1
|
Qu G, Yang F, Liu F, He X, Sun S. Multispectral analysis and molecular simulation of quinoa protein-tannic acid interactions: Conformational changes and functional properties. Food Chem 2025; 481:143961. [PMID: 40174379 DOI: 10.1016/j.foodchem.2025.143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
This study used multispectral analysis and molecular simulation to investigate the mechanisms of non-covalent interactions between quinoa protein isolate (QPI) and tannic acid (TA), and its effects on protein conformation. The formation of the QPI-TA complex was confirmed by increased turbidity, polyphenol binding capacity, and UV-visible absorbance. The addition of TA decreased α-helices while increasing β-sheets and random coils, resulting in a looser, more disordered protein structure of QPI. Thermodynamic analysis and molecular docking results indicated that the predominant interactions between QPI and TA are hydrophobic interactions and hydrogen bonds. Molecular dynamics simulations confirmed that the binding sites of TA and QPI were tightly associated, thereby maintaining conformational stability. Additionally, the non-covalent modification by TA significantly enhanced the emulsifying and foaming capacities of QPI. This study provides a theoretical foundation for the application of QPI-polyphenol complexes in the production of emulsified foods.
Collapse
Affiliation(s)
- Guangfan Qu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Fei Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xudong He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shuguo Sun
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
2
|
Shu W, Shi W, Xie H, Wang S, Zhang Q, Ouyang K, Xiao F, Zhao Q. Non-covalent interaction of rice protein and polyphenols: The effects on their emulsions. Food Chem 2025; 479:143732. [PMID: 40073562 DOI: 10.1016/j.foodchem.2025.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
In this study, we investigated the non-covalent interaction mechanism between rice protein (RP) and three polyphenols with different concentrations (ferulic acid FA, gallic acid GA, and tannic acid TA) and their effects on the structure and emulsion stability of the proteins. Hydrophobic forces dominated the binding of RP to the polyphenols, and the reaction was heat-absorbing. The three polyphenols are bound to RP in the form of static quenching to form a non-covalent complex, and during the binding process, the RP provides one binding site. RP-polyphenol complexes, particularly RP-GA, enhanced ABTS scavenging and FRAP reduction. Polyphenols improved RP emulsion oxidative stability, inhibiting lipid oxidation and enhancing emulsion rheology and interfacial structure. RP-GA was most effective, maintaining low POV. These findings support the potential applications of RP-polyphenol noncovalent complexes in food processing.
Collapse
Affiliation(s)
- Weitong Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Hexiang Xie
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Fangjie Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Jiangxi, Nanchang 330200, China.
| |
Collapse
|
3
|
Kraithong S, Liu Y, Suwanangul S, Sangsawad P, Theppawong A, Bunyameen N. A comprehensive review of the impact of anthocyanins from purple/black Rice on starch and protein digestibility, gut microbiota modulation, and their applications in food products. Food Chem 2025; 473:143007. [PMID: 39874887 DOI: 10.1016/j.foodchem.2025.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This review explores the impact of anthocyanins derived from purple and black rice on starch and protein digestibility, gut microbiota modulation, and their applications in food production. Anthocyanins are shown to reduce starch digestibility by forming complexes with starch, thereby inhibiting key digestive enzymes. Additionally, they can influence protein digestion by inducing structural changes that enhance resistance to digestive processes. Evidence suggests that black rice anthocyanins positively modulate gut microbiota composition, potentially improving overall gut health. The incorporation of anthocyanin-rich extracts into various food products, such as bread and beverages, underscores their potential as functional ingredients. This review provides valuable insights into the health benefits associated with rice anthocyanins and identifies areas for future research to optimize their application in functional foods aimed at managing metabolic health.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Saranya Suwanangul
- Program in Food Science and Technology, Faculty of Engineering and Agro-industry, Maejo University, Chiang Mai 50290, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B, 9000, Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Department of Research and Development of Halal Products, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand.
| |
Collapse
|
4
|
Yuan Q, Yang H, Cheng J, Liu X. The fermentation of whey protein and mulberry polyphenols by forming protein-phenolic adducts: Improved digestions. J Nutr Biochem 2025:109921. [PMID: 40252708 DOI: 10.1016/j.jnutbio.2025.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
The impacts of forming adduct between whey protein (WP) and mulberry polyphenol (MP) on the digestion and fermentation of WP and MP were investigated using an in vitro model. The results showed that MP increased the in vitro antioxidant capacity of WP digestive products. After forming adduct the total extractable phenolic content of MP dropped from 440.20 mg GAE/g to 21.53 mg GAE/g. The total extractable phenolic content of WP-MP group decreased from 21.53 mg GAE/g to 11.77 mg GAE/g after the oral digestion, then slightly increased to 12.43 after the gastric digestion and continuously increased to 20.43 mg GAE/g after the intestinal digestion. Extractable individual phenolic compounts exhibited the similar tendency, in which cyandin-3-O-glucoside, cyandin-3-O-rutinoside, p-coumaric acid, quercetin and kaempferol were still detectable while protocatechuic and neochlorogenic acid increased after intestinal digestion of WP-MP adduct. Incorporation of MP inhibited the oral and gastric digestion but enhanced the intestinal digestion of WP, and the degree of hydrolysis of WP increased 9.70% after intestinal digestion compared to the control. The fermentation of non-dialyzable residue of WP-MP by gut flora decreased the pH value from 7.18 to 4.82 and increased the proliferation of beneficial bacteria and the production of short-chain fatty acids. These findings indicated that WP-MP adduct increased the digestion of WP and the bioaccessibility of MP, could improve the intestinal health and could be used as a new healthy food ingredient.
Collapse
Affiliation(s)
- Qi Yuan
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Ji C, Zhao S, Liang Y, Luo Y. Self-assembled nanostructures from rice protein and its fractions: Molecular approaches, physicochemical principles, and functional applications. Food Chem 2025; 483:144295. [PMID: 40245631 DOI: 10.1016/j.foodchem.2025.144295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
This review investigates the structural composition and physicochemical properties of rice protein (RP) and their functional applications, unraveling the molecular self-assembly approaches of rice protein isolates (RPI), rice protein hydrolysates (RPH), and their different fractions. RPI complexes with polysaccharides through both non-covalent (electrostatic, hydrogen bonding, hydrophobic and π-interactions) and covalent interactions (Schiff base and enzymatic reactions), whereas with polyphenols, it forms colloidal structures mainly through non-covalent forces. After enzymatic hydrolysis and chain segment reorganization, RPH exhibits enhanced interfacial activity and self-assembles into stable nanostructures, with applications in encapsulation and delivery of bioactive compounds. Owing to variations in conformation and amino acid composition, different fractions of RP can assemble into multilevel structures, including nanofibrils, branching clusters, and spherical nanoparticles, under specific environmental conditions. An in-depth exploration of these self-assembly principles can greatly enhance the physicochemical and structural properties of RP, thereby paving the way for a wide range of functional applications.
Collapse
Affiliation(s)
- Chenyang Ji
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Shuang Zhao
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
6
|
Riquelme N, Díaz-Calderón P, Luarte A, Arancibia C. Effect of Ultrasound Time on Structural and Gelling Properties of Pea, Lupin, and Rice Proteins. Gels 2025; 11:270. [PMID: 40277706 PMCID: PMC12026612 DOI: 10.3390/gels11040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Plant proteins are garnering interest due to the growing demand for plant-based products, but their functionality in gel-based foods remains limited. Ultrasound (US) technology may improve the technological properties of proteins. Thus, the effect of US treatment time (0-15 min) on the structure and gelling properties of pea, lupin, and rice proteins was evaluated. The results showed that the whiteness (~60%) of all freeze-dried proteins remained unchanged (p > 0.05), regardless of the US time. However, FT-IR analysis revealed progressive reductions in α-helix and β-sheet for pea and lupin proteins (~50%) with US time, indicating partial unfolding. In addition, microstructure analysis showed an ~80% reduction in aggregate size for these proteins, while rice protein exhibited minimal changes. Conversely, weak gels were formed with pea and lupin proteins treated after 5 and 10 min of US, respectively, whereas rice protein did not form gels. Furthermore, US treatment time significantly increased (p < 0.05) the mechanical moduli, resulting in more structured gels after longer treatment times (tan δ ~0.3 at 15 min of US). These findings suggest that US treatment enhances the gelling properties of pea and lupin proteins, making them more suitable for plant-based food applications such as yogurt or desserts.
Collapse
Affiliation(s)
- Natalia Riquelme
- Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Estación Central 9170201, Chile;
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Chile, Las Condes 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Chile, Las Condes 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Chile, Las Condes 7620001, Chile;
- Programa de Neurociencias, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Chile, Las Condes 7620001, Chile
| | - Carla Arancibia
- Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Estación Central 9170201, Chile;
| |
Collapse
|
7
|
Ma H, Zhang L, Niu X, Zhang Y, Yang X, Li L. Soy protein-gellan gum noncovalent complexes stabilized emulsion: Effect of heating and pH on emulsion stability. Int J Biol Macromol 2025; 301:140067. [PMID: 39832586 DOI: 10.1016/j.ijbiomac.2025.140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This paper investigated the effects of heating and pH on the stability of emulsions of non-covalent complexes of gellan gum (GG) and soy protein isolate (SPI). As a result, the GG-SPI complexes stabilized emulsion exhibited a minimum emulsion particle size (945 ± 23 nm), a maximum absolute values of zeta-potential (-32.7 ± 0.81 mV), the highest values of emulsion activity index (EAI) and stability index (ESI) (132 ± 4.7 min) when emulsion was prepared under the following conditions: oil phase ratio of 18 %, polysaccharide-protein proportion of 1:8 (w/w), homogeneous pressure at 80 MPa and homogeneous time at 4 min. GG-SPI emulsion had the best emulsification performance at pH 9.0 and 75 °C owing to the protein defolding occurred, the content of α-Helix increased, hydrophobic groups were exposed, and the number of negative groups on the surface of proteins increased under the high pH and high temperature conditions. The experimental results revealed the key role of heating and pH treatment for protein emulsion stability regulation, which will enrich the application of gellan gum in soy protein emulsions and provide an important theoretical basis for the future application of emulsion modification.
Collapse
Affiliation(s)
- Haizhu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinran Niu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yinuo Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Li Y, Liu Y, Qiao J, Xing B, Yun J, Niu J, Chen M, Yang P, Zhao S, Zhang L. Foxtail millet prolamin-pectin nanoparticles enhanced the stability and bioavailability of β-sitosterol. Food Res Int 2025; 205:115998. [PMID: 40032481 DOI: 10.1016/j.foodres.2025.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Herein, β-sitosterol-loaded foxtail millet prolamin (FMP)-pectin composite nanoparticles (FSNs) were successfully produced using an antisolvent precipitation method to encapsulate β-sitosterol and improve its bioaccessibility. Results indicated that the nanoparticles prepared at a FMP-to-pectin mass ratio of 10:2 not only showed lower particle size (401.7 ± 14.7 nm, p < 0.05) and higher net zeta potential (-33.3 ± 6.1 mV, p < 0.05) but also exhibited higher encapsulation efficiency (81.5 % ± 0.3 %, p < 0.05). FSNs successfully encapsulated β-sitosterol through electrostatic and hydrophobic interactions and hydrogen bonding. β-sitosterol changed from a crystalline to an amorphous state. Meanwhile, FMP-pectin composite nanoparticles (FNs) and FSNs displayed similar irregular lamellar structures and exhibited excellent physical stability at different environments (pH > 4, salt ions <100 mM, different temperatures and storage at 4 °C). The simulated digestion result showed that FSNs could target the release of β-sitosterol at the intestinal stage with a release rate of 72.23 ± 1.19 % (p < 0.05). Moreover, the bioaccessibility of β-sitosterol in FSNs significantly increased by about 68.58 ± 2.39 % (p < 0.05) compared with free β-sitosterol. Nonetheless, this study provided a novel β-sitosterol delivery system based on FMP-pectin complexes with a broad prospect in the processing of food, pharmaceuticals and nutrition.
Collapse
Affiliation(s)
- Yue Li
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongxia Liu
- Iinstitute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan 571101, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Junyan Yun
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Muwen Chen
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Pu Yang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shaojie Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Abbaschian S, Soltani M. Functional, structural, and rheological properties of the complexes containing sunflower petal extract with dairy and plant-based proteins. Food Chem 2025; 465:141948. [PMID: 39591707 DOI: 10.1016/j.foodchem.2024.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
This study aims to investigate the impact of sunflower petal extract (SFE) on the functional and structural properties of sodium caseinate and chickpea proteins. For this purpose, 3.5 % of sodium caseinate solution and 3.5 % of protein extracted from chickpea powder were prepared in phosphate buffer (pH = 7). SFE was used at different concentrations, from 1 to 3 % in different protein solutions and functional, structural and rheological properties were measured. The results revealed that complexation of SFE with different proteins can enhance the antioxidant, foaming properties, solubility, emulsion activity, emulsion stability, viscoelastic behavior, and can decrease surface hydrophobicity. FTIR and docking results showed that the most bonding type was non-covalent bonds. Major phenolic compounds containing heliannone A, B, and kaempferol had strong affinity with sodium caseinate, and then chickpea protein. Therefore, the results demonstrated that SFE and its complexes had appropriate emulsifying properties that reduces interfacial tension in the water/oil interface.
Collapse
Affiliation(s)
- Somayeh Abbaschian
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Kim W, Zia MB, Naik RR, Ho KKHY, Selomulya C. Effects of polyphenols from Tasmannia lanceolata on structural, emulsifying, and antioxidant properties of pea protein. Food Chem 2025; 464:141589. [PMID: 39406142 DOI: 10.1016/j.foodchem.2024.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.94-445.92 μg/mL) and berry (72.89-153.03 μg/mL) to pea protein (4.19-15.59 μg/mL). The oxidative stability of emulsions at pH 3 and 7 was enhanced, reducing TBARS value from 1.54 to 2.68 mg MDA/kg in pea protein to 0.56-0.85 mg MDA/kg after 2 weeks storage. These findings illustrated the distinct interactions between pea protein and different polyphenols from Tasmanian pepper leaf and berry to enhance the antioxidant capacity of pea protein.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Muhammad Bin Zia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - Kacie K H Y Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | |
Collapse
|
11
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
12
|
Manzoor MF, Zeng XA, Waseem M, Siddique R, Javed MR, Verma DK, Ali M. Soy protein-polyphenols conjugates interaction mechanism, characterization, techno-functional and biological properties: An updated review. Food Chem 2024; 460:140571. [PMID: 39079358 DOI: 10.1016/j.foodchem.2024.140571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 09/05/2024]
Abstract
Soy protein is a promising nutritional source with improved functionality and bioactivities due to conjugation with polyphenols (PP)-the conjugates between soy protein and PP held by covalent and noncovalent bonds. Different approaches, including thermodynamics, spectroscopy, and molecular docking simulations, can demonstrate the outcomes and mechanism of these conjugates. The soy protein, PP structure, matrix properties (temperature, pH), and interaction mechanism alter the ζ-potential, secondary structure, thermal stability, and surface hydrophobicity of proteins and also improve the techno-functional properties such as gelling ability, solubility, emulsifying, and foaming properties. Soy protein-PP conjugates also reveal enhanced in vitro digestibility, anti-allergic, antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Thus, these conjugates may be employed as edible film additives, antioxidant emulsifiers, hydrogels, and nanoparticles in the food industry. Future research is needed to specify the structure-function associations of soy protein-PP conjugates that may affect their functionality and application in the food industry.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Muhammad Waseem
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
13
|
Shi W, Xie H, Ouyang K, Wang S, Xiong H, Woo MW, Zhao Q. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Food Chem 2024; 450:139241. [PMID: 38636382 DOI: 10.1016/j.foodchem.2024.139241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The characteristics of the crosslinking between rice protein (RP) and ferulic acid (FA), gallic acid (GA), or tannin acid (TA) by covalent binding of Laccase and non-covalent binding were evaluated. The RP-polyphenol complexes greatly improved the functionality of RP. The covalent effect with higher polyphenol binding equivalence showed higher emulsion activity than the non-covalent effect. The solubility, and antioxidant activity of covalent binding were higher than that of non-covalent binding in the RP-FA group, but there was a contrasting behavior in the RP-GA group. The RP-FA was most soluble in conjugates, while the RP-GA had the highest solubility in mixtures. It was found that the covalent complexes were more stable in the intestinal tract. The content of polyphenols in the RP-TA group was rapidly increased at the later intestinal digestion, which indicated the high polyphenol-protective effect in this group. Meanwhile, the RP-TA group showed high reducing power but low digestibility.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
14
|
Li X, Wu Y, Guan W, Yang J, Wang Y. Epigallocatechin gallate modification of physicochemical, structural and functional properties of egg yolk granules. Food Chem 2024; 449:139279. [PMID: 38599106 DOI: 10.1016/j.foodchem.2024.139279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to prepare protein-polyphenol covalent complexes by treating egg yolk granules (EYG) with alkali in the presence of epigallocatechin gallate (EGCG) and characterize the physicochemical, structural, and functional properties of these covalent complexes. Results revealed that the optimal covalent binding occurred when the concentration of EGCG reached 0.15% (w/w), resulting in a grafting rate of 1.51 ± 0.03%. As the amount of EGCG increased, corresponding increases were observed in the particle size and ζ-potential of the complexes, thereby enhancing their stability. Furthermore, our analysis using fluorescence spectroscopy, FTIR, SEM, and SDS-PAGE collectively demonstrated the formation of a covalent complex between EYG and EGCG. Notably, the covalent complexes exhibited improved antioxidant activity and emulsifying properties. Overall, this study establishes a theoretical framework for the future practical application of EYG, emphasizing the potential of EGCG to modify its structural and functional characteristics.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yue Wu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenle Guan
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jianrong Yang
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, China.
| |
Collapse
|
15
|
Ravindran N, Kumar Singh S, Singha P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res Int 2024; 190:114575. [PMID: 38945599 DOI: 10.1016/j.foodres.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Plant-based proteins offer sustainable and nutritious alternatives to animal proteins with their techno-functional attributes influencing product quality and designer food development. Due to the inherent complexities of plant proteins, proper extraction and modifications are vital for their effective utilization. This review highlights the emerging sources of plant-based proteins, and the recent statistics of the techniques employed for pretreatment, extraction, and modifications. The pretreatment, extraction and modification approach to modify plant proteins have been classified, addressed, and the recent applications of such methodologies are duly indicated. Furthermore, this study furnishes novel perspectives regarding the potential impacts of emerging technologies on the intricate dynamics of plant proteins. A thorough review of 100 articles (2018-2024) shows the researchers' keen interest in investigating novel plant proteins and how they can be used; seeds being the main source for protein extraction, followed by legumes. Use of by-products as a protein source is increasing rapidly, which is noteworthy. Protein studies still lack knowledge on protein fraction, antinutrients, and pretreatments. The use of physical methods and their combination with other techniques are increasing for effective and environmentally friendly extraction and modification of plant proteins. Several studies explore the effect of protein changes on their function and nutrition, especially with a goal of replacing ingredients with plant proteins that have improved or enhanced qualities. However, the next step is to investigate the sophisticated modification methods for deeper insights into food safety and toxicity.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, India.
| |
Collapse
|
16
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
17
|
Xu J, Zhang H, Deng M, Guo H, Cui L, Liu Z, Xu J. Formation mechanism of quinoa protein hydrolysate-EGCG complexes at different pH conditions and its effect on the protein hydrolysate-lipid co-oxidation in emulsions. Food Res Int 2024; 186:114365. [PMID: 38729700 DOI: 10.1016/j.foodres.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hezhen Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengyu Deng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotong Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lifan Cui
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengqin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
18
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
19
|
Li H, Wu Q, Guo Y, Dai Y, Ping Y, Chen Z, Zhao B. Esterified wheat bran: Physicochemical properties, structure and quality improvement of Chinese steamed bread during refrigerated storage. Food Chem 2024; 441:138324. [PMID: 38176145 DOI: 10.1016/j.foodchem.2023.138324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
To develop the application of wheat bran and improve the nutrition and anti-staling capacity of Chinese steamed bread (CSB), oleic acid-esterified wheat bran (OWB) was prepared by esterification of wheat bran with oleic acid, and its physicochemical properties, structure, and quality improvement for CSB during refrigerated storage were investigated. The hydrophilic-lipophilic balance value of OWB was 16.0, the maximum degree of substitution was 0.146, and its emulsifying capacity was similar to that of glycerol monostearate. The starch gelatinization degree of CSB containing 3 % OWB and the control decreased by 19.55 % and 27.12 % within 7 days of refrigerated storage, respectively, while the hardness of CSB with OWB was lower than that with wheat bran. OWB inhibited starch recrystallization and increased bound water in the corresponding CSB, which effectively delayed starch retrogradation. OWB had a positive emulsifying capacity and showed potential as a functional material for preventing retrogradation of starch-based foods.
Collapse
Affiliation(s)
- Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou 450001, China.
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Guo
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
20
|
Zang Z, Li Y, Chou S, Tian J, Si X, Wang Y, Tan H, Gao N, Shu C, Li D, Chen W, Chen Y, Wang L, He Y, Li B. Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins. Food Res Int 2024; 184:114222. [PMID: 38609214 DOI: 10.1016/j.foodres.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuan Li
- China Agricultural university. Beijing 311800, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi 330031, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
21
|
Guo Y, Fang R, Zhen Y, Qiao D, Zhao S, Zhang B. Ion presence during thermal processing modulates the performance of rice albumin/anthocyanin binary system. Food Res Int 2024; 184:114274. [PMID: 38609251 DOI: 10.1016/j.foodres.2024.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.
Collapse
Affiliation(s)
- Yabin Guo
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruolan Fang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiyuan Zhen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
23
|
Nahimana P, Bouaicha I, Chèné C, Karamoko G, Missbah El Idrissi M, Bakhy K, Abdelmoumen H, Blecker C, Karoui R. Physico-chemical, functional, and structural properties of un-defatted, cold and hot defatted yellow lupin protein isolates. Food Chem 2024; 437:137871. [PMID: 37922794 DOI: 10.1016/j.foodchem.2023.137871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
This study investigates the structure, physico-chemical and functional properties of yellow lupin isolate protein (YLPI) obtained by different processes (conventional wet and purely aqueous fractionation) from un-defatted (YLPIU), and hot (YLPIHD) and cold (YLPICD) defatted flour. The defatting process modified the physical, structural and functional characteristics of lupin protein isolates. Indeed, a decrease of α-helix, free sulfhydryl groups amount and an increase of disulfide bond levels were observed for defatted samples, improving their emulsifying stability. The defatting process exposes the hydrophobic groups present within the YLPI, which increases total sulfhydryl content and protein surface hydrophobicity. Hot and cold defatting induced a decrease in turbidity, water-holding capacity, oil adsorption capacity, tapped and poured bulk densities. In addition, the defatting process changed the particle size of protein isolates that induced changes in their viscosity. Tryptophan spectra and protein surface hydrophobicity indicated that YLPICD and YLPIHD underwent structural conformational change during the defatting process.
Collapse
Affiliation(s)
- Paterne Nahimana
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Inès Bouaicha
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christine Chèné
- Adrianor, 1 rue Jacquart, F-62217 Tilloy Les Mofflaines, France
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Mustapha Missbah El Idrissi
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Khadija Bakhy
- National Institute of Agricultural Research (INRA), Research Unit on Aromatic and Medicinal Plant, BP 6570, Rabat-Instituts, Rabat 10101, Morocco
| | - Hanaa Abdelmoumen
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4, Av. Ibn Battouta, 1014 Rabat, Morocco
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| |
Collapse
|
24
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
25
|
Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Comparative study of dietary phenols with Tartary buckwheat protein (2S/13S): impact on structure, binding sites and functionality of protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:698-706. [PMID: 37653274 DOI: 10.1002/jsfa.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongze Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| |
Collapse
|
26
|
Zhang X, Ma D, Yin C, Li Z, Hao J, Li Y, Zhang S. The biological activity, functionality, and emulsion stability of soybean meal hydrolysate-proanthocyanidin conjugates. Food Chem 2024; 432:137159. [PMID: 37625306 DOI: 10.1016/j.foodchem.2023.137159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The use of by-product hydrolysates as functional ingredients in food production is becoming more widespread. We hypothesized that the covalent binding of proanthocyanidin (PC) to soybean meal hydrolysates (SMHs) will improve the biological activity and function of the SMHs. Accordingly, we investigated the structure, antioxidant activity, and emulsion stability of SMHs after covalent conjugation with different concentrations of PC. An increase in PC addition resulted in the development of more high-molecular-weight SMHs-PC conjugates (40 kDa). The observed increase in the random coil content indicated that greater unfolding and disordered structure formation occurred with increasing PC addition. In addition, the fluorescence intensity and surface hydrophobicity of the SMHs increased, suggesting the presence of free amino acids, which likely contributed to the antioxidant activity and emulsifying properties of the SMHs. Addition of 3.0 mg/mL PC gave the SMHs-PC conjugates the highest antioxidant activity (ABTS+ and DPPH radical scavenging capacities of 89.08 ± 0.47 and 40.90 ± 1.53%, respectively) and emulsifying activity index (79.13 ± 2.80 m2/g), which may be attributed to protein unfolding and maximization of the polyphenol content when PC was covalently bound to the SMHs. Moreover, the SMHs-PC emulsion with 2.0 mg/mL PC showed the smallest particle size and highest viscosity, presenting promising potential as an emulsifier with high biological activity in food.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Hao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
27
|
Xu PW, Yue XJ, Yuan XF, Zhao B. Hemp seed globulin-alginate nanoparticles for encapsulation of Cannabisin A with enhanced colloidal stability and antioxidant activity. Int J Biol Macromol 2024; 256:128380. [PMID: 38000582 DOI: 10.1016/j.ijbiomac.2023.128380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
This study develops hemp seed globulin (GLB)-alginate (ALG) nanoparticles (GANPs) for Cannabisin A (CA) stabilization under environmental stress and during pepsin digestion. The optimal GLB: ALG mass ratio of 1: 1.5 was determined for GANPs formation at pH 3.5, resulting in a high yield of 95.13 ± 0.91 %, a ζ-potential of -35.73 ± 1.04 mV, a hydrodynamic diameter of 470.67 ± 11.36 nm, and a PDI of 0.298 ± 0.016. GANPs were employed to encapsulate CA, achieving a high loading capacity of 13.48 ± 0.04 μg mg-1. FTIR analysis demonstrated that the formation of CA-GLB-ALG nanoparticles (CGANPs) involves electrostatic interactions, hydrogen bonding, and hydrophobic interactions. XRD and DSC analyses revealed that CA is amorphous within the CGANPs. CGANPs demonstrated remarkable dispersion stability as well as resistance to high ionic strength and high-temperature treatments, indicating their potential as efficient hydrophobic drug-delivery vehicles. When compared to free CA, CA coated within CGANPs displayed greater DPPH/ABTS scavenging activity. Furthermore, the ALG-shelled nanoparticles protected GLB from pepsin digestion and slowed the release of CA throughout the release process, extending their stay on the intestinal wall mucosa. These findings imply that CGANPs is an ideal delivery vehicle for CA as they may expand the application of CA in food items.
Collapse
Affiliation(s)
- Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Fan Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
28
|
Chen Q, Liu Y, Li Y, Dong L, Liu Y, Liu L, Farag MA, Liu L. Interaction and binding mechanism of ovalbumin with cereal phenolic acids: improved structure, antioxidant activity, emulsifying and digestion properties for potential targeted delivery systems. Food Res Int 2024; 175:113726. [PMID: 38128987 DOI: 10.1016/j.foodres.2023.113726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Ovalbumin (OVA) has been considered as a nutrient carrier for bioactive, which has high nutrition value and multiple properties. Recently, proteins-phenolic acids composite delivery systems have received widespread attention. Therefore, this research aimed to investigate the interaction between OVA and cereal phenolic acids (CPA) to establish delivery systems for bioactive. Spectroscopy results have found that CPA generated complexes with OVA, causing the microenvironment changes of OVA. Ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), syringic acid (SY), sinapic acid (SI), and protocatechuic acid (PA) not only quenched the intrinsic fluorescence of OVA, but also altered protein microenvironment. Further investigation showed these complexes were formed by static quenching mode, while hydrogen bond and hydrophobic interaction were dominant binding forces. Meanwhile, the interaction decreased α-helix contents and increased β-sheet contents, leading to conformational changes in OVA. Besides, OVA/CPA complexes displayed an increase in hydrophobicity with a reduce in free-SH. After combination with FA, SY, CA, VA, SI, PA, it was found that all formed complexes had superior solubility, emulsifying and antioxidant activities than native OVA. Among them, OVA-PA exhibited the highest emulsifying activity index and emulsion stability index values (36.4 ± 0.39 m2/g and 60.4 ± 0.94 min) and stronger antioxidant activities. Finally, the combination with phenolic acids further improved the digestion efficiency in vitro of OVA. The OVA-CPA complexes showed improved properties for excellent delivery systems. Overall, OVA-CPA complexes could be a good carrier for bioactive, which provided valuable avenues in target delivery system application.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588, NE, USA.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
29
|
Günal-Köroğlu D, Lorenzo JM, Capanoglu E. Plant-Based Protein-Phenolic Interactions: Effect on different matrices and in vitro gastrointestinal digestion. Food Res Int 2023; 173:113269. [PMID: 37803589 DOI: 10.1016/j.foodres.2023.113269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This review summarizes the literature on the interaction between plant-based proteins and phenolics. The structure of the phenolic compound, the plant source of proteins, matrix properties (pH, temperature), and interaction mechanism (covalent and non-covalent) change the secondary structure, ζ-potential, surface hydrophobicity, and thermal stability of proteins as well as their functional properties including solubility, foaming, and emulsifying properties. Studies indicated that the foaming and emulsifying properties may be affected either positively or negatively according to the type and concentration of the phenolic compound. Protein digestibility, on the other hand, differs depending on (1) the phenolic concentration, (2) whether the food matrix is solid or liquid, and (3) the state of the food-whether it is heat-treated or prepared as a mixture without heat treatment in the presence of phenolics. This review comprehensively covers the effects of protein-phenolic interactions on the structure and properties of proteins, including functional properties and digestibility both in model systems and real food matrix.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, Parque Tecnológico de Galicia, 32900 Ourense, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
30
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
31
|
Chawla P, Sridhar K, Bains A. Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein-phenols enriched fruit smoothie. Food Res Int 2023; 171:113075. [PMID: 37330833 DOI: 10.1016/j.foodres.2023.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Phenol-protein interaction is considered an effective tool to improve the functional properties of vegan proteins. The present work aimed to evaluate the covalent interaction between kidney bean polyphenols with rice protein concentrate and studied their characteristics for quality improvement in vegan-based foods. The impact of interaction on the techno-functional properties of protein was evaluated and the nutritional composition revealed that kidney bean was rich in carbohydrates. Furthermore, a noticeable antioxidant activity (58.11 ± 1.075 %) due to the presence of phenols (5.5 mg GAE/g) was observed for the kidney bean extract. Moreover, caffeic acid and p-Coumaric acid were confirmed using ultra-pressure liquid chromatography and the amount was 194.43 and 0.9272 mg/kg, respectively. A range of rice protein- phenols complexes (PPC0.025, PPC0.050, PPC0.075, PPC0.1, PPC0.2, PPC 0.5, PPC1) were examined and PPC0.2 and PPC0.5 showed significantly (p < 0.05) higher binding efficiency with proteins via covalent interaction. The conjugation reveals changes in physicochemical properties of rice protein, including, reduced size (178.4 nm) and imparted negative charges (-19.5 mV) of the native protein. The presence of amide Ⅰ, Ⅱ, Ⅲ, was confirmed in native protein and protein-phenol complex with vibration bands, particularly at 3784.92, 1631.07, and 1234 cm-1, respectively. The X-ray diffraction pattern depicted a slight decrease in crystallinity after the complexation and scanning electron microscopy revealed the alteration in morphology from less to improved smoothness and continuous surface characteristics for the complex. Thermo gravimetric analysis revealed high thermal stability of the complex with a maximum weight loss at a temperature range of 400-500 °C. Protein-phenol complex added fruit-based smoothie was developed and it was found to be acceptable in terms of various sensory attributes including color & appearance, textural consistency, and mouthfeel as compared to the control smoothie. Overall, this study provided novel insights to understand the phenol-protein interactions and the possible use of the phenol-rice protein complex in the development of vegan-based food products.
Collapse
Affiliation(s)
- Prince Chawla
- Department Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
32
|
Chamizo-González F, Estévez IG, Gordillo B, Manjón E, Escribano-Bailón MT, Heredia FJ, González-Miret ML. First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chem 2023; 413:135591. [PMID: 36764161 DOI: 10.1016/j.foodchem.2023.135591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Recently, the search for alternative proteins endogenous to grapes to be used as wine colour protecting agents became an important research trend. In this study, the molecular interaction between the grape seed 11S globulin from winemaking by-product and malvidin-3-O-glucoside was investigated by fluorescence, differential colorimetry and molecular modelling. Fluorescence studies revealed the formation of grape seed protein- pigment complex whose KS was 8.5 × 104 M-1 and binding sites, n = 1.3. Malvidin-3-O-glucoside showed darker and more vivid bluish colour of in the presence of 11S globulin, suggesting the flavylium cation protection in a hydrophobic region of the protein. Docking analysis and molecular dynamics simulation indicated that malvidin-3-O-glucoside interacts mainly with the acidic subunit (40 kDa) of the 11S globulin monomer (60 kDa). An average of two hydrogen bonds and Van der Wall forces were the main interaction forces found for the protein-pigment complex, whose stability was confirmed by root-means-square deviation.
Collapse
Affiliation(s)
- Francisco Chamizo-González
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Ignacio García Estévez
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Belén Gordillo
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Elvira Manjón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - M T Escribano-Bailón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Francisco J Heredia
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - M Lourdes González-Miret
- Food Colour & Quality Lab., Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
33
|
Wang Y, Yang C, Zhang J, Zhang L. Interaction of preheated whey protein isolate with rose anthocyanin extracts in beverage model system: Influence on color stability, astringency and mechanism. Food Chem 2023; 412:135507. [PMID: 36716623 DOI: 10.1016/j.foodchem.2023.135507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Preheating proteins have the potential to improve anthocyanin stability. Our aim was to investigate the effect of preheated whey protein isolate (WPI) on the color stability and astringency of the beverage model system in the presence of rose anthocyanin extracts (RAEs), and to explore the mechanism of interaction between preheated WPI and RAEs. The secondary structure, particle size and transparency of WPI were obviously changed by preheating. WPI preheated at 100°C (WPI100) could effectively improve the color stability of RAEs in the beverage model system. Importantly, the WPI100-RAEs in the beverage model system exhibited the smallest particle size and the weakest astringency effect. In addition, different preheated WPIs could interact with RAEs non-covalently, and the interaction forces are hydrogen bonding and van der Waals forces, among which WPI100 had the strongest binding ability to RAEs. These results will provide a new insight into the development of protein-anthocyanin beverages.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
34
|
Li D, Wei Z, Li X. Development, Characterization and Resveratrol Delivery of Hollow Gliadin Nanoparticles: Advantages over Solid Gliadin Nanoparticles. Foods 2023; 12:2436. [PMID: 37444174 DOI: 10.3390/foods12132436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hollow nanoparticles have attracted extensive attention due to their advantages such as high loading capacity and superior stability. However, the complexity of the preparation process and harmfulness of the used raw materials have limited their application in the food field. Based on this, hollow gliadin nanoparticles (HGNPs) were developed using a Na2CO3 sacrificial template method. The findings of this study suggested that HGNPs could be regarded as a delivery system for resveratrol (Res) and they exhibited excellent delivery performance. Compared with solid gliadin nanoparticles (SGNPs), the HGNPs displayed smaller particle sizes, better physical stability, higher encapsulation efficiency, stronger resistance to ultraviolet light and a more sustained release of Res in the gastrointestinal tract. This work is of practical significance for the development and utilization of protein-based nanoparticles with hollow structures as a delivery system for sensitive bioactives.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaolong Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
35
|
Tian J, Fu D, Liu Y, Guan Y, Miao S, Xue Y, Chen K, Huang S, Zhang Y, Xue L, Chong T, Yang P. Rectifying disorder of extracellular matrix to suppress urethral stricture by protein nanofilm-controlled drug delivery from urinary catheter. Nat Commun 2023; 14:2816. [PMID: 37198161 PMCID: PMC10192346 DOI: 10.1038/s41467-023-38282-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Urethral stricture secondary to urethral injury, afflicting both patients and urologists, is initiated by excessive deposition of extracellular matrix in the submucosal and periurethral tissues. Although various anti-fibrotic drugs have been applied to urethral stricture by irrigation or submucosal injection, their clinical feasibility and effectiveness are limited. Here, to target the pathological state of the extracellular matrix, we design a protein-based nanofilm-controlled drug delivery system and assemble it on the catheter. This approach, which integrates excellent anti-biofilm properties with stable and controlled drug delivery for tens of days in one step, ensures optimal efficacy and negligible side effects while preventing biofilm-related infections. In a rabbit model of urethral injury, the anti-fibrotic catheter maintains extracellular matrix homeostasis by reducing fibroblast-derived collagen production and enhancing metalloproteinase 1-induced collagen degradation, resulting in a greater improvement in lumen stenosis than other topical therapies for urethral stricture prevention. Such facilely fabricated biocompatible coating with antibacterial contamination and sustained-drug-release functionality could not only benefit populations at high risk of urethral stricture but also serve as an advanced paradigm for a range of biomedical applications.
Collapse
Affiliation(s)
- Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Delai Fu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yibing Guan
- Department of Urological Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yuquan Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Ke Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), 100191, Beijing, China
| | - Shanlong Huang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China.
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
| |
Collapse
|
36
|
Liu Y, Wang S, Qin Y, Wang Y, Yang J, Zhang L, Li Q, Ma S. Enhanced TSG stability through co-assembly with C3G: the mechanism behind processing Polygonum multiflorum Thunb with black beans via supramolecular analysis. Food Funct 2023; 14:4204-4212. [PMID: 37067244 DOI: 10.1039/d2fo03402f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Elucidating the underlying mechanism of the processing of Chinese herbal medicine (CHM) is crucial and also challenging for the modernization of Traditional Chinese Medicine (TCM). Herein, inspired by the traditional method for processing the Chinese herb Polygonum multiflorum (PM) Thunb with excipient black beans, the representative herbal components trans-2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucopyranoside (TSG) and cyanidin-3-O-β-glucoside (C3G) from each herbal medicine were selected to investigate the processing mechanism at the supramolecular level. The co-assemblies of TSG/C3G were found to be formed, and their structure was characterized by electronic microscopy and a small angle X-ray scattering (SAXS) technique. In addition, the supramolecular interactions between TSG and C3G were fully probed with UV-Vis, fluorescence, XRD, and NMR spectroscopy. Molecular dynamics were further performed to simulate the assembly processes of TSG and C3G. Notably, the formation of TSG/C3G co-assemblies was found to significantly enhance the stability of TSG against light, Fe3+, and simulated intestinal fluids. The co-assembly of TSG and C3G that leads to supramolecular aggregates discovered here may imply the underlying mechanism of processing PM with black beans. Our results may also suggest that a new effective form of TCM is supramolecular aggregates rather than each component.
Collapse
Affiliation(s)
- Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Shukai Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yunan Qin
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lanzhen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Quan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China.
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
37
|
Zhang X, Yin C, Hao J, Ma D, Li Z, Li Y, Qi B. Improving the biological activity, functional properties, and emulsion stability of soybean meal hydrolysate via covalent conjugation with polyphenol. Food Chem 2023; 422:136255. [PMID: 37163875 DOI: 10.1016/j.foodchem.2023.136255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
The use of by-products as functional components in food production is gaining popularity. This study investigated the structure, biological activity, interaction force, and emulsion stability of soybean meal hydrolysate (SMHs) after covalent conjugation with proanthocyanidin (PC), epigallocatechin (EGCG), gallic acid (GA), and caffeic acid (CA). SDS-PAGE confirmed the formation of SMHs-polyphenol conjugates. Structural analysis indicates unfolding and disordered-structure formation. This transformation directly influenced the antioxidant activity and emulsification of SMHs. The antioxidant and emulsifying properties of all covalent complexes were superior to SMHs, in order of SMHs-PC, SMHs-EGCG, SMHs-GA, and SMHs-CA. Among, SMHs-PC conjugates displayed the highest antioxidant activity (ABTS•+ and DPPH radical scavenging capacities of 89.33% and 52.71%, respectively), total polyphenol content (235.10 mg/g), and emulsification activity (EAI) and stability (ESI) values (109.27 m2/g and 135.05 min, respectively). Moreover, SMHs-PC emulsion showed the smallest particle size (467.20 nm), highest viscosity (520.19 Pa.s), highest protein adsorption (94.33%), and lowest release rate of free fatty acids (FFAs) (18.61%) after digestion. These results provided valuable information for the use of modified SMHs as emulsifiers, which is a promising approach for increasing the value of soybean meal.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Hao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
38
|
Gao HH, Hou NC, Gao X, Yuan JY, Kong WQ, Zhang CX, Qin Z, Liu HM, Wang XD. Interaction between Chinese quince fruit proanthocyanidins and bovine serum albumin: Antioxidant activity, thermal stability and heterocyclic amine inhibition. Int J Biol Macromol 2023; 238:124046. [PMID: 36933591 DOI: 10.1016/j.ijbiomac.2023.124046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more β-sheets, β-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Nai-Chang Hou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Yang Yuan
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
39
|
Li L, Zhang M, Feng X, Yang H, Shao M, Huang Y, Li Y, Teng F. Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
41
|
Ming Y, Wang Y, Xie Y, Dong X, Nakamura Y, Chen X, Qi H. Polyphenol extracts from Ascophyllum nodosum protected sea cucumber (Apostichopus japonicas) body wall against thermal degradation during tenderization. Food Res Int 2023; 164:112419. [PMID: 36738022 DOI: 10.1016/j.foodres.2022.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
To retard the protein degradation during sea cucumber processing, polyphenol extracts from Ascophyllum nodosum (PhE) was used as a potential antioxidant to maintain the structural integrity of sea cucumber body wall. Accordingly, the protection effects of PhE (0, 0.5, 1.0 and 1.5 mg PhE/g SFBW) against thermal degradation of the solid fragments of body wall (SFBW) have been investigated in order to evaluate their impact on the oxidation level and structural changes. Electronic Spin Resonance results showed that PhE could significantly inhibit the occurrence of oxidation by scavenging the free radicals. The effect of PhE on chemical analysis of soluble matters in SFBW was characterized by SDS-PAGE and HPLC. Compared with thermally treated SFBW, samples with PhE presented a decrease in protein dissolution. Thermal treatment resulted in the disintegration of collagen fibrils and fibril bundles in SFBW samples, while the density of collagen fibrils was increased, and the porosity decreased in samples with PhE. The results of FTIR and intrinsic tryptophan fluorescence confirmed that the structures of SFBW were modified by PhE. Besides, the denaturing temperature and decomposition temperature were both improved with the addition of PhE. These results suggested that PhE appeared to have a positive effect on lowering oxidation and improving thermostability and structural stability of SFBW, which could provide a theoretical basis for protecting sea cucumber body wall against degradation during thermal tenderization.
Collapse
Affiliation(s)
- Yu Ming
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Yuqianqian Xie
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Xiufang Dong
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China.
| |
Collapse
|
42
|
Impacts of Proanthocyanidin Binding on Conformational and Functional Properties of Decolorized Highland Barley Protein. Foods 2023; 12:foods12030481. [PMID: 36766010 PMCID: PMC9914363 DOI: 10.3390/foods12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
The impacts of interaction between proanthocyanidin (PC) and decolorized highland barley protein (DHBP) at pH 7 and 9 on the functional and conformational changes in DHBP were investigated. It was shown that PC strongly quenched the intrinsic fluorescence of DHBP primarily through static quenching. PC and DHBP were mainly bound by hydrophobic interactions. Additionally, free sulfhydryl groups and surface hydrophobicity obviously decreased in DHBP after combining with PC. The zeta potential of DHBP-PC complexes at pH 7 increased significantly. A change in the structure of DHBP was caused by interactions with PC, resulting in an increase in the number of β-sheets, a decrease in the number of α-helixes, and a spectral shift in the amide Ⅱ band. Furthermore, the presence of PC enhanced the foaming properties and antioxidant activity of DHBP. Overall, this study suggests that DHBP-PC complexes at pH 7 could be designed as a stable additive, and illustrates the potential applications of DHBP-PC complexes in the food industry.
Collapse
|
43
|
Shi J, Cui YF, Zhou G, Li N, Sun X, Wang X, Xu N. Covalent interaction of soy protein isolate and chlorogenic acid: Effect on protein structure and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Li Y, Jiang R, Gao Y, Duan Y, Zhang Y, Zhu M, Xiao Z. Investigation of the Effect of Rice Bran Content on the Antioxidant Capacity and Related Molecular Conformations of Plant-Based Simulated Meat Based on Raman Spectroscopy. Foods 2022; 11:3529. [PMID: 36360142 PMCID: PMC9657750 DOI: 10.3390/foods11213529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 05/25/2024] Open
Abstract
At present, plant-based simulated meat is attracting more and more attention as a meat substitute. This study discusses the possibility of partial substitution of rice bran (RB) for soybean protein isolate (SPI) in preparing plant-based simulated meat. RB was added to SPI at 0%, 5%, 10%, 15%, and 20% to prepare RB-SPI plant-based simulated meat by the high moisture extrusion technique. RB-SPI plant-based simulated meat revealed greater polyphenol content and preferable antioxidant capacity (DPPH radical scavenging capacity, ABTS scavenging ability, and FRAP antioxidant capacity) compared to SPI plant-based simulated meat. The aromatic amino acids (tryptophan and tyrosine) of RB-SPI plant-based simulated meats tend to be masked first, and then the hydrophobic groups are exposed as RB content increases and the polarity of the surrounding environment increases due to the change in the disulfide conformation of RB-SPI plant-based simulated meats from a stable gauche-gauche-gauche conformation to a trans-gauche-trans conformation.
Collapse
Affiliation(s)
- Yanran Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Ruisheng Jiang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuzhe Gao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yumin Duan
- Experimental Center of Shenyang Normal University (Department of Grain), Shenyang 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
45
|
Study on the mechanism of interaction between mulberry anthocyanins and yeast mannoprotein. Food Chem 2022; 405:135024. [DOI: 10.1016/j.foodchem.2022.135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
|
46
|
Jiang B, Zhong S, Yu H, Chen P, Li B, Li D, Liu C, Feng Z. Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11715-11726. [PMID: 36095172 DOI: 10.1021/acs.jafc.2c03990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To investigate the effects of different binding modes on the structure, function, and digestive properties of the phosvitin (Pv) and gallic acid (GA) complex, Pv was covalently and noncovalently combined with different concentrations of GA (0.5, 1.5, and 2.5 mM). The structural characterization of the two Pv-GA complexes was performed by Fourier transform infrared, circular dichroism, and LC-MS/MS to investigate the covalent and noncovalent binding of Pv and GA. In addition, the microstructure of the two Pv-GA complexes was investigated by super-resolution microscopy and transmission electron microscopy. The particle size and zeta potential results showed that the addition of GA increased the particle size and the absolute potential of Pv. The determination of protein digestibility, polyphenol content, SH and S-S group levels, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and antioxidant capacity of the digests indicated that noncovalent complexes had greater antioxidant and protective effects on polyphenols. Molecular docking revealed that GA was conjugated with Pv through hydrogen bond interactions.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shaojing Zhong
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hongliang Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Baoyun Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
47
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Wang L, Wang X, Luo F, Li Y. Effect of ultrasound on
cyanidin‐3‐O
‐glucoside and β‐lactoglobulin binding interaction and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lijie Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Xiaohan Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Feng Luo
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Yuefei Li
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| |
Collapse
|
49
|
Liu G, Hu M, Du X, Liao Y, Yan S, Zhang S, Qi B, Li Y. Correlating structure and emulsification of soybean protein isolate: Synergism between low-pH-shifting treatment and ultrasonication improves emulsifying properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
A pH-controlled curcumin-loaded emulsion stabilized by pea protein isolate-maltodextrin-epigallocatechin-3-gallate: Physicochemical properties and in vitro release properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|