1
|
Wang Y, Liu Y, Liang X, Liu Z, Yang Y. A colorimetric/SERS dual-mode sensor based on ferric ion-dopamine@Au-Ag-Au Janus NPs for acrylamide determination in baked goods. Mikrochim Acta 2025; 192:193. [PMID: 40011275 DOI: 10.1007/s00604-025-07051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study successfully developed a colorimetric/SERS dual-mode sensor for determining acrylamide in baked goods based on the excellent peroxidase-like activity and Raman activity of Fe-PHS@Au-Ag-Au Janus NPs. In colorimetric mode, the thiol-ene Michael addition between acrylamide (AA) and glutathione (GSH) efficiently eliminates GSH-induced peroxidase-like activity inhibition. The peroxidase-like activity of Fe-PHS@Au-Ag-Au Janus NPs gradually recovered, and the blue color of the solution gradually deepened with the increase in AA dosage. In surface-enhanced Raman spectroscopy (SERS), Apt-Fe-PHS@Au-Ag-Au Janus NPs can selectively capture AA and bind specifically, leading to the dissociation of Apt and Fe-PHS@Au-Ag-Au Janus NPs. The Raman activity of Apt-Fe-PHS@Au-Ag-Au Janus NPs decreases due to the dissociation of Apt. The dual-mode sensor was utilized for the determination of acrylamide in the concentrations range from 0.05 to 20 µg·L-1 with detection limits of 0.06 µg·L-1 (SERS) and 0.01 µg·L-1 (colorimetric). The recovery in baked samples was between 91.0 and 108.0%.
Collapse
Affiliation(s)
- Yutong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yizhi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
- Sinopharm Kunming Plasma-Derived Biotherapies Co., Ltd, Kunming, China
| | - Xiao Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Zhiyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
2
|
Pakbaten Toopkanloo S, Wu HF. Self-Assembled PVP-Gd Composite Nanosheets via Ultrasound Synthesis for Targeted Acrylamide Sensing in Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4887-4903. [PMID: 39932388 PMCID: PMC11869275 DOI: 10.1021/acs.jafc.4c08460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025]
Abstract
Acrylamide (AM) is a recognized carcinogen and neurotoxin, posing a significant threat to food safety and human health. Therefore, developing sensitive and convenient methods for AM detection in food samples is essential. This study responds to the urgent need for sensitive and selective detection of AM, a hidden hazard in food, to safeguard public health and environmental safety. We present the development of a novel two-dimensional ultrasound-synthesized PVP-Gd composite nanosheet platform for precise AM sensing. These self-assembled nanosheets, constructed from gadolinium (Gd) and poly(vinylpyrrolidone) (PVP), exhibit remarkable stability and robust blue fluorescence, with a quantum yield of 45.01% upon excitation at 380 nm. A full factorial design was employed to optimize the synthesis process, revealing significant parameter interactions. The optimized nanosheets demonstrated a strong quenching effect upon acrylamide exposure, resulting in a high-performance acrylamide sensor with an impressively low detection limit (9.4 nM) and a broad linear response range. This innovative sensor platform offers a promising approach for environmental monitoring and food safety applications, effectively addressing the risks associated with acrylamide.
Collapse
Affiliation(s)
| | - Hui-Fen Wu
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- School
of Medicine, College of Medicine, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Precision Medicine, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Institute
of BioPharmaceutical Science, National Sun
Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
3
|
Gao Y, Shi YE, Cheng F, Huang C, Wang Z. Modulating room temperature phosphorescence of acrylamide by stepwise rigidification for its detection in potato crisps. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125372. [PMID: 39515232 DOI: 10.1016/j.saa.2024.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The selective detection of acrylamide (AA) is crucial, which is limited by the high background and interferences from food matrix. A room temperature phosphorescence (RTP) assay was developed through modulating its RTP by a stepwise rigidification strategy. The first step rigidification resulted in crosslinking of AA and denser of hydrogen bonding. This prompted the RTP efficiency from <0.1 to 3.8 % and emission lifetime of AA (from 3.0 μs to 0.29 s). Introducing boric acid resulted in the second step rigidification, triggered the formation of rigid matrix and chemical bonding. These synergistic effects prompted the photoluminescence quantum yield to 23.7 % and emission lifetime to 1.20 s. AA was quantitatively detected through monitoring the RTP intensity, with a limit of detection of 0.9 μg/mL. Benefiting from the delayed signal detection, background signal and the interferences from food matrices were eliminated, endowing the detection of AA in practical food samples.
Collapse
Affiliation(s)
- Yuncai Gao
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, PR China; College of Chemistry and Materials Science, Hebei University, Hebei 071002, PR China
| | - Yu-E Shi
- Library of Hebei Normal University, Hebei 050024, PR China.
| | - Feiyang Cheng
- College of Chemistry and Materials Science, Hebei University, Hebei 071002, PR China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Zhenguang Wang
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
4
|
Yang XY, Yuan JY, Ye Y, Yue LJ, Gong FL, Xie KF, Zhang YH. Engineering of in-plane SnS 2-SnO 2 nanosheets heterostructures for enhanced H 2S sensing. Talanta 2025; 282:127059. [PMID: 39432960 DOI: 10.1016/j.talanta.2024.127059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In-plane heterostructures has attracted considerable interest due to exceptional electron transport properties, high specific surface area, and abundant active sites. However, synthesis of in-plane SnS2-SnO2 heterostructures are rarely reported, and the deep investigation of the fine structure on reactivity is of great significance. Here, we propose partial in-situ oxidation strategy to construct the in-plane SnS2-SnO2 heterostructures and the surface properties, the ratio of two components can be finely tuned by precisely adjusting the treatment temperature. In particular, the SnS2-SnO2 heterostructures formed after annealing of SnS2 nanosheets at 350 °C exhibits a unique electronic structure and surface properties due to rich grain boundaries, which exhibits excellent gas sensing performance to H2S (Ra/Rg = 169.81 for 5 ppm H2S at 160 °C, fast response and recovery dynamic (41/101 s), excellent reliability (σ = 0.01) and sensing stability (φ = 0.11 %)). Notably, the in-plane heterostructures endow the material with abundant grain boundaries and effectively regulates the electronic structure of the Sn p-orbital, which facilitate the formation of active oxygen species (O-(ad)), thus contributing to the sensing performance. Our work provides a promising platform to design in-plane heterostructures for various advanced applications.
Collapse
Affiliation(s)
- Xuan-Yu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Jian-Yong Yuan
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Yang Ye
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Li-Juan Yue
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Fei-Long Gong
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Ke-Feng Xie
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yong-Hui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| |
Collapse
|
5
|
Lin Z, Fu X, Zheng K, Han S, Chen C, Ye D. Cellulose Surface Nanoengineering for Visualizing Food Safety. NANO LETTERS 2024; 24:10016-10023. [PMID: 39109676 DOI: 10.1021/acs.nanolett.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (∼30 μm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.
Collapse
Affiliation(s)
- Zewan Lin
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaotong Fu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Ke Zheng
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Shaobo Han
- School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Chaoji Chen
- School of Resource and Environment Sciences, Wuhan University, Wuhan 430079, China
| | - Dongdong Ye
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Dong W, Fan Z, Shang X, Han M, Sun B, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Nanotechnology-based optical sensors for Baijiu quality and safety control. Food Chem 2024; 447:138995. [PMID: 38513496 DOI: 10.1016/j.foodchem.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhen Fan
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Mengjun Han
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| |
Collapse
|
7
|
Nguyen HA, Mai QD, Nguyet Nga DT, Pham MK, Nguyen QK, Do TH, Luong VT, Lam VD, Le AT. Paper/GO/e-Au flexible SERS sensors for in situ detection of tricyclazole in orange juice and on cucumber skin at the sub-ppb level: machine learning-assisted data analysis. NANOSCALE ADVANCES 2024; 6:3106-3118. [PMID: 38868820 PMCID: PMC11166118 DOI: 10.1039/d3na01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Despite being an excellent surface enhanced Raman scattering (SERS) active material, gold nanoparticles were difficult to be loaded onto the surface of filter paper to fabricate flexible SERS substrates. In this study, electrochemically synthesized gold nanoparticles (e-AuNPs) were deposited on graphene oxide (GO) nanosheets in solution by ultrasonication, resulting in the formation of a GO/Au hybrid material. Thanks to the support of GO, the hybrid material could adhere onto the surface of filter paper, which was immersed into a GO/Au solution for 24 h and dried naturally at room temperature. The paper-based materials were then employed as substrates for a surface enhanced Raman scattering (SERS) sensing platform to detect tricyclazole (TCZ), a widely used pesticide, resulting in better sensitivity compared to the use of paper/Au SERS sensors. With the most optimal GO content of 4%, paper/GO/Au SERS sensors could achieve a limit of detection of 1.32 × 10-10 M in standard solutions. Furthermore, the filter paper-based SERS sensors also exhibited significant advantages in sample collection in real samples. On one hand, the sensors were dipped into orange juice, allowing TCZ molecules in this real sample to be adsorbed onto their SERS active surface. On the other hand, they were pasted onto cucumber skin to collect the analytes. As a result, the paper/GO/Au SERS sensors could sense TCZ in orange juice and on cucumber skin at concentrations as low as 10-9 M (∼2 ppb). In addition, a machine learning model was designed and developed, allowing the sensing system to discriminate TCZ from nine other organic compounds and predict the presence of TCZ on cucumber skin at concentrations down to 10-9 M.
Collapse
Affiliation(s)
- Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quan Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Minh Khanh Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quoc Khanh Nguyen
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Trong Hiep Do
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Van Thien Luong
- Faculty of Computer Science, Phenikaa University Hanoi 12116 Vietnam
| | - Vu Dinh Lam
- Institute of Materials Science (IMS), Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
8
|
Xie M, Lv X, Wang K, Zhou Y, Lin X. Advancements in Chemical and Biosensors for Point-of-Care Detection of Acrylamide. SENSORS (BASEL, SWITZERLAND) 2024; 24:3501. [PMID: 38894291 PMCID: PMC11175246 DOI: 10.3390/s24113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Acrylamide (AA), an odorless and colorless organic small-molecule compound found generally in thermally processed foods, possesses potential carcinogenic, neurotoxic, reproductive, and developmental toxicity. Compared with conventional methods for AA detection, bio/chemical sensors have attracted much interest in recent years owing to their reliability, sensitivity, selectivity, convenience, and low cost. This paper provides a comprehensive review of bio/chemical sensors utilized for the detection of AA over the past decade. Specifically, the content is concluded and systematically organized from the perspective of the sensing mechanism, state of selectivity, linear range, detection limits, and robustness. Subsequently, an analysis of the strengths and limitations of diverse analytical technologies ensues, contributing to a thorough discussion about the potential developments in point-of-care (POC) for AA detection in thermally processed foods at the conclusion of this review.
Collapse
Affiliation(s)
| | | | | | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (M.X.); (X.L.); (K.W.)
| |
Collapse
|
9
|
Liu C, Franceschini C, Weber S, Dib T, Liu P, Wu L, Farnesi E, Zhang WS, Sivakov V, Luppa PB, Popp J, Cialla-May D. SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates. Talanta 2024; 271:125697. [PMID: 38295449 DOI: 10.1016/j.talanta.2024.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Therapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times. Therefore, we developed a SERS-based detection scheme using silicon nanowires decorated with silver nanoparticles, fabricated by means of top-down etching combined with chemical deposition, to detect the antibiotic ceftriaxone (CRO) in spiked fresh plasma and microdialysis samples. We successfully detected CRO in both matrices with an LOD of 94 μM in protein-depleted fresh plasma and 1.4 μM in microdialysate.
Collapse
Affiliation(s)
- Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Célia Franceschini
- UR Molecular Systems, Department of Chemistry, University of Liège, 4000, Liège, Belgium
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Tony Dib
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Poting Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Long Wu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University. Haikou 570228, China; Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Edoardo Farnesi
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Wen-Shu Zhang
- China Fire and Rescue Institute, Beijing, 102202, China
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
10
|
Govindaraju I, Sana M, Chakraborty I, Rahman MH, Biswas R, Mazumder N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024; 13:556. [PMID: 38397533 PMCID: PMC10887767 DOI: 10.3390/foods13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In today's fast-paced world, people increasingly rely on a variety of processed foods due to their busy lifestyles. The enhanced flavors, vibrant colors, and ease of accessibility at reasonable prices have made ready-to-eat foods the easiest and simplest choice to satiate hunger, especially those that undergo thermal processing. However, these foods often contain an unsaturated amide called 'Acrylamide', known by its chemical name 2-propenamide, which is a contaminant formed when a carbohydrate- or protein-rich food product is thermally processed at more than 120 °C through methods like frying, baking, or roasting. Consuming foods with elevated levels of acrylamide can induce harmful toxicity such as neurotoxicity, hepatoxicity, cardiovascular toxicity, reproductive toxicity, and prenatal and postnatal toxicity. This review delves into the major pathways and factors influencing acrylamide formation in food, discusses its adverse effects on human health, and explores recent techniques for the detection and mitigation of acrylamide in food. This review could be of interest to a wide audience in the food industry that manufactures processed foods. A multi-faceted strategy is necessary to identify and resolve the factors responsible for the browning of food, ensure safety standards, and preserve essential food quality traits.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Maidin Sana
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Rajib Biswas
- Department of Physics, Tezpur University, Tezpur 784028, Assam, India;
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| |
Collapse
|
11
|
Liu C, Jiménez-Avalos G, Zhang WS, Sheen P, Zimic M, Popp J, Cialla-May D. Prussian blue (PB) modified gold nanoparticles as a SERS-based sensing platform for capturing and detection of pyrazinoic acid (POA). Talanta 2024; 266:125038. [PMID: 37574604 DOI: 10.1016/j.talanta.2023.125038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Pyrazinoic acid (POA) is a metabolite of the anti-tuberculosis drug pyrazinamide (PZA), and its detection can be used to assess the resistance of Mycobacterium tuberculosis in cultures, as only sensitive strains of the bacteria can metabolize PZA into POA. Prussian blue is a well-known metal-organic framework compound widely used in various sensing platforms such as electrochemical, photochemical, and magnetic sensors. In this study, we present a novel sensing platform based on Prussian blue-modified gold nanoparticles (AuNPs) designed to enhance the affinity of POA towards the sensing surface and to capture POA molecules from aqueous solutions. This SERS-based method allows for the selective enrichment of POA, which can be detected in both pure aqueous solution and in the presence of its pro-drug PZA. The limit of detection (LOD) for POA was estimated to be 1.08 μM in pure aqueous solution and 0.18 mM in the presence of PZA. Furthermore, the precision of the SERS method was verified by the relative standard deviation (RSD) of 3.34-12.02% for three parallel samples using different matrices, i.e. aqueous solution, spiked river water and spiked simulated saliva. The recoveries of the samples ranged from 92.65 to 118.51%. These all demonstrate the potential application of the proposed detection scheme in medical research.
Collapse
Affiliation(s)
- Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wen-Shu Zhang
- China Fire and Rescue Institute, Beijing, 102202, China
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
12
|
Cao Y, Sun Y, Yu RJ, Long YT. Paper-based substrates for surface-enhanced Raman spectroscopy sensing. Mikrochim Acta 2023; 191:8. [PMID: 38052768 DOI: 10.1007/s00604-023-06086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as one of the most sensitive analytical methods by adsorbing the target of interest onto a plasmonic surface. Growing attention has been directed towards the fabrication of various substrates to broaden SERS applications. Among these, flexible SERS substrates, particularly paper-based ones, have gained popularity due to their easy-to-use features by full contact with the sample surface. Herein, we reviewed the latest advancements in flexible SERS substrates, with a focus on paper-based substrates. Firstly, it begins by introducing various methods for preparing paper-based substrates and highlights their advantages through several illustrative examples. Subsequently, we demonstrated the booming applications of these paper-based SERS substrates in abiotic and biological matrix detection, with particular emphasis on their potential application in clinical diagnosis. Finally, the prospects and challenges of paper-based SERS substrates in broader applications are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Wu L, Tang X, Wu T, Zeng W, Zhu X, Hu B, Zhang S. A review on current progress of Raman-based techniques in food safety: From normal Raman spectroscopy to SESORS. Food Res Int 2023; 169:112944. [PMID: 37254368 DOI: 10.1016/j.foodres.2023.112944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Frequently occurrence of food safety incidents has induced global concern over food safety. To ensure food quality and safety, an increasing number of rapid and sensitive analytical methods have been developed for analysis of all kinds of food composition and contaminants. As one of the high-profile analytical techniques, Raman spectroscopy has been widely applied in food analysis with simple, rapid, sensitive, and nondestructive detection performance. Research on Raman techniques is a direction of great interest to many fields, especially in food safety. Hence, it is crucial to gain insight into recent advances on the use of Raman-based techniques in food safety applications. In this review, we introduce Raman techniques from normal Raman spectroscopy to developed ones (e.g., surface enhanced Raman scattering (SERS), spatially offset Raman spectroscopy (SORS), surface-enhanced spatially offset Raman spectroscopy (SESORS)), in view of their history and development, principles, design, and applications. In addition, future challenges and trends of these techniques are discussed regarding to food safety.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China.
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Xiangwei Zhu
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| |
Collapse
|
14
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Guo H, Ren X, Song X, Li X. Preparation of SiO 2@Ag@molecular imprinted polymers hybrid for sensitive and selective detection of amoxicillin using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122365. [PMID: 36652805 DOI: 10.1016/j.saa.2023.122365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this work, we fabricated a 300 nm-sized silver-coated silica (SiO2@Ag) SERS substrate. Based on SiO2@Ag, we designed SiO2@Ag@molecular imprinted polymers (SiO2@Ag@MIPs) to realize selectively detection of amoxicillin by coating a molecular imprinted layer averagely thinner than 10 nm on SiO2@Ag. The as-prepared SERS-active substrate demonstrates excellent enhancement for amoxicillin as well as the enhancement factors were 1.63 × 106 of SiO2@Ag@MIPs and 2.97 × 105 of SiO2@Ag, respectively. The SiO2@Ag@MIPs core-shell hybrids as SERS substrates and the minimum detectable concentration of amoxicillin was as low as 2.7 × 10-9 M, and the detection limit of SiO2@Ag was 2.7 × 10-7 M. The linear relationship between intensities of characteristic peaks and concentrations of amoxicillin was established. Both SiO2@Ag and SiO2@Ag@MIPs substrates were highly sensitive and could achieve qualitative and semi-quantitative analysis of amoxicillin in aqueous media with good linear correlations. Based on the above, SiO2@Ag@MIPs will be conducive to detecting actual samples and expanding the practical application.
Collapse
Affiliation(s)
- Hui Guo
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohui Ren
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xinyue Song
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Ye ZH, Chen XT, Zhu HY, Liu XQ, Deng WH, Song W, Li DX, Hou RY, Cai HM, Peng CY. Aggregating-agent-assisted surface-enhanced Raman spectroscopy–based detection of acrylamide in fried foods: A case study with potato chips. Food Chem 2023; 403:134377. [DOI: 10.1016/j.foodchem.2022.134377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|
17
|
Dong J, Cao Y, Yuan J, Wu H, Zhao Y, Li C, Han Q, Gao W, Wang Y, Qi J. Low-cost and flexible paper-based plasmonic nanostructure for a highly sensitive SERS substrate. APPLIED OPTICS 2023; 62:560-565. [PMID: 36821258 DOI: 10.1364/ao.479034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
The application of a noble-metal-based plasmon-enhanced substrate to detect low-concentration analytes has attracted extensive attention. Most of the substrates used in recently reported researches are based on two-dimensional structures. Hence, we prepared a higher efficiency Raman activity substrate with a filter paper structure, which not only provides more plasmonic "hot spots," but also facilitates analyte extraction and detection due to the flexibility of the paper. The preparation of the plasmonic paper substrate adopted centrifugation to deposit the alloy nanoparticles onto the paper base. The optimal particle deposition condition was found by adjusting the centrifugal force and centrifugation time. Then, the surface-enhanced Raman spectroscopy (SERS) performance of the substrate was enhanced by altering the plasmon resonance peak on the surface of the nanoparticles. The enhancement factor of this paper-based substrate was 1.55×107, with high detection uniformity (10-6 M, rhodamine 6G) and a low detection limit (10-11 M, rhodamine 6G). Then, we applied the SERS substrate to pesticide detection; the detection limit of the thiram reached 10-6 M. As a result, the simple and cost-effective paper-based SERS substrate obtained in this way has high detection performance for pesticides and can be used for rapid detection in the field, which is beneficial to food safety and environmental safety.
Collapse
|
18
|
Ranbir, Kumar M, Singh G, Singh J, Kaur N, Singh N. Machine Learning-Based Analytical Systems: Food Forensics. ACS OMEGA 2022; 7:47518-47535. [PMID: 36591133 PMCID: PMC9798398 DOI: 10.1021/acsomega.2c05632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 02/06/2024]
Abstract
Despite a large amount of money being spent on both food analyses and control measures, various food-borne illnesses associated with pathogens, toxins, pesticides, adulterants, colorants, and other contaminants pose a serious threat to human health, and thus food safety draws considerable attention in the modern pace of the world. The presence of various biogenic amines in processed food have been frequently considered as the primary quality parameter in order to check food freshness and spoilage of protein-rich food. Various conventional detection methods for detecting hazardous analytes including microscopy, nucleic acid, and immunoassay-based techniques have been employed; however, recently, array-based sensing strategies are becoming popular for the development of a highly accurate and precise analytical method. Array-based sensing is majorly facilitated by the advancements in multivariate analytical techniques as well as machine learning-based approaches. These techniques allow one to solve the typical problem associated with the interpretation of the complex response patterns generated in array-based strategies. Consequently, the machine learning-based neural networks enable the fast, robust, and accurate detection of analytes using sensor arrays. Thus, for commercial applications, most of the focus has shifted toward the development of analytical methods based on electrical and chemical sensor arrays. Therefore, herein, we briefly highlight and review the recently reported array-based sensor systems supported by machine learning and multivariate analytics to monitor food safety and quality in the field of food forensics.
Collapse
Affiliation(s)
- Ranbir
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
| | - Manish Kumar
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
| | - Gagandeep Singh
- Department
of Biomedical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Jasvir Singh
- Department
of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Navneet Kaur
- Department
of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, Punjab, India
- Department
of Biomedical Engineering, Indian Institute
of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
19
|
Enhanced Response for Foodborne Pathogens Detection by Au Nanoparticles Decorated ZnO Nanosheets Gas Sensor. BIOSENSORS 2022; 12:bios12100803. [PMID: 36290940 PMCID: PMC9599186 DOI: 10.3390/bios12100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
Listeria monocytogenes is a hazardous foodborne pathogen that is able to cause acute meningitis, encephalitis, and sepsis to humans. The efficient detection of 3-hydroxy-2-butanone, which has been verified as a biomarker for the exhalation of Listeria monocytogenes, can feasibly evaluate whether the bacteria are contained in food. Herein, we developed an outstanding 3-hydroxy-2-butanone gas sensor based on the microelectromechanical systems using Au/ZnO NS as a sensing material. In this work, ZnO nanosheets were synthesized by a hydrothermal reaction, and Au nanoparticles (~5.5 nm) were prepared via an oleylamine reduction method. Then, an ultrasonic treatment was carried out to modified Au nanoparticles onto ZnO nanosheets. The XRD, BET, TEM, and XPS were used to characterize their morphology, microstructure, catalytic structure, specific surface area, and chemical composition. The response of the 1.0% Au/ZnO NS sensors vs. 25 ppm 3-hydroxy-2-butanone was up to 174.04 at 230 °C. Moreover, these sensors presented fast response/recovery time (6 s/7 s), great selectivity, and an outstanding limit of detection (lower than 0.5 ppm). This work is full of promise for developing a nondestructive, rapid and practical sensor, which would improve Listeria monocytogenes evaluation in foods.
Collapse
|
20
|
Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022; 11:foods11142097. [PMID: 35885344 PMCID: PMC9322305 DOI: 10.3390/foods11142097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Innovative application of surface-enhanced Raman scattering (SERS) for rapid and nondestructive analyses has been gaining increasing attention for food safety and quality. SERS is based on inelastic scattering enhancement from molecules located near nanostructured metallic surfaces and has many advantages, including ultrasensitive detection and simple protocols. Current SERS-based quality analysis contains composition and structural information that can be used to establish an electronic file of the food samples for subsequent reference and traceability. SERS is a promising technique for the detection of chemical, biological, and harmful metal contaminants, as well as for food poisoning, and allergen identification using label-free or label-based methods, based on metals and semiconductors as substrates. Recognition elements, including immunosensors, aptasensors, or molecularly imprinted polymers, can be linked to SERS tags to specifically identify targeted contaminants and perform authenticity analysis. Herein, we highlight recent studies on SERS-based quality and safety analysis for different foods categories spanning the whole food chain, ‘from farm to table’ and processing, genetically modified food, and novel foods. Moreover, SERS detection is a potential tool that ensures food safety in an easy, rapid, reliable, and nondestructive manner during the COVID-19 pandemic.
Collapse
|
21
|
Raman-based detection of ciprofloxacin and its degradation in pharmaceutical formulations. Talanta 2022; 250:123719. [DOI: 10.1016/j.talanta.2022.123719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
|
22
|
Zhao H, Zheng D, Wang H, Lin T, Liu W, Wang X, Lu W, Liu M, Liu W, Zhang Y, Liu M, Zhang P. In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer. Int J Mol Sci 2022; 23:7340. [PMID: 35806345 PMCID: PMC9267095 DOI: 10.3390/ijms23137340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to develop a simple, sensitive, low-cost, environmentally friendly and flexible surface-enhanced Raman scattering (SERS) platform, combined with a portable Raman spectrometer, for the rapid and on-site SERS detection of bacteria. Commercial tobacco packaging paper (TPP) with little background interference was used as a loading medium that effectively adsorbed Au nanoparticles and provided sufficient "hot spots". This Au-tobacco packaging paper (Au-TPP) substrate used as a flexible SERS platform can maximize sample collection by wiping irregular surfaces, and was successfully applied to the on-site and rapid detection of pathogenic bacteria. Raman fingerprints of pathogenic bacteria can be obtained by SERS detection of spiked pork using wipeable Au-TPP, which verifies its value in practical applications. The results collected by SERS were further verified by polymerase chain reaction (PCR) results. It showed several advantages in on-site SERS detection, including accurate discrimination, simple preparation, easy operation, good sensitivity, accuracy and reproducibility. This study indicates that the established flexible SERS platform has good practical applications in pathogenic bacterial identification and other rapid detections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Zhang
- Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China; (H.Z.); (D.Z.); (H.W.); (T.L.); (W.L.); (X.W.); (W.L.); (M.L.); (W.L.); (Y.Z.); (M.L.)
| |
Collapse
|
23
|
Nilghaz A, Mahdi Mousavi S, Amiri A, Tian J, Cao R, Wang X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5463-5476. [PMID: 35471937 DOI: 10.1021/acs.jafc.2c00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been identified as a fundamental surface-sensitive technique that boosts Raman scattering by adsorbing target molecules on specific surfaces. The application of SERS highly relies on the development of smart SERS substrates, and thus the fabrication of SERS substrates has been constantly improved. Herein, we investigate the impacts of different substrates on SERS technology including plasmonic metal nanoparticles, semiconductors, and hybrid systems in quantitative food safety and quality analysis. We first discuss the fundamentals, substrate designs, and applications of SERS. We then provide a critical review of the recent progress of SERS in its usage for screening and detecting chemical and biological contaminants including fungicides, herbicides, insecticides, hazardous colorants, and biohazards in food samples to assess the analytical capabilities of this technology. Finally, we investigate the future trends and provide practical techniques that could be used to fulfill the requirements for rapid analysis of food at a low cost.
Collapse
Affiliation(s)
- Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | - Amir Amiri
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Junfei Tian
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Cao
- Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
24
|
Kang Y, Kim HJ, Lee SH, Noh H. Paper-Based Substrate for a Surface-Enhanced Raman Spectroscopy Biosensing Platform-A Silver/Chitosan Nanocomposite Approach. BIOSENSORS 2022; 12:266. [PMID: 35624567 PMCID: PMC9138243 DOI: 10.3390/bios12050266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Paper is a popular platform material in all areas of sensor research due to its porosity, large surface area, and biodegradability, to name but a few. Many paper-based nanocomposites have been reported in the last decade as novel substrates for surface-enhanced Raman spectroscopy (SERS). However, there are still limiting factors, like the low density of hot spots or loss of wettability. Herein, we designed a process to fabricate a silver-chitosan nanocomposite layer on paper celluloses by a layer-by-layer method and pH-triggered chitosan assembly. Under microscopic observation, the resulting material showed a nanoporous structure, and silver nanoparticles were anchored evenly over the nanocomposite layer. In SERS measurement, the detection limit of 4-aminothiophenol was 5.13 ppb. Furthermore, its mechanical property and a strategy toward further biosensing approaches were investigated.
Collapse
Affiliation(s)
- Yuri Kang
- Department of Optometry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; (Y.K.); (H.J.K.)
| | - Hyeok Jung Kim
- Department of Optometry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; (Y.K.); (H.J.K.)
| | - Sung Hoon Lee
- Corning Technology Center Korea, Corning Precision Materials Co., Ltd., 212 Tangjeong-ro, Asan 31454, Korea
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea; (Y.K.); (H.J.K.)
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
25
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
27
|
Guo Z, Chen P, Wang M, Zuo M, El-Seedi HR, Chen Q, Shi J, Zou X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Liu Y, Ran M, Sun Y, Fan Y, Wang J, Cao X, Lu D. A sandwich SERS immunoassay platform based on a single-layer Au-Ag nanobox array substrate for simultaneous detection of SCCA and survivin in serum of patients with cervical lesions. RSC Adv 2021; 11:36734-36747. [PMID: 35494344 PMCID: PMC9043334 DOI: 10.1039/d1ra03082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The evaluation of tumor biomarkers in blood specimens is vital for patients with cervical lesions. Herein, an ultrasensitive surface enhanced Raman scattering (SERS) platform was proposed for simultaneous detection of cervical-lesion-related serum biomarkers. Raman reporter labeled Au-Ag nanoshells (Au-AgNSs) acted as SERS tags and an Au-Ag nanobox (Au-AgNB) array substrate prepared by the oil-water interface self-assembly method was used as a capture substrate. This single-layer Au-AgNB array substrate was proved to have exceptional uniformity by atomic force microscopy and SERS mapping. Numerous "hot spots" and specific adsorption surfaces offered by the Au-AgNB array substrate were confirmed by the finite difference time domain method, which could generate a SERS signal in electromagnetic enhancement. Binding of antigens between antibodies on Au-AgNSs and the Au-AgNB array substrate led to the formation of a sandwich-structure by the two metal nanostructures. Consequently, an ultralow detection limit of 6 pg mL-1 for squamous cell carcinoma antigen (SCCA) and 5 pg mL-1 for survivin in a wide linear logarithmic range of 10 pg mL-1 to 10 μg mL-1 was acquired. High selectivity and reproducibility with relative standard deviations of 7.701% and 6.943% were detected. Furthermore, the simultaneous detection of the two biomarkers in practical specimens was conducted, and the results were consistent with those of the enzyme-linked immunosorbent assay. This platform exhibited good robustness in the rapid and sensitive detection of SCCA and survivin, which could be a promising tool in early clinical diagnosis for different grades of cervical lesions.
Collapse
Affiliation(s)
- Yifan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Menglin Ran
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Yongxin Fan
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Jinghan Wang
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Dan Lu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
| |
Collapse
|
29
|
Tegegne WA, Su WN, Beyene AB, Huang WH, Tsai MC, Hwang BJ. Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis. Talanta 2021; 231:122362. [PMID: 33965028 DOI: 10.1016/j.talanta.2021.122362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
A microfluidic colorimetric detection (MCD) platform consisting of a sliding hybrid PMMA/paper microchip and a smart analysis system is proposed for the convenient, low-cost and rapid analysis of human urine and whole blood samples. The sliding PMMA/paper microchip comprises a PMMA microfluidic chip for sample injection and transportation, a paper strip for sample filtration (urine) or separation (blood), and a sealed paper-chip detection zone for sample reaction and detection. In the proposed device, the paper-chip is coated with bicinchoninic acid (BCA) and biuret reagent and is then assembled into the PMMA microchip and packaged in aluminum housing. In the detection process, the PMMA/paper microchip is slid partially out of the housing, and 2 μL of sample (urine or whole blood) is dripped onto the sample injection zone. The chip is then slid back into the housing and the sample is filtered/separated by the paper strip and transferred under the effects of capillary action to the sealed paper-chip detection zone. The housing is inserted into the color analysis system and heated at 45 °C for 5 min to produce a purple-colored reaction complex. The complex is imaged using a CCD camera and the RGB color intensity of the image is then analyzed using a smartphone to determine the total protein (TP) concentration of the sample. The effectiveness of the proposed method is demonstrated using TP control samples with known concentrations in the range of 0.03-5.0 g/dL. The detection results obtained for 50 human urine samples obtained from random volunteers are shown to be consistent with those obtained from a conventional hospital analysis system (R2 = 0.992). Moreover, the detection results obtained for the albumin (ALB) and creatine (CRE) concentrations of 50 whole blood samples are also shown to be in good agreement with the results obtained from the hospital analysis system (R2 = 0.982 and 0.988, respectively).
Collapse
|
31
|
Videira-Quintela D, Martin O, Montalvo G. Emerging opportunities of silica-based materials within the food industry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Jiang L, Hassan MM, Ali S, Li H, Sheng R, Chen Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4578-4603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrylamide, a food processing contaminant with demonstrated genotoxicity, carcinogenicity, and reproductive toxicity, is largely present in numerous prominent and commonly consumed food products that are produced by thermal processing methods. Food regulatory bodies such as the U.S. Food and Drug Administration (U.S. FDA) and European Union Commission regulations have disseminated various acrylamide mitigation strategies in food processing practices. Hence, in the wake of such food and public health safety efforts, there is a rising demand for economic, rapid, and portable detection and quantification methods for these contaminants. Since conventional quantification techniques like liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods are expensive and have many drawbacks, sensing platforms with various transduction systems have become an efficient alternative tool for quantifying various target molecules in a wide variety of food samples. Therefore, this present review discusses in detail the state of robust, nanomaterials-based and other bio/chemical sensor fabrication techniques, the sensing mechanism, and the selective qualitative and quantitative measurement of acrylamide in various food materials. The discussed sensors use analytical measurements ranging from diverse and disparate optical, electrochemical, as well as piezoelectric methods. Further, discussions about challenges and also the potential development of the lab-on-chip applications for acrylamide detection and quantification are entailed at the end of this review.
Collapse
Affiliation(s)
- Mirinal Kumar Rayappa
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Priyanka A Viswanathan
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Gurdeep Rattu
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - P Murali Krishna
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| |
Collapse
|
34
|
Tseng CC, Ko CH, Lu SY, Yang CE, Fu LM, Li CY. Rapid electrochemical-biosensor microchip platform for determination of microalbuminuria in CKD patients. Anal Chim Acta 2021; 1146:70-76. [PMID: 33461721 DOI: 10.1016/j.aca.2020.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
An electrochemical-biosensor (EC-biosensor) microchip consisting of screen-printed electrodes and a double-layer reagent paper detection zone impregnated with amaranth is proposed for the rapid determination of microalbuminuria (MAU) in human urine samples. Under the action of an applied deposition potential, the amaranth is adsorbed on the electrode surface and the subsequent reaction between the modified surface and the MAU content in the urine sample prompts the formation of an inert layer on the electrode surface. The inert layer impedes the transfer of electrons and hence produces a drop in the response peak current, from which the MAU concentration can then be determined. The measurement results obtained for seven artificial urine samples with known MAU concentrations in the range of 0.1-40 mg/dL show that the measured response peak current is related to the MAU concentration with a determination coefficient of R2 = 0.991 in the low concentration range of 0.1-10 mg/dL and R2 = 0.996 in the high concentration range of 10-40 mg/dL. Furthermore, the detection results obtained for 82 actual chronic kidney disease (CKD) patients show an excellent agreement (R2 = 0.988) with the hospital analysis results. Overall, the results confirm that the proposed detection platform provides a convenient and reliable approach for performing sensitive point-of-care testing (POCT) of the MAU content in human urine samples.
Collapse
Affiliation(s)
- Chin-Chung Tseng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University and Hospital, Tainan, 704, Taiwan
| | - Chien-Hsuan Ko
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Song-Yu Lu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-En Yang
- Office of Physical Education, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan; Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Chi-Yu Li
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
35
|
Feng Y, Ping W, Zhiqiang Z, Danyang L, Li C, Shunbo L. High signal collection efficiency in a 3D SERS chip using a micro-reflector. OPTICS EXPRESS 2020; 28:39790-39798. [PMID: 33379521 DOI: 10.1364/oe.410966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 05/23/2023]
Abstract
To improve the sensitivity of surface-enhanced Raman spectroscopy (SERS) detection, we propose a three-dimensional (3D) SERS chip based on an inverted pyramid micro-reflector (IPMR) that converges Raman scattering light signals to improve the signal collection efficiency. The influence of the geometric parameters of the inverted pyramid structure on the Raman signal collection efficiency was analyzed by simulation for the determination of the optimal design parameters. The inverted pyramid through-hole structure was prepared on the silicon wafer through an anisotropic wet etching process, followed by the sputtering of a gold film to form the IPMR. The 3D SERS chip was constructed by bonding the IPMR and the active substrate that assembled with silver nanoparticles. Using Rhodamine 6G molecules, the Raman intensity measured with the 3D SERS chip was threefold greater than that of the silicon-based SERS substrate under the same test conditions. These experimental results show that the 3D SERS chip can significantly improve the SERS signal intensity. Its 3D structure is convenient for integration with microfluidic devices and has great potential in biochemical detection applications.
Collapse
|
36
|
Oliveira EGDL, de Oliveira HP, Gomes ASL. Metal nanoparticles/carbon dots nanocomposites for SERS devices: trends and perspectives. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03306-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|