1
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025; 16:1016-1031. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
2
|
Xu H, Zhang T, Zhou Z, Gao T, Zhao R, Chen L. Polysaccharides from Lactarius volemus Fr. ameliorate high-fat and high-fructose diet induced metabolic disorders and intestinal barrier dysfunction. Int J Biol Macromol 2025; 287:138341. [PMID: 39638176 DOI: 10.1016/j.ijbiomac.2024.138341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Our research was conducted to investigate the effects of Lactarius volemus Fr. polysaccharides (LVP) on metabolic disorders and intestinal barrier dysfunction in HFFD-induced obese mice. Our findings demonstrated that LVP supplementation significantly ameliorated hyperlipoidemia and hyperglycemia, insulin resistance and hepatic inflammation. Additionally, LVP alleviated hepatic steatosis and histological lesions, as well as hepatic function dysbiosis. The underlying mechanism may involve the regulation of hepatic insulin signaling transduction pathway such as IRS1/AKT pathway and the suppression of MAPKs signaling pathway. Furthermore, LVP intervention improved intestinal barrier function and reduced intestinal permeability by enhancing the expression of tight junction proteins and restoring intestinal microbiota composition. In summary, our results provided evidence that LVP exerted beneficial effects on HFFD-induced metabolic disorders along with restoration of intestinal barrier function and reduction in endotoxin levels. These outcomes are associated with maintenance of gut microbiota homeostasis and up-regulation of Short-Chain Fatty Acids (SCFAs). Furthermore, butyric acid was found to restrict lipid accumulation in OA-induced HepG2 hepatocytes while strengthening intestinal barrier integrity in LPS-induced Caco-2 cells. Thus, polysaccharides LVP may serve as a potential prebiotic or health supplement in the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hui Xu
- Bengbu First People's Hospital, Bengbu 233000, China
| | - Tianyu Zhang
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ziming Zhou
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Tian Gao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ranran Zhao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Ren X, Cai S, Zhong Y, Tang L, Xiao M, Li S, Zhu C, Li D, Mou H, Fu X. Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health. Foods 2024; 13:3460. [PMID: 39517244 PMCID: PMC11545675 DOI: 10.3390/foods13213460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases.
Collapse
|
4
|
Xu J, Wang R, Liu W, Yin Z, Wu J, Yu X, Wang W, Zhang H, Li Z, Gao M, Zhu L, Zhan X. The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Li Y, Ye Y, Li W, Liu X, Zhao Y, Jiang Q, Che X. Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense. Animals (Basel) 2023; 13:2884. [PMID: 37760284 PMCID: PMC10525465 DOI: 10.3390/ani13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China's shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‱ for 6 weeks. The gills from the control (0‱) and isotonic groups (14‱) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‱. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| |
Collapse
|
6
|
Huang X, Bao J, Zeng Y, Meng G, Lu X, Wu TT, Ren Y, Xiao J. Anti-cariogenic Properties of Lactobacillus plantarum in the Utilization of Galacto-Oligosaccharide. Nutrients 2023; 15:2017. [PMCID: PMC10180963 DOI: 10.3390/nu15092017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/29/2023] Open
Abstract
Ecological approaches can help to correct oral microbial dysbiosis and drive the advent and persistence of a symbiotic oral microbiome, which benefits long-term dental caries control. The aim of this study was to investigate the impact of the prebiotic Galacto-oligosaccharide (GOS) on the growth of probiotics L. plantarum 14,917 and its effect on the inhibitory ability of L. plantarum 14,917 against the growth of Streptococcus mutans and Candida albicans in an in vitro model. Single-species growth screenings were conducted in TSBYE broth with 1% glucose and 1–5% GOS. Interaction experiments were performed using duo- and multi-species models with inoculation of 105 CFU/mL S. mutans, 103 CFU/mL C. albicans, and 108 CFU/mL L. plantarum 14,917 under 1%, 5% GOS or 1% glucose. Viable cells and pH changes were measured. Real-time PCR was utilized to assess expression of C. albicans and S. mutans virulence genes. Six replicates were used for each group. Student’s t-test, one-way ANOVA, and Kruskal-Wallis were employed to compare the outcomes of different groups. GOS significantly inhibited the growth of C. albicans and S. mutans in terms of growth quantity and speed when the two strains were grown individually. However, GOS did not affect the growth of L. plantarum 14,917. Moreover, 1% and 5% GOS enhanced the anti-fungal performance of L. plantarum 14,917 in comparison to 1% glucose. GOS as the carbon source resulted in a less acidic environment in the C. albicans and S. mutans duo-species model and multispecies model where L. plantarum 14,917 was added. When GOS was utilized as the carbohydrate substrate, S. mutans and C. albicans had a significant reduction in the expression of the HWP1, ECE1, atpD, and eno genes (p < 0.05). To our knowledge, this is the first study that reported the ability of GOS to neutralize S. mutans-C. albicans high caries of medium pH and to disrupt virulence gene expression. Moreover, as a prebiotic, GOS augmented the inhibitory ability of L. plantarum against C. albicans in vitro. The current study revealed the anti-caries potential of prebiotics GOS and shed light on novel caries prevention strategies from the perspective of prebiotics and probiotics. These findings provide a rationale for future biofilm or clinical studies to elucidate the effect of GOS on modulating oral microbiota and caries control.
Collapse
Affiliation(s)
- Xinyan Huang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (X.H.); (J.B.); (Y.Z.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Jianhang Bao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (X.H.); (J.B.); (Y.Z.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (X.H.); (J.B.); (Y.Z.)
| | - Gina Meng
- School of Arts and Science, University of Rochester, Rochester, NY 14627, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yanfang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (X.H.); (J.B.); (Y.Z.)
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (X.H.); (J.B.); (Y.Z.)
| |
Collapse
|
7
|
Xiao M, Ren X, Cheng J, Fu X, Li R, Zhu C, Kong Q, Mou H. Structural characterization of a novel fucosylated trisaccharide prepared from bacterial exopolysaccharides and evaluation of its prebiotic activity. Food Chem 2023; 420:136144. [PMID: 37060669 DOI: 10.1016/j.foodchem.2023.136144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Fucosylated oligosaccharides have promising prospects in various fields. In this study, a fucosylated trisaccharide (GFG) was separated from the acidolysis products of exopolysaccharides from Clavibacter michiganensis M1. Structural characterization demonstrated that GFG consists of glucose, galactose, and fucose, with a molecular weight of 488 Da. Nuclear magnetic resonance analysis showed that it has a different structure than that of 2'-fucosyllactose (2'-FL), even though they have the same monosaccharide composition. In vitro prebiotic experiments were conducted to evaluate the differences in the utilization of three selected carbohydrates by fourteen bacterial strains. In comparison with 2'-FL, GFG could be utilized by more beneficial bacteria, leading to generate more short-chain fatty acids. Moreover, GFG could not promote the proliferation of Escherichia coli. This work describes a novel fucosylated oligosaccharide and its preparation method, and the obtained trisaccharide may serve as a promising candidate for fucosylated human milk oligosaccharides.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
8
|
Lu X, Xu H, Fang F, Liu J, Wu K, Zhang Y, Wu J, Gao J. In vitro effects of two polysaccharide fractions from Laminaria japonica on gut microbiota and metabolome. Food Funct 2023; 14:3379-3390. [PMID: 36943742 DOI: 10.1039/d2fo04085a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
To investigate the prebiotic potential of two Laminaria japonica polysaccharide (LJP) fractions with different molecular weights and structures, we conducted in vitro simulated digestion and fermentation with hyperlipidemia-associated human gut microbiota. The results indicated that the LJP fraction with higher molecular weight (HLJP) appeared to have a more complex monosaccharide composition and microstructure than did the LJP fraction with lower molecular weight (LLJP), and both fractions could not be digested by in vitro simulated digestion. After in vitro fermentation, HLJP generated more short-chain fatty acids (SCFAs) and showed stronger ability to regulate core metabolites. Intriguingly, LLJP is better at promoting the proliferation of Akkermansiaceae, while HLJP is more effective in reducing the Firmicutes/Bacteroidetes ratio and increasing the content of Bacteroidaceae and Tannerellaceae. The present study indicates that LLJP and HLJP may have probiotic effects through different approaches and these differences may be related to the molecular weight and structure of the polysaccharides.
Collapse
Affiliation(s)
- Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Hongtao Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Juncheng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Kaizhang Wu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yuwei Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China.
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
10
|
Cao L, Liu Z, Yu Y, Liang Q, Wei X, Sun H, Fang Y, Zhu C, Kong Q, Fu X, Mou H. Butyrogenic effect of galactosyl and mannosyl carbohydrates and their regulation on piglet intestinal microbiota. Appl Microbiol Biotechnol 2023; 107:1903-1916. [PMID: 36795139 DOI: 10.1007/s00253-023-12436-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Diarrhea is a global problem that causes economic losses in the pig industry. There is a growing attention on finding new alternatives to antibiotics to solve this problem. Hence, this study aimed to compare the prebiotic activity of low-molecular-weight hydrolyzed guar gum (GMPS) with commercial manno-oligosaccharide (MOS) and galacto-oligosaccharide (GOS). We further identified their combined effects along with probiotic Clostridium butyricum on regulating the intestinal microbiota of diarrheal piglet by in vitro fermentation. All the tested non-digestible carbohydrates (NDCs) showed favorable short-chain fatty acid-producing activity, and GOS and GMPS showed the highest production of lactate and butyrate, respectively. After 48 h of fermentation, the greatest enhancement in the abundance of Clostridium sensu stricto 1 was observed with the combination of GMPS and C. butyricum. Notably, all the selected NDCs significantly decreased the abundances of pathogenic bacteria genera Escherichia-Shigella and Fusobacterium and reduced the production of potentially toxic metabolites, including ammonia nitrogen, indole, and skatole. These findings demonstrated that by associating with the chemical structure, GMPS exhibited butyrogenic effects in stimulating the proliferation of C. butyricum. Thus, our results provided a theoretical foundation for further application of galactosyl and mannosyl NDCs in the livestock industry. KEY POINTS: • Galactosyl and mannosyl NDCs showed selective prebiotic effects. • GMPS, GOS, and MOS reduced pathogenic bacteria and toxic metabolites production. • GMPS specifically enhanced the Clostridium sensu stricto 1 and butyrate production.
Collapse
Affiliation(s)
- Linyuan Cao
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Yangtao Fang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, Jiangxi, People's Republic of China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Chen N, Liu Y, Wei S, Zong X, Zhou G, Lu Z, Wang F, Wang Y, Jin M. Dynamic changes of inulin utilization associated with longitudinal development of gut microbiota. Int J Biol Macromol 2023; 229:952-963. [PMID: 36596372 DOI: 10.1016/j.ijbiomac.2022.12.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Inulin is a typical kind of fermentable polysaccharide and has emerged as a promising dietary supplement due to its multiple health-promoting effects. This study aimed to unveil the dynamic change pattern of inulin utilizability as a fermentation substrate during gut microbiota development and illuminate its potential association with gut microbiota in Chinese Jinhua native pig models via longitudinal analyses. Herein, fresh feces were collected at one week pre- and post-weaning as well as 3rd month post-weaning, respectively. Targeted metabolomics and in vitro simulated fermentation revealed increasing concentrations of fecal short-chain fatty acids (SCFAs) and elevating utilizability of inulin as a fermentation substrate. Microbiomic analyses demonstrated the conspicuous longitudinal alteration in gut microbial composition and a significant rise in microbial community diversity during gut microbiota development. Furthermore, gut microbial functional analyses showed a remarkable increase in the relative abundances of carbohydrate metabolism pathways, including pentose phosphate pathway, galactose metabolism pathway, butanoate metabolism pathway as well as fructose and mannose metabolism pathway. Notably, relative abundances of bacterial genera Bifidobacterium, Roseburia, Faecalibacterium and Enterococcus displayed significantly positive correlations with the production of microbial fermentation-derived SCFAs. Collectively, these findings offer novel insights into understanding inulin utilizability variations from the perspective of gut microbiota development.
Collapse
Affiliation(s)
- Nana Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yalin Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guilian Zhou
- Weifang Newhope Liuhe Feed Technology Co. Ltd, Weifang 261000, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:metabo13020250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Correspondence: ; Tel.: +81-80-1573-5815
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
13
|
Molecular dynamics simulation guided distal mutation of Thermotoga naphthophila β-glucosidase for significantly enhanced synthesis of galactooligosaccharides and expanded product scope. Int J Biol Macromol 2022; 210:21-32. [DOI: 10.1016/j.ijbiomac.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
|
14
|
Advances in Prebiotic Mannooligosaccharides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Xiao M, Ren X, Cui J, Li R, Liu Z, Zhu L, Kong Q, Fu X, Mou H. A novel glucofucobiose with potential prebiotic activity prepared from the exopolysaccharides of Clavibacter michiganensis M1. Food Chem 2022; 377:132001. [PMID: 34999464 DOI: 10.1016/j.foodchem.2021.132001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Abstract
Fucose and fucosylated oligosaccharides have important applications in various industries owing to their prebiotic, anti-inflammatory, anticoagulant, and antiviral activities. Here, we aimed to obtain fucosylated oligosaccharides using the acidolysis method to depolymerize exopolysaccharides extracted from Clavibacter michiganensis M1. Based on structural analysis, the prepared glucofucobiose was found to consist of d-glucose and l-fucose, with a molecular weight of 326 Da and a structure of d-Glcp-β-(1→4)-l-Fucp. The prebiotic activity of glucofucobiose was compared with that of 2'-fucosyllactose (2'-FL), the most abundant oligosaccharide in human milk. According to the results, glucofucobiose could significantly promote the proliferation of six probiotic strains, and short-chain fatty acid production of five probiotic strains on glucofucobiose was substantially higher than that on 2'-FL at 48 h of fermentation. Overall, this study proposed a new technology for obtaining fucosylated oligosaccharides. The prepared glucofucobiose was found to exhibit potential prebiotic activity and should be further assessed.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Jinzheng Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Rong Li
- Qingdao Women and Children Hospital, Qingdao 266003, Shandong, People's Republic of China.
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Lin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China; Weihai Deepsea Biotechnology Co., Ltd, Weihai 264300, Shandong, People's Republic of China.
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China.
| |
Collapse
|
16
|
He Z, Deng N, Zheng B, Li T, Liu RH, Yuan L, Li W. Changes in polyphenol fractions and bacterial composition after
in vitro
fermentation of apple peel polyphenol by gut microbiota. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ziqian He
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Na Deng
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Bisheng Zheng
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
- Research Institute for Food Nutrition and Human Health Guangzhou China
| | - Tong Li
- Department of Food Science Cornell University Stocking Hall Ithaca NY 14853 USA
| | - Rui Hai Liu
- Department of Food Science Cornell University Stocking Hall Ithaca NY 14853 USA
| | - Ling Yuan
- Guangdong ERA Food & Life Health Research Institute Guangzhou Guangdong 510530 China
| | - Wenzhi Li
- Guangdong ERA Food & Life Health Research Institute Guangzhou Guangdong 510530 China
| |
Collapse
|
17
|
Zhang Y, Duan M, Zhou B, Wang Q, Zhang Z, Su L, Bai Q. Mechanism that allows manno-oligosaccharide to promote cellulose degradation by the bacterial community and the composting of cow manure with straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30265-30276. [PMID: 34997494 DOI: 10.1007/s11356-021-17797-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The new sugar source manno-oligosaccharide can regulate the structure of the microbial community. This study investigated the effects of adding manno-oligosaccharide at four different levels (0, 0.1%, 0.5%, and 1% w/w compost) to composting cow manure and straw on lignocellulose degradation and the bacterial community. Adding 0.5% manno-oligosaccharide had the greatest effects on accelerating the composting process, reducing its toxicity, and improving the stability of the product. After composting for 25 days, adding 0.5% manno-oligosaccharide decreased the hemicellulose, cellulose, and lignin contents to 2.25%, 11.25%, and 7.07%, respectively, compared with those under CK. Manno-oligosaccharide promoted the degradation of lignocellulose by increasing the abundances of Thermobifida, Streptomyces, and Luteimonas. In addition, manno-oligosaccharide inhibited pathogenic bacteria and increased the abundances of functional genes related to metabolism. Finally, adding 0.5% manno-oligosaccharide mainly affected the degradation of lignocellulose by enhancing the C/N ratio and the abundances of Streptomyces and the secretion system during composting according to redundancy analysis.
Collapse
Affiliation(s)
- Yuhua Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
- XianYang and Research Institute of Water Conservancy and Hydropower Planning and Design, XianYang, 712021, China
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an, 710065, China
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Qingjun Bai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
18
|
Production of Organic Acid and Short-Chain Fatty Acids (SCFA) from Lactic Acid Bacteria Isolate on Oligosaccharide Media. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.6.213-221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The growth of microorganisms in food, one of which is lactic acid bacteria (LAB), can produce metabolites beneficial to health. It is essential to study the results of LAB metabolism to improve the quality of a functional food product. This study aimed to evaluate the isolates Lactobacillus acidophilus FNCC 0051 and Lactobacillus rhamnosus R23 to metabolize oligosaccharides as a carbon source so that the final fermentation product can benefit health especially in lowering cholesterol. In vitro testing was carried out on MRS media with or without oligosaccharides, either singly or in a combination consisting of galactooligosaccharides (GOS), fructooligosaccharides (FOS), inulin (IN), inulin hydrolyzate (HI), or their combination as prebiotics by adding 0.3 % oxbile (bile salt) and inoculated with 1% v/v LAB isolate culture and incubated at 37°C for 24 hours. The results showed that the main product of oligosaccharide metabolism by L. acidophilus FNCC 0051 and L. rhamnosus R23 produced several organic acids (lactic acid), including short-chain fatty acids (SCFA) (acetic acid, propionic acid, and butyric acid). The single and combined carbon sources affected the proportion of lactic acid and acetic acid produced by L. acidophilus FNCC0051 (p<0.05). However, they did not affect the proportions of propionic acid and butyric acid. While in L. rhamnosus R23 (p<0.05), the presence of a single carbon source significantly affected the proportions of lactic acid, acetic acid, propionic acid, and butyric acid, while the combination of oligosaccharides affected the proportions of lactic acid and butyric acid produced. SCFA is the main product of prebiotic metabolism, but the characteristics of the acid produced have not been identified. The fermentation pattern is thought to be related to molecular weight, chain length, and oligosaccharide structure. Short-chain molecules, such as FOS generally ferment more rapidly than long-chain molecules such as inulin. The results of this study indicate that both isolates can be used as probiotics in the development of symbiotic products with the addition of oligosaccharides, which have a physiological effect in lowering cholesterol levels.
Collapse
|
19
|
Møller MS, El Bouaballati S, Henrissat B, Svensson B. Functional diversity of three tandem C-terminal carbohydrate-binding modules of a β-mannanase. J Biol Chem 2021; 296:100638. [PMID: 33838183 PMCID: PMC8121702 DOI: 10.1016/j.jbc.2021.100638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate active enzymes, such as those involved in plant cell wall and storage polysaccharide biosynthesis and deconstruction, often contain repeating noncatalytic carbohydrate-binding modules (CBMs) to compensate for low-affinity binding typical of protein–carbohydrate interactions. The bacterium Saccharophagus degradans produces an endo-β-mannanase of glycoside hydrolase family 5 subfamily 8 with three phylogenetically distinct family 10 CBMs located C-terminally from the catalytic domain (SdGH5_8-CBM10x3). However, the functional roles and cooperativity of these CBM domains in polysaccharide binding are not clear. To learn more, we studied the full-length enzyme, three stepwise CBM family 10 (CBM10) truncations, and GFP fusions of the individual CBM10s and all three domains together by pull-down assays, affinity gel electrophoresis, and activity assays. Only the C-terminal CBM10-3 was found to bind strongly to microcrystalline cellulose (dissociation constant, Kd = 1.48 μM). CBM10-3 and CBM10-2 bound galactomannan with similar affinity (Kd = 0.2–0.4 mg/ml), but CBM10-1 had 20-fold lower affinity for this substrate. CBM10 truncations barely affected specific activity on carob galactomannan and konjac glucomannan. Full-length SdGH5_8-CBM10x3 was twofold more active on the highly galactose-decorated viscous guar gum galactomannan and crystalline ivory nut mannan at high enzyme concentrations, but the specific activity was fourfold to ninefold reduced at low enzyme and substrate concentrations compared with the enzyme lacking CBM10-2 and CBM10-3. Comparison of activity and binding data for the different enzyme forms indicates unproductive and productive polysaccharide binding to occur. We conclude that the C-terminal-most CBM10-3 secures firm binding, with contribution from CBM10-2, which with CBM10-1 also provides spatial flexibility.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Souad El Bouaballati
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
20
|
Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Lu Y, Yu Z, Zhang Z, Liang X, Gong P, Yi H, Yang L, Liu T, Shi H, Zhang L. Bifidobacterium animalis F1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport. Food Funct 2021; 12:791-801. [PMID: 33393951 DOI: 10.1039/d0fo02227f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Probiotics and natural products can promote humoral transport and effectively relieve intestinal motility. This study investigated the effects of probiotics in combination with konjac glucomannan (KGM) and an aqueous extract of Prunus persica on constipation. The growth promotion effect of these natural products on probiotics was investigated using co-culture in vitro. The combined effect of probiotics and natural products on constipation was observed in mice. The tryptophan, tryptamine and short-chain fatty acid levels were determined using enzyme-linked immunosorbent assay, reverse-phase high-performance liquid chromatography, and gas chromatography. The key genes and proteins involved in humoral transport were identified using real-time polymerase chain reaction, western blotting and fluorescence immunoassay. KGM promoted the growth of Bifidobacterium animalis F1-7 in vitro, and a mixture of KGM and B. animalis F1-7 effectively promoted defaecation in mice, increased the faecal water content, shortened the defaecation time and improved the gastrointestinal transit rate. In mice, the KGM + F1-7 mixture reduced the tryptophan level and increased the levels of tryptamine, acetic acid, propionic acid, butyric acid and valeric acid. In addition, the KGM + F1-7 mixture effectively increased the mRNA level of 5-HT4-G-protein-coupled receptors (5-HT4GPCR)/mucins-2 (MUC-2) and reduced the level of aquaporins (AQP3); furthermore, it upregulated the protein level of 5-HT4GPCR/MUC-2 and downregulated the protein level of AQP3. These findings indicated that the KGM + F1-7 mixture effectively improved intestinal motility and alleviated constipation through humoral transport-related pathways.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaira GS, Kapoor M. Molecular advancements on over-expression, stability and catalytic aspects of endo-β-mannanases. Crit Rev Biotechnol 2020; 41:1-15. [PMID: 33032458 DOI: 10.1080/07388551.2020.1825320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hydrolysis of mannans by endo-β-mannanases continues to gather significance as exemplified by its commercial applications in food, feed, and a rekindled interest in biorefineries. The present review provides a comprehensive account of fundamental research and fascinating insights in the field of endo-β-mannanase engineering in order to improve over-expression and to decipher molecular determinants governing activity-stability during harsh conditions, substrate recognition, polysaccharide specificity, endo/exo mode of action and multi-functional activities in the modular polypeptide. In-depth analysis of the available literature has also been made on rational and directed evolution approaches, which have translated native endo-β-mannanases into superior biocatalysts for satisfying industrial requirements.
Collapse
Affiliation(s)
- Gaurav Singh Kaira
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|