1
|
Lu W, Fan H, Zhang Y, Cai B, Wang X, Xue Z, Li Q. Low-concentration NaCl foliar spraying enhances photosynthesis, mineral concentration, and fruit quality of strawberry during greenhouse high-temperature periods. BMC PLANT BIOLOGY 2025; 25:487. [PMID: 40240967 PMCID: PMC12001494 DOI: 10.1186/s12870-025-06518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Root-applied low-concentration NaCl (e.g., 40 mM) has been shown to maintain the yield and enhance both nutritional and functional quality in salt-sensitive strawberry cultivars. However, the potential benefits of foliar low-concentration NaCl application on strawberry plants have rarely been investigated to avoid secondary soil salinization through long-term root application, especially the effects on fruit quality during greenhouse high-temperature periods. METHODS Strawberry (Fragaria × ananassa Duch. cv. Benihoppe) plants were foliar sprayed with 0 (CK), 5, 10, 15, and 20 mM NaCl solutions once a day from fruit setting to ripening under high-temperature period in a solar greenhouse where quality deterioration was observed. The physiological traits of strawberry leaves and the quality of fruits were measured to explore the beneficial effects of low-concentration NaCl solutions. RESULTS Compared with the control (CK), foliar spraying with low-concentration NaCl solutions significantly increased the photosynthetic efficiency and mineral element content of strawberry leaves; enhanced the color of strawberry fruits; and increased the weight, size, color, soluble sugar content (e.g., glucose, fructose, and sucrose), and secondary metabolite production (e.g., vitamin C, phenolics, and flavonoids) of strawberry fruits. Additionally, foliar spraying with low-concentration NaCl solutions significantly decreased the organic acid content (e.g., malic and citric acids) in strawberry fruits. According to redundancy analysis, foliar spraying with NaCl induced the accumulation of Na in strawberry leaves and Cl in strawberry fruits, which may have contributed to the increase in physiological activity of leaves and the improvement in fruit quality, respectively. CONCLUSION The foliar spraying of 10-15 mM NaCl, an economical and beneficial method, improves photosynthetic efficiency, thereby promoting formation and accumulation of strawberry fruit nutrients under high-temperature period in greenhouses.
Collapse
Affiliation(s)
- Wei Lu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Hui Fan
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Yuchang Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Bingbing Cai
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xinxin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Zhanjun Xue
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Colak N, Slatnar A, Medic A, Torun H, Kurt-Celebi A, Dräger G, Djahandideh J, Esatbeyoglu T, Ayaz FA. Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars. PHYSIOLOGIA PLANTARUM 2024; 176:e14611. [PMID: 39528361 DOI: 10.1111/ppl.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. 'Ruby Queen' and 'Scarlet Supreme') and white beet ('Rodeo' and 'Ansa') cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.
Collapse
Affiliation(s)
- Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ana Slatnar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hülya Torun
- Biosystem Engineering, Faculty of Agriculture, Düzce University, Düzce, Turkey
| | - Aynur Kurt-Celebi
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Gerald Dräger
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Jasmin Djahandideh
- Department of Molecular Food Chemsitry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemsitry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Liu Y, Wu Y, Jia Y, Ren F, Zhou S. Effect of GABA combined with ultrasound stress germination treatment on phenolic content and antioxidant activity of highland barley. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9023-9034. [PMID: 38979987 DOI: 10.1002/jsfa.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
4
|
Yin Y, Hu M, Yang Z, Zhu J, Fang W. Salicylic acid promotes phenolic acid biosynthesis for the production of phenol acid-rich barley sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5350-5359. [PMID: 38329450 DOI: 10.1002/jsfa.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Phenolic acid exhibits a variety of well-known physiological functions. In this study, optimal germination conditions to ensure total phenolic acid enrichment in barley sprouts induced by salicylic acid treatment and its effects on sprout physiology and activity, as well as the gene expression of key enzymes for phenolic acid biosynthesis, were investigated. RESULTS When sprouts were treated with 1 mmol L-1 salicylic acid during germination and germinated at 25 °C for 4 days, the phenolic acid content was 1.82 times that of the control, reaching 1221.54 μg g-1 fresh weight. Salicylic acid significantly increased the activity of phenylalanine aminolase and cinnamic acid-4-hydroxylase and the gene expression of phenylalanine aminolase, cinnamic acid-3-hydroxylase, cinnamic acid-4-hydroxylase, 4-coumaric acid-coenzyme A, caffeic acid O-methyltransferase, and ferulate-5-hydroxylase in barley sprouts. However, salicylic acid treatment significantly increased malondialdehyde and H2O2 content, H2O2 and O2 - fluorescence intensity, as well as significantly decreasing sprout length and fresh weight. Salicylic acid treatment markedly increased the activity of peroxidase and catalase and the gene expression of peroxidase, catalase, and ascorbate peroxidase in barley sprouts. CONCLUSION Salicylic acid treatment during barley germination significantly promoted the enrichment of total phenolic acid by increasing the activities and gene expression levels of enzymes involved in the phenolic acid biosynthesis pathway. Salicylic acid induced the accumulation of reactive oxygen species, inhibited sprout growth, and activated the antioxidant system. This study provides a basis for the future development of functional foods using phenol acid-rich plants as raw materials. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meixia Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Li W, Liu X, Ma Y, Huang X, Hai D, Cheng Y, Bai G, Wang Y, Zhang B, Qiao M, Song L, Li N. Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination of different wheat varieties. Food Chem X 2024; 22:101429. [PMID: 38756466 PMCID: PMC11096995 DOI: 10.1016/j.fochx.2024.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Changes in physio-biochemical metabolism, phenolics and antioxidant capacity during germination were studied in eight different wheat varieties. Results showed that germination enhanced sprout growth, and caused oxidative damage, but enhanced phenolics accumulation. Ferulic acid and p-coumaric acid were the main phenolic acids in wheat sprouts, and dihydroquercetin, quercetin and vitexin were the main flavonoids. The phenolic acid content of Jimai 44 was the highest on the 2th and 4th day of germination, and that of Bainong 307 was the highest on the 6th day. The flavonoid content of Hei jingang was the highest during whole germination. The enzymes activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were up-regulated. The activities of catalase, polyphenol oxidase and peroxidase were also activated. Antioxidant capacity of wheat sprouts was enhanced. The results provided new ideas for the production of naturally sourced phenolic rich foods.
Collapse
Affiliation(s)
- Wenxin Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
- Henan Shuanghui Investment Development Co., Ltd./Henan Intelligent Meat Segmentation and Biotransformation Engineering Research Center, Luohe 462005, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/National Risk Assessment Laboratory of Agro-products Processing Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Ge Bai
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yinping Wang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Bei Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
6
|
Tian X, Zhang R, Yang Z, Zhu J, Fang W, Yang R, Yin Y. Melatonin mediates phenolic acids accumulation in barley sprouts under MeJA stress. Front Nutr 2024; 11:1403293. [PMID: 38899320 PMCID: PMC11186395 DOI: 10.3389/fnut.2024.1403293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic acids are secondary metabolites in higher plants, with antioxidant, anticancer, and anti-aging effects on the human body. Therefore, foods rich in phenolic acids are popular. Methyl jasmonate (MeJA) promoted phenolic acids accumulation but also inhibited sprout growth. Melatonin (MT) was a new type of plant hormone that not only alleviated plants' abiotic stress, but also promoted the synthesis of plant-stimulating metabolism. This study aimed to elucidate the mechanism of exogenous MT on the growth and development, and phenolic acids metabolism of barley sprouts under MeJA treatment. The results showed that MT increased the phenolic acids content in sprouts by increasing the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase, and up-regulating the gene expression of phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate: coenzyme a ligase, and ferulic acid-5-hydroxylase. MT attenuated the growth inhibition of barley sprouts under MeJA stress by increasing the activities of regulated antioxidant enzymes and the expression of their corresponding genes. Furthermore, MT increased the NO content and induced Ca2+ burst in barley sprouts under MeJA stress. These events were inhibited by DL-4-Chlorophenylalanine. These results suggested that MT ameliorated growth inhibition and promoted the biosynthesis of phenolic acids in barley sprouts under MeJA stress.
Collapse
Affiliation(s)
- Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Renjiao Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiangyu Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Liu G, Zhou J, Wu S, Fang S, Bilal M, Xie C, Wang P, Yin Y, Yang R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res Int 2024; 186:114335. [PMID: 38729717 DOI: 10.1016/j.foodres.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.
Collapse
Affiliation(s)
- Guannan Liu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Zhou
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sijin Wu
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Fang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Muhammad Bilal
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Pei Wang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Runqiang Yang
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
8
|
Tian X, Zhang R, Yang Z, Fang W. Methyl Jasmonate and Zinc Sulfate Induce Secondary Metabolism and Phenolic Acid Biosynthesis in Barley Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1512. [PMID: 38891320 PMCID: PMC11174577 DOI: 10.3390/plants13111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to reveal the impact of MeJA and ZnSO4 treatments on the physiological metabolism of barley seedlings and the content of phenolic acid. The results showed that MeJA (100 μM) and ZnSO4 (4 mM) treatments effectively increased the phenolic acid content by increasing the activities of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase (PAL) and cinnamic acid 4-hydroxylase (C4H) and by up-regulating the expression of genes involved in phenolic acid synthesis. As a result of the MeJA or ZnSO4 treatment, the phenolic acid content increased by 35.3% and 30.9% at four days and by 33.8% and 34.5% at six days, respectively, compared to the control. Furthermore, MeJA and ZnSO4 treatments significantly increased the malondialdehyde content, causing cell membrane damage and decreasing the fresh weight and seedling length. Barley seedlings responded to MeJA- and ZnSO4-induced stress by increasing the activities of antioxidant enzymes and controlling their gene expression levels. Meanwhile, MeJA and ZnSO4 treatments significantly upregulated calcium-adenosine triphosphate, calmodulin-dependent protein kinase-related kinase, and calmodulin-dependent protein genes in barley seedlings. This suggested that Ca2+ may be the signaling molecule that promotes phenolic acid synthesis under MeJA and ZnSO4 treatment. This study deepens the understanding of the phenolic acid enrichment process in barley seedlings under MeJA and ZnSO4 treatments.
Collapse
Affiliation(s)
| | | | | | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China; (X.T.); (R.Z.); (Z.Y.)
| |
Collapse
|
9
|
Zhang Y, Li J, Li W, Gao X, Xu X, Zhang C, Yu S, Dou Y, Luo W, Yu L. Transcriptome Analysis Reveals POD as an Important Indicator for Assessing Low-Temperature Tolerance in Maize Radicles during Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:1362. [PMID: 38794432 PMCID: PMC11125230 DOI: 10.3390/plants13101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under TS by comparing Demeiya1 (DMY1) and Zhengdan958 (ZD958) (the main Northeast China cultivars) and exposing them to two temperatures: 15 °C (control) and 5 °C (TS). TS markedly decreased radicle growth as well as fresh and dry weights while increasing proline and malondialdehyde contents in both test varieties. Under TS treatment, the expression levels of 5301 and 4894 genes were significantly different in the radicles of DMY1 and ZD958, respectively, and 3005 differentially expressed genes coexisted in the radicles of both varieties. The phenylpropanoid biosynthesis pathway was implicated within the response to TS in maize radicles, and peroxidase may be an important indicator for assessing low-temperature tolerance during maize germination. Peroxidase-encoding genes could be important candidate genes for promoting low-temperature resistance in maize germinating radicles. We believe that this study enhances the knowledge of mechanisms of response and adaptation of the maize seed germination process to TS and provides a theoretical basis for efficiently assessing maize seed low-temperature tolerance and improving maize adversity germination performance.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jiayu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Weiqing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Wenqi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.L.); (W.L.); (X.G.); (X.X.); (C.Z.); (S.Y.); (Y.D.); (W.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
10
|
Gyanagoudar HS, Hatiya ST, Guhey A, Dharmappa PM, Seetharamaiah SK. A comprehensive approach for evaluating salinity stress tolerance in brinjal (Solanum melongena L.) germplasm using membership function value. PHYSIOLOGIA PLANTARUM 2024; 176:e14239. [PMID: 38439514 DOI: 10.1111/ppl.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Salinity is a major stress factor affecting plant growth and development, which limits the productivity of vegetable crops. Brinjal (Solanum melongena L.), an important vegetable cultivated across the globe is susceptible to salinity stress. In the present study, the salinity tolerance response of 110 brinjal germplasm lines was evaluated at the germination stage using the membership function value (MFV). The MFV is a comprehensive index that integrates salt-tolerance indices of germination parameters. The brinjal germplasms were classified into highly salt-tolerant (>0.79), salt-tolerant (0.79-0.65), moderately salt-tolerant (0.64-0.21), salt-sensitive (0.20-0.07), and highly salt-sensitive (<0.07) based on their mean MFV. Among all the traits examined, germination percentage (0.874) and vigour index-I (0.808) were the most reliable traits for assessing salinity tolerance, showing a higher correlation with mean MFV. Furthermore, a comprehensive mathematical model was developed for evaluating the salt-tolerance of the brinjal germplasm. We validated our model by evaluating the brinjal germplasm at the seedling stage through a hydroponic experiment, and a strong positive correlation was observed between growth parameters at the germination and seedling stages. Salt-tolerant genotypes showed higher chlorophyll content, photosynthetic performance and biomass accumulation with lower canopy temperature (1.57°C) under salinity compared to susceptible genotypes (2.62°C). These findings provide valuable insights into the salinity tolerance of the brinjal germplasm, and identified potential candidates to elucidate the molecular mechanisms and develop salinity-tolerant cultivars. To our knowledge, this is the first report using a mathematical model based on MFV to evaluate the salt-tolerance of any vegetable crop.
Collapse
Affiliation(s)
- Harsha Shekarappa Gyanagoudar
- Division of Basic Sciences, Indian Institute of Horticultural Research, Bengaluru, India
- Department of plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Singh Tejavathu Hatiya
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru, India
| | - Arti Guhey
- Department of plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | | | | |
Collapse
|
11
|
Xiong M, Xu J, Zhou Z, Peng B, Shen Y, Shen H, Xu X, Li C, Deng L, Feng G. Salinity inhibits seed germination and embryo growth by reducing starch mobilization efficiency in barley. PLANT DIRECT 2024; 8:e564. [PMID: 38312996 PMCID: PMC10835642 DOI: 10.1002/pld3.564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.
Collapse
Affiliation(s)
- Min Xiong
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Jian Xu
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Zhou Zhou
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Bin Peng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Yuxiang Shen
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Huiquan Shen
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Xiao Xu
- Jiangsu Coastal Area Institute of Agricultural SciencesYanchengJiangsuChina
| | - Changya Li
- Yancheng Grain and Oil Crop Technical Guidance StationYanchengJiangsuChina
| | - Lina Deng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| | - Gongneng Feng
- College of Marine and Biology EngineeringYancheng Institute of TechnologyYanchengJiangsuChina
| |
Collapse
|
12
|
Wang S, Liu G, Xie C, Zhou Y, Yang R, Wu J, Xu J, Tu K. Metabolomics Analysis of Different Quinoa Cultivars Based on UPLC-ZenoTOF-MS/MS and Investigation into Their Antioxidant Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:240. [PMID: 38256795 PMCID: PMC10819959 DOI: 10.3390/plants13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
In recent years, quinoa, as a nutritious and sustainable food material, has gained increasing popularity worldwide. To investigate the diversity of nutritional characteristics among different quinoa cultivars and explore their potential health benefits, metabolites of five quinoa cultivars (QL-1, SJ-1, SJ-2, KL-1 and KL-2) were compared by non-targeted metabolomics analysis based on UPLC-ZenoTOF-MS/MS in this study. A total of 248 metabolites across 13 categories were identified. Although the metabolite compositions were generally similar among the different quinoa cultivars, significant variations existed in their respective metabolite contents. Among the identified metabolites, amino acids/peptides, nucleosides, saponins and phenolic acids were the most abundant. Notably, SJ-1 exhibited the most distinct metabolite profile when compared to the other cultivars. Amino acids/peptides and nucleosides were found to be crucial factors contributing to the unique metabolite profile of SJ-1. Collectively, these aforementioned metabolites accounted for a substantial 60% of the total metabolites observed in each quinoa variety. Additionally, a correlation between the DPPH radical scavenging activity and the free phenolic content of quinoa was observed. Variations in phenolic content resulted in different antioxidant capacities among the quinoa cultivars, and SJ-1 exhibited lower phenolic levels and weaker antioxidant activity than the others. These results can provide important information for the development of quinoa resources.
Collapse
Affiliation(s)
- Shufang Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - You Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Jianhong Xu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Kang Tu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| |
Collapse
|
13
|
Zhang S, Xie H, Huang J, Chen Q, Li X, Chen X, Liang J, Wang L. Ultrasound-assisted extraction of polyphenols from pine needles (Pinus elliottii): Comprehensive insights from RSM optimization, antioxidant activity, UHPLC-Q-Exactive Orbitrap MS/MS analysis and kinetic model. ULTRASONICS SONOCHEMISTRY 2024; 102:106742. [PMID: 38171196 PMCID: PMC10797201 DOI: 10.1016/j.ultsonch.2023.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Extracting polyphenolic bioactive compounds from Pinus elliottii needles, a forestry residue, promises economic and environmental benefits, however, relevant experimental data are lacking. Herein, a comprehensive investigation of the polyphenolic composition of pine needles (PNs) was carried out. Ultrasound-Assisted Extraction (UAE) was applied to extract the polyphenolic compounds of pine needles. The optimal conditions of extracts were determined by Response Surface Methodology (RSM). The maximum total phenolic content (TPC) of 40.37 mg GAE/g PNs was achieved with solid-liquid ratio of 1:20, 60 % ethanol, and 350 W for 25 min at 45 °C. Polyphenolic extracts showed antioxidant activity in scavenging free radicals and reducing power (DPPH, IC50 41.05 μg/mL; FRAP 1.09 mM Fe2+/g PNs; ABTS, IC50 214.07 μg/mL). Furthermore, the second-order kinetic model was also constructed to describe the mechanism of the UAE process, with the extraction activation energy estimated at 12.26 kJ/mol. In addition, 37 compounds in PNs were first identified by UHPLC-Q-Exactive Orbitrap MS/MS, including flavonoids and phenolic acids. The results suggest that Ultrasound-Assisted is an effective method for the extraction of natural polyphenolic compounds from pine needles and this study could serve as a foundation for utilizing phenolics derived from PNs in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Siheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Hongzhao Xie
- Guangxi Standardization Association, Nanning 530009, PR China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Qiumei Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Jiezhen Liang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Linlin Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
14
|
Ghonaim MM, Attya AM, Aly HG, Mohamed HI, Omran AAA. Agro-morphological, biochemical, and molecular markers of barley genotypes grown under salinity stress conditions. BMC PLANT BIOLOGY 2023; 23:526. [PMID: 37899447 PMCID: PMC10614329 DOI: 10.1186/s12870-023-04550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
The aim of this study was to evaluate the impact of salt stress on morphological, yield, biochemical, and molecular attributes of different barley genotypes. Ten genotypes were cultivated at Fayoum Research Station, El-Fayoum Governorate, Egypt, during two seasons (2020-2021 and 2021-2022), and they were exposed to two different salt concentrations (tap water as a control and 8000 ppm). The results showed that genotypes and salt stress had a significant impact on all morphological and physiological parameters. The morphological parameters (plant height) and yield attributes (spike length, number of grains per spike, and grain yield per plant) of all barley genotypes were significantly decreased under salt stress as compared to control plants. Under salt stress, the total soluble sugars, proline, total phenol, total flavonoid, ascorbic acid, malondialdehyde, hydrogen peroxide, and sodium contents of the shoots of all barley genotypes significantly increased while the potassium content decreased. L1, which is considered a sensitive genotype was more affected by salinity stress than the tolerance genotypes L4, L6, L9, and Giza 138. SDS-PAGE of seed proteins demonstrated high levels of genetic variety with a polymorphism rate of 42.11%. All genotypes evaluated revealed significant variations in the seed protein biochemical markers, with new protein bands appearing and other protein bands disappearing in the protein patterns of genotypes cultivated under various conditions. Two molecular marker techniques (SCoT and ISSR primers) were used in this study. Ten Start Codon Targeted (SCoT) primers exhibited a total of 94 fragments with sizes ranging from 1800 base pairs to 100 base pairs; 29 of them were monomorphic, and 65 bands, with a polymorphism of 62.18%, were polymorphic. These bands contained 21 unique bands (9 positive specific markers and 12 negative specific markers). A total of 54 amplified bands with molecular sizes ranging from 2200 to 200 bp were produced using seven Inter Simple Sequence Repeat (ISSR) primers; 31 of them were monomorphic bands and 23 polymorphic bands had a 40.9% polymorphism. The techniques identified molecular genetic markers associated with salt tolerance in barley crop and successfully marked each genotype with distinct bands. The ten genotypes were sorted into two main groups by the unweighted pair group method of arithmetic averages (UPGMA) cluster analysis based on molecular markers and data at a genetic similarity coefficient level of 0.71.
Collapse
Affiliation(s)
- Marwa M Ghonaim
- Cell Study Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - A M Attya
- Barley Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Heba G Aly
- Barley Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Heba I Mohamed
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt.
| | - Ahmed A A Omran
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| |
Collapse
|
15
|
Hamany Djande CY, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Reconfiguration in Primed Barley ( Hordeum vulgare) Plants in Response to Pyrenophora teres f. teres Infection. Metabolites 2023; 13:997. [PMID: 37755277 PMCID: PMC10537252 DOI: 10.3390/metabo13090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar ('Hessekwa') at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and 'shared and unique structures' (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt.
Collapse
Affiliation(s)
| | | | | | | | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (C.Y.H.D.); (F.T.); (P.A.S.); (L.A.P.)
| |
Collapse
|
16
|
Wang M, Liu G, Guo T, Xie C, Wang P, Yang R. UV-B radiation enhances isoflavone accumulation and antioxidant capacity of soybean calluses. Front Nutr 2023; 10:1139698. [PMID: 37063321 PMCID: PMC10097905 DOI: 10.3389/fnut.2023.1139698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Isoflavones are a class of flavonoids that belong to a large family of polyphenols and synthesized predominantly in legume, and they play important roles including acting as antioxidant, preventing osteoporosis, reducing the risk of atherosclerosis, and protecting against cardiovascular disease. This study focused on the accumulation and synthetic metabolism of isoflavone in soybean hypocotyl and cotyledon calluses under UV-B radiation. The results showed that UV-B radiation significantly up-regulated the gene expression of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone ketone synthase (CHS), chalcone isomerase (CHI), and isoflavone synthase (IFS), and enhanced their activity in soybean hypocotyl and cotyledon calluses. As a result, isoflavones content increased by 21.23 and 21.75% in soybean hypocotyl and cotyledon calluses, respectively. Among the isoflavones produced, malonyldaidzin was the dominant one in hypocotyl callus, while malonylglycitin and daidzein were the main isoflavones in cotyledon calluses. This study revealed that UV-B radiation induced isoflavone accumulation in soybean calluses, which could be an efficient strategy to improve the nutritional value of food and produce high levels of bioactive secondary metabolites.
Collapse
|
17
|
Xie C, Sun M, Wang P, Yang R. Interaction of Gamma-Aminobutyric Acid and Ca 2+ on Phenolic Compounds Bioaccumulation in Soybean Sprouts under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3503. [PMID: 36559615 PMCID: PMC9787623 DOI: 10.3390/plants11243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
NaCl stress can enhance the accumulation of phenolic compounds in soybean during germination. In the present study, effects of gamma-aminobutyric acid (GABA) and Ca2+ on the biosynthesis of phenolic compounds in soybean sprouts germinated with NaCl stress were investigated. Results showed that addition of Ca2+ increased the content of total phenolics, phenolic acids, and isoflavonoids in soybean sprouts by ca. 15%, 7%, and 48%, respectively, through enhancing the activities of three key enzymes involved in the biosynthesis. On the other hand, addition of LaCl3, a calcium channel blocker, inhibited the synthesis of phenolic compounds, indicating that Ca2+ plays an important role in the synthesis of these compounds in soybean sprouts. Addition of GABA can increase the content of Ca2+ in soybean sprouts by ca. 20% and alleviate the inhibition of LaCl3 on phenolics biosynthesis in soybean sprouts. Similarly, addition of Ca2+ can reverse the inhibition of 3-mercaptopropionate, an inhibitor of endogenous GABA synthesis, on the biosynthesis of phenolic compounds in soybean sprouts under NaCl stress. To conclude, both GABA and Ca2+ can enhance the biosynthesis of phenolic compounds in soybean sprouts and there was an interaction between their effects on the promotion of phenolic compounds biosynthesis.
Collapse
|
18
|
Kong Y, Wang G, Chen W, Yang Y, Ma R, Li D, Shen Y, Li G, Yuan J. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114251. [PMID: 36327785 DOI: 10.1016/j.ecoenv.2022.114251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Static facultative heap composting of animal manure is widely used in China, but there is almost no systematic research on the phytotoxicity of the produced compost. Here, we evaluated the phytotoxic variation in compost produced by facultative heap composting of four types of animal manure (chicken manure, pig manure, sheep manure, and cattle manure) using different plant seeds (cucumber, radish, Chinese cabbage, and oilseed rape) to determine germination index (GI). The key factors that affected GI values were identified, including the dynamics of the phytotoxicity and microbial community during heap composting. Sensitivity to toxicity differed depending on the type of plant seed used. Phytotoxicity during facultative heap composting, evaluated by the GI, was in the order: chicken manure (0-6.6 %) < pig manure (14.4-90.5 %) < sheep manure (46.0-93.0 %) < cattle manure (50.2-105.8 %). Network analysis showed that the volatile fatty acid (VFA) concentration was positively correlated with Firmicutes abundance, and NH4+-N was correlated with Actinobacteria, Proteobacteria, and Bacteroidetes. More bacteria were stimulated to participate in conversions of dissolved organic carbon, dissolved nitrogen, VFA, and ammonia-nitrogen (NH4+-N) in sheep manure heap composting than that in other manure. The GI was most affected by VFA in chicken manure and cattle manure heap composting, while NH4+-N was the main factor affecting the GI in pig manure and sheep manure compost. The dissolved carbon and nitrogen content and composition, as well as the core and proprietary microbial communities, were the primary factors that affected the succession of phytotoxic substances in facultative heap composting, which in turn affected GI values. In this study, the key pathways of livestock manure composting that affected GI and phytotoxicity were found and evaluated, which provided new insights and theoretical support for the safe use of organic fertilizer.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
19
|
Zhang X, Shen Y, Mu K, Cai W, Zhao Y, Shen H, Wang X, Ma H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233239. [PMID: 36501278 PMCID: PMC9736545 DOI: 10.3390/plants11233239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds' tolerance to salt and drought during germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Ma
- Correspondence: ; Tel./Fax: +86-25-8439-5324
| |
Collapse
|
20
|
Zhu Y, Gu W, Tian R, Li C, Ji Y, Li T, Wei C, Chen Z. Morphological, physiological, and secondary metabolic responses of Taraxacum officinale to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:71-82. [PMID: 36055055 DOI: 10.1016/j.plaphy.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Salt stress has a major effect on growth and secondary metabolism in medicinal plants, however, the effect of salt stress on Taraxacum officinale F. H. Wigg. is still scarce. In this study, we evaluated the effects of salt stress on the physiology, morphology, phenolic acid accumulation, and expression of genes involved in phenolic acid biosynthesis in T. officinale. We found that plants grew well at 1 g kg-1 NaCl, and the state of photosystem Ⅱ (PSⅡ) and the organization of the chloroplasts at 0.5 g kg-1 NaCl showed no significant differences compared with the control. However, 2 g kg-1 and 4 g kg-1 NaCl inhibited growth and accelerated leaf senescence. At 4 g kg-1 NaCl, the fresh and dry weights decreased to 28% and 42% of the control, while chlorosis and necrosis were observed on the leaves. Furthermore, up-regulation of the expression of ToC3'H corresponded with an increase in the levels of caffeoylquinic acids (chlorogenic acid and isochlorogenic acid A) at NaCl concentration ≤ 1 g kg-1. Expressions of four phenolic acid biosynthesis genes, ToC4H, To4CL, ToHCT, and ToHQT, were down-regulated with increasing NaCl concentrations, consistent with the observed decreases in caftaric and cichoric acids. In summary, cultivation of T. officinale under mild salt stress (NaCl ≤ 1 g kg-1) is feasible and facilitates the accumulation of caffeoylquinic acids; thus this species may be recommended for saline soils.
Collapse
Affiliation(s)
- Yu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Li
- Chinese Medicine Research Institute, Jumpcan Pharmaceutical Group Co., Ltd, 8 Baotawan, Daqing West Road, Taixing, 25441, China
| | - Yuanyuan Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Chenbin Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Ziyun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
21
|
Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int J Mol Sci 2022; 23:ijms231810515. [PMID: 36142428 PMCID: PMC9499682 DOI: 10.3390/ijms231810515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.
Collapse
Affiliation(s)
- Yiyou Chen
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Juncheng Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Lirong Yao
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Erjing Si
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Ke Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| | - Huajun Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| |
Collapse
|
22
|
Yin Y, Tian X, He X, Yang J, Yang Z, Fang W. Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:123-131. [PMID: 35671589 DOI: 10.1016/j.plaphy.2022.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (MT) has gained increasing attention due to its pleiotropic effects. In this study, the function of exogenous MT on the response to NaCl stress and isoflavone biosynthesis in germinating soybeans was investigated. Results showed the exogenous MT (100 μM) application neutralised the negative effects of NaCl stress (60 mM), induced sprout growth, biomass and fluorescence intensity of intracellular free calcium, decreased malondialdehyde, H2O2 content and fluorescence intensity of O2•-, and enhanced superoxide dismutase, catalase and peroxidas activities of germinating soybeans. Meanwhile, total flavonoids and different forms of isoflavone content were enhanced by MT application, not only companied by the up-regulated relative gene expression of cinnamic acid 4-hydroxylase chalcone reductase, chalcone isomerase 1A, isoflavone reductase and isoflavone synthase 1 that involved in isoflavone biosynthesis, but also increased activities of phenylalanine ammonia lyase and 4-coumarate coenzyme A ligase. Given the evidence from the present study, it's proposed that the exogenous MT could relieve NaCl stress and stimulate isoflavone biosynthesis in germinating soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
23
|
CRISPRi-Mediated Down-Regulation of the Cinnamate-4-Hydroxylase (C4H) Gene Enhances the Flavonoid Biosynthesis in Nicotiana tabacum. BIOLOGY 2022; 11:biology11081127. [PMID: 36009753 PMCID: PMC9404795 DOI: 10.3390/biology11081127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Flavonoids are natural compounds in plants. They play a critical role in plant growth and pathogen defense. Due to their health benefits, flavonoids have gained much attention as potent therapeutic agents. However, the low abundance of flavonoids in nature has limited their exploitation. Hence, this study aimed to enhance flavonoid production by silencing the cinnamate-4-hydroxylase (C4H) enzyme using the clustered regularly interspaced short palindromic repeats interference (CRISPRi) technology. Our results showed that the C4H-silenced tobacco cells had a lower NtC4H expression level compared to wild-type. This was concurred by the flavonoid analysis, where the accumulation of C4H’s substrate in the C4H-silenced cells was significantly higher than in the wild-type. Our findings provide valuable insight into the future development of CRISPRi to manipulate plant metabolite biosynthesis. Abstract Flavonoids are an important class of natural compounds present in plants. However, despite various known biological activities and therapeutic potential, the low abundance of flavonoids in nature limits their development for industrial applications. In this study, we aimed to enhance flavonoid production by silencing cinnamate-4-hydroxylase (C4H), an enzyme involved in the branch point of the flavonoid biosynthetic pathway, using the clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach. We designed three sgRNAs targeting the promoter region of NtC4H and cloned them into a CRISPRi construct. After being introduced into Nicotiana tabacum cell suspension culture, the transformed cells were sampled for qPCR and liquid chromatography-mass spectrometry analyses. Sixteen of 21 cell lines showed PCR-positive, confirming the presence of the CRISPRi transgene. The NtC4H transcript in the transgenic cells was 0.44-fold lower than in the wild-type. In contrast, the flavonoid-related genes in the other branching pathways, such as Nt4CL and NtCHS, in the C4H-silenced cells showed higher expression than wild-type. The upregulation of these genes increased their respective products, including pinostrobin, naringenin, and chlorogenic acid. This study provides valuable insight into the future development of CRISPRi-based metabolic engineering to suppress target genes in plants.
Collapse
|
24
|
Shahrajabian MH, Cheng Q, Sun W. The Effects of Amino acids, Phenols and Protein Hydrolysates as Biostimulants on Sustainable Crop Production and Alleviate Stresses. Recent Pat Biotechnol 2022; 16:319-328. [PMID: 35418295 DOI: 10.2174/1872208316666220412133749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Biostimulants which contain substances or products including natural compounds, special formulation and microorganisms have gained a considerable attention as sustainable method for heavy metal detoxification, stimulate natural toxins, controlling diseases and pests, may increase both water and nutrient efficiency. Biostimulants are important products in modern agriculture which composed of different heterogenous classes of compounds with a broad spectrum of action to increase both qualitative and quantitative productions. Amino acids can be useful in stress defence, photosynthesis, increase nutrient uptake, pollination and fruit formation, precursors to hormones and growth parameters. Amino acids are considered as precursors and constituents of proteins, which are well-known for stimulation of cell growth. Because, they are the basic building blocks of proteins, amino acids are very important in plant growth, development and metabolite synthesis. One of the diverse, notable and the large group of secondary metabolites is phenolic compounds which have important function in regulation of the plants physiological activities, oxidation-reduction processes and photosynthesis. Protein hydrolysates contain amino acids and peptides which is one of the most important kinds of biostimulants. Protein hydrolysates have notable capability to increase crop performance, particularly under environmental stress conditions. This review article is aimed to introduce and found more about the roles of different types of biostimulants on plant growth and final yield production with considering sustainable agriculture.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Effects of soaking and germination on deoxynivalenol content, nutrition and functional quality of Fusarium naturally contaminated wheat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wang M, Leng C, Zhu Y, Wang P, Gu Z, Yang R. UV-B treatment enhances phenolic acids accumulation and antioxidant capacity of barley seedlings. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Yin Y, Xu J, He X, Yang Z, Fang W, Tao J. Role of exogenous melatonin involved in phenolic acid metabolism of germinated hulless barley under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:14-22. [PMID: 34844114 DOI: 10.1016/j.plaphy.2021.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of exogenous MT on phenolic acids biosynthesis and the response to NaCl stress in germinating barley were investigated to explicate the role and molecular mechanism of MT in the regulation of phenolic acids and biomass under salt stress. Results showed that exogenous MT increased the gene expression and activities of phenylalanine ammonia lyase and cinnamate 4-hydroxylase involved in phenols biosynthesis. As a result, phenolic acids contents significantly increased, and ferulic acid, p-coumaric acid and p-hydroxybenzoic acid were mostly induced by exogenous MT treatment. Meanwhile, exogenous MT application reduced the damage of NaCl stress, including promotion sprout growth, biomass and Ca2+ influs, malonaldehyde and H2O2 content reduction, increases of peroxidase, superoxide dismutase and catalase activities in barley seedlings. These results indicated that exogenous MT was essential for inducing phenolic acids accumulation and alleviated the inhibition of NaCl stress on barley seedlings.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jinpeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
28
|
Xie C, Wang P, Sun M, Gu Z, Yang R. Nitric oxide mediates γ-aminobutyric acid signaling to regulate phenolic compounds biosynthesis in soybean sprouts under NaCl stress. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Wang M, Zhu Y, Wang P, Gu Z, Yang R. Effect of γ-aminobutyric Acid on Phenolics Metabolism in Barley Seedlings under Low NaCl Treatment. Antioxidants (Basel) 2021; 10:antiox10091421. [PMID: 34573053 PMCID: PMC8467947 DOI: 10.3390/antiox10091421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
It has been revealed that high NaCl stress (>60 mmol L-1) induced phenolics accumulation in barley seedlings, with γ-aminobutyric acid (GABA) playing a key role. Interestingly, low NaCl stimulus (20 mmol L-1) enhancing phenolics synthesis and growth of barley seedlings was also reported recently. Hence, exogenous GABA and its bio-synthesis inhibitor 3-mercaptopropionic acid (3-MP) were applied to reveal the mechanism of GABA regulating phenolics metabolism in barley seedlings treated with 20 mmol L-1 NaCl. The contents of total phenolics and flavonoids significantly increased by 11.64% and 14.52% under NaCl, respectively. The addition of GABA further increased phenolics and flavonoids contents, especially for gallic acid, protocatechuic acid, caffeic acid, and quercetin, compared with NaCl treatment. Simultaneously, GABA increased the activities and mRNA levels of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumalyl CoA ligase (4CL). The addition of 3-MP suppressed the above effects, except for increasing the protein levels of PAL, C4H, and 4CL. Low concentration of NaCl not only promoted growth, but also stimulated endogenous GABA metabolism to affect key enzymes activities and mRNA levels for phenolics synthesis in barley seedlings.
Collapse
Affiliation(s)
- Mian Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Yahui Zhu
- College of Food Science and Technology, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China;
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (P.W.); (Z.G.)
- Correspondence: ; Tel./Fax: +86-025-84396293
| |
Collapse
|
30
|
Choe H, Sung J, Lee J, Kim Y. Effects of calcium chloride treatment on bioactive compound accumulation and antioxidant capacity in germinated brown rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Ren T, Zheng P, Zhang K, Liao J, Xiong F, Shen Q, Ma Y, Fang W, Zhu X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:363-371. [PMID: 33434784 DOI: 10.1016/j.plaphy.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyphenols are important active components in tea plants, which have strong biological activity and antioxidant activity. A certain degree of stress or exogenous substances can significantly increase the content of polyphenols in plants. γ-Aminobutyric acid (GABA), a natural functional amino acid, was used to study whether exogenous GABA can increase the content of polyphenols and enhance antioxidant activity in tea plants under heat-stress conditions. The results showed that the content of GABA was positively correlated with the content of polyphenols (r = 0.649), especially with the content of total catechins (r = 0.837). Most of the related genes encoding flavonoid metabolism (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, LAR, ANS, ANR and FLS) as well as enzyme activities (PAL, C4H and 4CL) were upregulated. In addition, the activities of antioxidant enzymes were induced under heat-stress conditions. However, 3-mercaptopropionic acid (3-MPA), an inhibitor of GABA synthesis, exhibited opposite results under heat-stress conditions compared with GABA treatment. These results indicated that GABA plays a key role in the accumulation of polyphenols and the upregulation of the antioxidant system in tea plants under heat-stress conditions.
Collapse
Affiliation(s)
- Taiyu Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Shen
- Institute of Tea Sciences, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 417100, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|