xiang C, Xie C, Zheng M, Tian X, Xu X. Selective fluorometric determination of microcystin-LR using a segment template molecularly imprinted by polymer-capped carbon quantum dots. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
38
|
Sun J, Yu J, Jiang Z, Zhao Z, Xia Y. Fluorescent Carbonized Polymer Dots Prepared from Sodium Alginate Based on the CEE Effect. ACS OMEGA 2020; 5:27514-27521. [PMID: 33134714 PMCID: PMC7594134 DOI: 10.1021/acsomega.0c03995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 05/16/2023]
Abstract
In recent years, as a new type of carbon dots, carbonized polymer dots (CPDs) have attracted more and more attention in many fields. In this experiment, a new kind of CPDs was synthesized by the hydrothermal treatment of the chemically cross-linked sodium alginate (SA) via glutaraldehyde. The fluorescence of CPDs was greatly enhanced because of the cross-linking enhanced emission effect. The formation process of CPDs at different reaction temperatures was explored. In addition, it was found that CPDs have stable fluorescence properties in mild acidic/basic and metal-ion environments. The in vitro toxicity of CPDs was tested, and based on their nontoxic property, SA films with anti-ultraviolet aging properties were prepared by using CPDs as the additive.
Collapse
Affiliation(s)
- Jianxin Sun
- State Key Laboratory of Bio-Fibers
and Eco-Textiles, Shandong Collaborative Innovation Center of Marine
Biobased Fibers and Ecological Textiles, Institute of Marine Biobased
Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Junke Yu
- State Key Laboratory of Bio-Fibers
and Eco-Textiles, Shandong Collaborative Innovation Center of Marine
Biobased Fibers and Ecological Textiles, Institute of Marine Biobased
Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenjie Jiang
- State Key Laboratory of Bio-Fibers
and Eco-Textiles, Shandong Collaborative Innovation Center of Marine
Biobased Fibers and Ecological Textiles, Institute of Marine Biobased
Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhihui Zhao
- State Key Laboratory of Bio-Fibers
and Eco-Textiles, Shandong Collaborative Innovation Center of Marine
Biobased Fibers and Ecological Textiles, Institute of Marine Biobased
Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers
and Eco-Textiles, Shandong Collaborative Innovation Center of Marine
Biobased Fibers and Ecological Textiles, Institute of Marine Biobased
Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Fresco-Cala B, Batista AD, Cárdenas S. Molecularly Imprinted Polymer Micro- and Nano-Particles. A review. Molecules 2020; 25:E4740. [PMID: 33076552 PMCID: PMC7587572 DOI: 10.3390/molecules25204740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, molecularly imprinted polymers (MIPs) have become an excellent solution to the selective and sensitive determination of target molecules in complex matrices where other similar and relative structural compounds could coexist. Although MIPs show the inherent properties of the polymers, including stability, robustness, and easy/cheap synthesis, some of their characteristics can be enhanced, or new functionalities can be obtained when nanoparticles are incorporated in their polymeric structure. The great variety of nanoparticles available significantly increase the possibility of finding the adequate design of nanostructured MIP for each analytical problem. Moreover, different structures (i.e., monolithic solids or MIPs micro/nanoparticles) can be produced depending on the used synthesis approach. This review aims to summarize and describe the most recent and innovative strategies since 2015, based on the combination of MIPs with nanoparticles. The role of the nanoparticles in the polymerization, as well as in the imprinting and adsorption efficiency, is also discussed through the review.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| | - Alex D. Batista
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| |
Collapse
|