1
|
Meng D, Zhao D, Zhao Z, Wang X, Wu Y, Li Y, Lv Z, Zhong Q. Revealing key aroma compounds and the potential metabolic pathways in sea buckthorn berries. Food Chem 2025; 476:143430. [PMID: 39986073 DOI: 10.1016/j.foodchem.2025.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
To clarify the aromatic compounds of sea buckthorn and their formation pathways, the key aroma compounds in Hippophae rhamnoides subsp. sinensis were determined first. There were 21 compounds identified as the key aroma components (e.g. ethyl isovalerate, ethyl caproate, ethyl octanoate, 1-hexanol, 1-nonanol, phenylethyl alcohol, nonanal, 6-methyl-5-heptene-2-one) of sea buckthorn, which were mainly composed of esters and alcohols. There were obvious differences in the composition of compounds among Hippophae rhamnoides subsp. sinensis (SI, SS) and Hippophae rhamnoides subsp. thibetana (TS). Esters were the main volatiles of Hippophae rhamnoides subsp. sinensis (SI, SS), while alcohols were the main volatiles of Hippophae rhamnoides subsp. thibetana (TS), which resulted in a lack of overall aromas in TS and a strong fruity and winy odor in SI and SS. The aroma of sea buckthorn could be reproduced well by analyzing key aroma components. Additionally, oleic acid, linoleic acid, leucine, phenylalanine, lycopene, and other compounds generated key aroma compounds by fatty acid oxidation pathway, amino acid degradation pathway, mevalonic acid pathway, methylerythritol phosphate pathway, carotenoid degradation pathway. Therefore, the key aroma compounds in sea buckthorn berries and their metabolic pathways were studied in the paper, which provided the research basis for genetic breeding and fine processing of sea buckthorn.
Collapse
Affiliation(s)
- Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dongbo Zhao
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou, Gansu 730060, China
| | - Zhichao Zhao
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Gansu, Lanzhou 730060, China
| | - Xiaoxue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yonghui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Qilin Zhong
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Gansu, Lanzhou 730060, China.
| |
Collapse
|
2
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2025; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Yang Y, Xu Y, He X, Guo M, Chen J, Luo L, Xiang J. Characterizations of lactic acid bacteria derived from pickles and the effects of fermentation on phenolic compounds in peony flowers. Food Chem X 2025; 27:102430. [PMID: 40248323 PMCID: PMC12005221 DOI: 10.1016/j.fochx.2025.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
This study aims to characterize lactic acid bacteria (LAB) in pickles and investigate the effect of lactic acid fermentation on phenolic compounds in peony flowers. Six strains of Lactobacillus plantarum and one strain of Weissella identified by 16S rRNA sequencing met the safety standards confirmed by metabolite safety assessment and antibiotic resistance analysis. NPLP12 exhibited excellent fermentation characteristics and its tolerance, adhesion, and antioxidant indicators all demonstrated its potential as probiotics and starter. After fermentation with NPLP12, the content of total phenols (15.2 %) and flavonoids (22.7 %) in the liquid extract of peony flowers was significantly increased, and the antioxidant activity was also enhanced. Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) analysis confirmed that apigenin 7-O-glucoside and kaempferol-3-O-glucoside were key synergistic components. This study provides a reference for the screening of peony flower fermentation strains, the utilization of peony flower resources and the development of functional peony flower fermentation beverages.
Collapse
Affiliation(s)
| | | | - Xiangxiang He
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Mingyan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Lei Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Jinle Xiang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| |
Collapse
|
4
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
5
|
Yang S, Hou M, Tan W, Chen Y, Li H, Song J, Wang X, Ren J, Gao Z. Lactic acid bacteria sequential fermentation improves viable counts and quality of fermented apple juice via generating two logarithmic phases. Food Chem 2025; 464:141635. [PMID: 39423543 DOI: 10.1016/j.foodchem.2024.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This study investigated the impact of lactic acid bacteria (LAB) sequential fermentation on viable counts and apple juice quality. The optimal fermentation conditions were obtained by a step-by-step optimization process, including pH 4.5, temperature 37 °C, the second inoculation time 16 h, total fermentation time 40 h and fermentation sequence (first 21,805 + 21,828, second 20,241). Under the optimal conditions, sequential fermentation allowed LAB to experience two logarithmic phases, increasing viable counts to 1.38 × 108 CFU/mL, exceeding simultaneous fermentation for 24 h and 40 h by 4.10 × 107 CFU/mL and 5.40 × 107 CFU/mL, respectively. This process enhanced sugar utilization, yielding more lactic acid and polyphenols. Furthermore, sequential fermentation improved DPPH (71.71 %) and ABTS (84.79 %) scavenging rates, and enriched volatile compounds, particularly beta-Damascenone, potentially contributing to floral and richer apple flavor. Sequential fermentation also achieved optimal sensory acceptability. This study proposes a novel strategy for high-density LAB fermentation to produce high-quality apple juice.
Collapse
Affiliation(s)
- Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Weiteng Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jiangling Song
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Xiaoyang Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingyi Ren
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Han Z, Shi S, Yao B, Shinali TS, Shang N, Wang R. Recent Insights in
Lactobacillus
-Fermented Fruit and Vegetable Juice: Compositional Analysis, Quality Evaluation, and Functional Properties. FOOD REVIEWS INTERNATIONAL 2025:1-35. [DOI: 10.1080/87559129.2025.2454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Affiliation(s)
- Zixin Han
- China Agricultural University
- China Agricultural University
| | | | | | | | - Nan Shang
- China Agricultural University
- China Agricultural University
| | | |
Collapse
|
7
|
Zhang Z, Chen Y, Chen Z, Gao Z, Cheng Y, Qu K. Quality analysis and assessment of representative sea buckthorn fruits in northern China. Food Chem X 2024; 24:101828. [PMID: 39319099 PMCID: PMC11421254 DOI: 10.1016/j.fochx.2024.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Sea buckthorn (SB) primarily grows in northern China and is rich in nutritional components, making it popular among consumers. This study aims to select suitable SB varieties for processing by analyzing physicochemical components, color, taste, and volatile compounds. The results showed that the physicochemical content of Chinese SB from Gansu were as follows: total soluble solids 13.50 ± 0.37°Brix, titratable acidity 6.46 ± 0.39 %, ascorbic acid 578 mg/100 g, polyphenols 517 mg/100 g, and flavonoids 194 mg/100 g, which were higher than those of the other four SB samples; the content of organic acids was relatively abundant. Taste analysis via electronic tongue indicated that Chinese SB had the highest ANS (sweetness) value and the lowest SCS (bitterness) value, exhibiting the richest flavor. Gas chromatography-mass spectrometry analysis showed that Gansu Chinese SB had a rich variety of volatile components, totaling 74. In summary, Gansu Chinese SB is a variety suitable for processing.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yixuan Chen
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Zhixi Chen
- Huachi Gannong Biotechnology Company Limited, Qingyang, China
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuying Cheng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
8
|
Yuan YH, Mu DD, Guo L, Wu XF, Chen XS, Li XJ. From flavor to function: A review of fermented fruit drinks, their microbial profiles and health benefits. Food Res Int 2024; 196:115095. [PMID: 39614507 DOI: 10.1016/j.foodres.2024.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Fermented fruit drinks (FFDs) are gaining popularity among consumers for their unique flavors and potential health benefits. This review provides a systematic assessment of the flavor components in FFDs and explores the metabolic pathways for their formation. We examine the interactions between the structure of microbial communities and the development of these flavor components, highlighting the role of microorganisms in shaping the unique taste of FFDs. Additionally, we discuss the potential health benefits associated with FFDs, focusing on their relationship with microbial communities as supported by existing literature. The review also addresses future prospects and challenges in the field. Our findings indicate key fermenting microorganisms, such as lactic acid bacteria, yeast and acetic acid bacteria, are responsible for producing the distinctive flavor components in FFDs, including alcohols, ketones, aldehydes, esters, and fatty acids. These microorganisms also generate organic acids, amino acids, and carbohydrates, contributing to the drink's complex taste. Furthermore, this fermentation process enhances the bioactivity of FFDs, offering potential health benefits like antioxidant, anti-obesity, anti-diabetic, and anti-cancer properties. These insights are crucial for advancing fermentation technology and developing guidelines for producing nutrient-rich, flavorful FFDs.
Collapse
Affiliation(s)
- Yu-Han Yuan
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Dong-Dong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Xue-Feng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiang-Song Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
9
|
Wang F, Wang Y, Shen X, Zhao R, Li Z, Wu J, Shen H, Yao X. Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules 2024; 29:4779. [PMID: 39407707 PMCID: PMC11478338 DOI: 10.3390/molecules29194779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
As some of the richest sources of natural antioxidants, small berry fruits have attractive colors and special tastes, with recognized benefits for human health. However, sour tastes in small berry juices result in a poor flavor and low acceptance among consumers, greatly limiting their marketability. Among the most commonly used deacidification methods, chemical deacidification methods can neutralize fruit juice via the addition of a deacidification agent, while physical deacidification methods include freezing deacidification, ion-exchange resin deacidification, electrodialysis deacidification, and chitosan deacidification. All of these methods can markedly improve the pH of fruit juice, but they introduce new substances into the juice that may have an influence on its color, taste, and stability. Biological deacidification can effectively remove malic acid from fruit juice, reducing the content from 15 g/L to 3 g/L; additionally, it maintains the taste and stability of the juice. Therefore, it is widely applied for fruit juice deacidification. On this basis, some compound deacidification technologies have also emerged, but they also present problems such as high costs and complicated working procedures. This review of deacidification methods for small berry juice provides a foundation for the industrial development of such juices.
Collapse
Affiliation(s)
- Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
10
|
Yu W, Du Y, Li S, Wu L, Guo X, Qin W, Kuang X, Gao X, Wang Q, Kuang H. Sea buckthorn-nutritional composition, bioactivity, safety, and applications: A review. J Food Compost Anal 2024; 133:106371. [DOI: 10.1016/j.jfca.2024.106371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
11
|
Lee M, Kim D, Lee KW, Chang JY. Kimchi Lactic Acid Bacteria Starter Culture: Impact on Fermented Malt Beverage Volatile Profile, Sensory Analysis, and Physicochemical Traits. J Microbiol Biotechnol 2024; 34:1653-1659. [PMID: 39049474 PMCID: PMC11380508 DOI: 10.4014/jmb.2403.03011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Starter cultures used during the fermentation of malt wort can increase the sensory characteristics of the resulting beverages. This study aimed to explore the aroma composition and flavor recognition of malt wort beverages fermented with lactic acid bacteria (Levilactobacillus brevis WiKim0194) isolated from kimchi, using metabolomic profiling and electronic tongue and nose technologies. Four sugars and five organic acids were detected using high-performance liquid chromatography, with maltose and lactic acid present in the highest amounts. Additionally, e-tongue measurements showed a significant increase in the sourness (AHS), sweetness (ANS), and umami (NMS) sensors, whereas bitterness (SCS) significantly decreased. Furthermore, 20 key aroma compounds were identified using gas chromatography-mass spectrometry and 15 key aroma flavors were detected using an electronic nose. Vanillin, citronellol, and β-damascenone exhibited significant differences in the flavor profile of the beverage fermented by WiKim0194, which correlated with floral, fruity, and sweet notes. Therefore, we suggest that an appropriate starter culture can improve sensory characteristics and predict flavor development in malt wort beverages.
Collapse
Affiliation(s)
- Moeun Lee
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daun Kim
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Republic of Korea
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Ji Yoon Chang
- Fermentation regulation research group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
- Institute of Smart Farm Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
12
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
13
|
Jiang J, Yin R, Xie Y, Ma X, Cui M, Chen Y, Li Y, Hu Y, Niu J, Cheng W, Gao F. Effects of cofermentation of Saccharomyces cerevisiae and different lactic acid bacteria on the organic acid content, soluble sugar content, biogenic amines, phenol content, antioxidant activity and aroma of prune wine. Food Chem X 2024; 22:101502. [PMID: 38872720 PMCID: PMC11170353 DOI: 10.1016/j.fochx.2024.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
To determine the effect of cofermentation of Saccharomyces cerevisiae and different LABs on prune wine quality, this study compared phenolic compounds, organic acids, soluble sugars, biogenic amines and volatile flavor compounds among different treatments. The results showed that inoculation of LAB increased DPPH and total flavonoid content. Malic acid content was reduced in HS, HB and HF. Histamine content in S, F and B was lower than the limits in French and Australian wines. 15 phenolic compounds were identified. Yangmeilin and chlorogenic acid were detected only in HS, HF and HB. 51 volatile flavor compounds were identified, esters being the most diverse and abundant. 14 volatile flavor compounds with OAV > 1 contributed highly to the aroma of prune wine. 9 chemical markers including resveratrol, rutin, and catechin were screened to explain intergroup differences by OPLS-DA. This study provides new insights into the processing and quality analysis of prunes.
Collapse
Affiliation(s)
| | | | - Yun Xie
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaomei Ma
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Miao Cui
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yiwen Chen
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yongkang Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yue Hu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jianming Niu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Weidong Cheng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
14
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
15
|
Guo K. Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules 2024; 29:1035. [PMID: 38474547 DOI: 10.3390/molecules29051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.
Collapse
Affiliation(s)
- Kaihua Guo
- Department of Biology and Food Engineering, LyuLiang University, Lvliang 033000, China
| |
Collapse
|
16
|
Zhao W, Ruan F, Qian M, Huang X, Li X, Li Y, Bai W, Dong H. Comparing the differences of physicochemical properties and volatiles in semi-dry Hakka rice wine and traditional sweet rice wine via HPLC, GC-MS and E-tongue analysis. Food Chem X 2023; 20:100898. [PMID: 38144730 PMCID: PMC10739914 DOI: 10.1016/j.fochx.2023.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to explore effects of indica rice addition, rice soaking time and rice soup addition on total sugar and alcohol content of semi-dry Hakka rice wine (HRW) and compare its difference in physicochemical properties and volatiles with traditional sweet rice wine (TSRW) via HPLC, GC-MS and E-tongue. The optimal fermentation conditions of semi-dry HRW were 50 % indica rice addition, 12 h rice soaking time and 85 % rice soup addition. The total sugar (16.13 mg/mL) of semi-dry HRW was significantly lower than that of TSRW (135.79 mg/mL), especially the trehalose, glucose, sucrose and maltose. Its alcohol content was significantly higher than that of TSRW. There were significant differences in volatile components between semi-dry HRW and TSRW, especially esters, alcohols and ketones, but no significant differences in organic acids and amino acids. Results obtained could provide reference data for improving the fermentation process and quality of semi-dry HRW.
Collapse
Affiliation(s)
- Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Fengxi Ruan
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaoyuan Huang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Yanxin Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| |
Collapse
|
17
|
Bas-Bellver C, Barrera C, Betoret N, Seguí L. Impact of Fermentation Pretreatment on Drying Behaviour and Antioxidant Attributes of Broccoli Waste Powdered Ingredients. Foods 2023; 12:3526. [PMID: 37835180 PMCID: PMC10572841 DOI: 10.3390/foods12193526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Valorisation of fruit and vegetable wastes by transforming residues and discards into functional powdered ingredients has gained interest in recent years. Moreover, fermentation has been recalled as an ancient technology available to increase the nutritional value of foods. In the present work, the impact of pretreatments (disruption and fermentation) on drying kinetics and functional properties of powdered broccoli stems was studied. Broccoli stems fermented with Lactiplantibacillus plantarum and non-fermented broccoli stems were freeze-dried and air-dried at different temperatures. Drying kinetics were obtained and fitted to several thin layer mathematical models. Powders were characterized in terms of physicochemical and antioxidant properties, as well as of probiotic potential. Fermentation promoted faster drying rates and increased phenols and flavonoids retention. Increasing drying temperature shortened the process and increased powders' antioxidant activity. Among the models applied, Page resulted in the best fit for all samples. Microbial survival was favoured by lower drying temperatures (air-drying at 50 °C and freeze-drying). Fermentation and drying conditions were proved to determine both drying behaviour and powders' properties.
Collapse
Affiliation(s)
| | - Cristina Barrera
- Institute of Food Engineering-FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (N.B.); (L.S.)
| | | | | |
Collapse
|
18
|
Kuerban D, Lu J, Huangfu Z, Wang L, Qin Y, Zhang M. Optimization of Fermentation Conditions and Metabolite Profiling of Grape Juice Fermented with Lactic Acid Bacteria for Improved Flavor and Bioactivity. Foods 2023; 12:2407. [PMID: 37372618 DOI: 10.3390/foods12122407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
To enrich the flavor compounds and retain the content of polyphenolics in grape juice (GJ) under long-term storage, Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lacticaseibacillus casei, and Lacticaseibacillus paracasei, were screened and the optimal fermentation conditions were determined as fermentation temperature of 41.2 °C for 24 h with an initial LAB density of 8.5 × 106 CFU/mL. Surprisingly, the retention rates of TPC still remained at 50% after storage for 45 days at 4 °C. Moreover, 251 different metabolites were identified, include 23 polyphenolics, 11 saccharides, and 9 organic acids. Most importantly, the total content of polyphenolics reserved was 92.65% at the end of fermentation. Among them, ephedrannin A content significantly decreased; however, 2',6'-Di-O-acetylononin gradually increased with the fermentation time, which resulted in FGJ maintaining excellent bioactivity. Meanwhile, organic acid content (palmitoylethanolamide, tetraacetylethylenediamine) increased with saccharides (linamarin) decreasing, which leads to FGJ having a unique taste. Furthermore, a total of 85 Volatile organic compounds (VOCs) were identified, mainly including esters, aldehydes, and alcohols. Interestingly, key VOCs could be formed by carboxylic acids and derivatives, and fatty acyls via complex metabolic pathways.
Collapse
Affiliation(s)
- Dilinu Kuerban
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jing Lu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Zekun Huangfu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
19
|
Duan Y, Yang H, Wei Z, Yang H, Fan S, Wu W, Lyu L, Li W. Effects of Different Nitrogen Forms on Blackberry Fruit Quality. Foods 2023; 12:2318. [PMID: 37372529 DOI: 10.3390/foods12122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
To study the optimal form of nitrogen (N) application and to determine the best harvest date for blackberries, different N fertilizers were applied during the critical growth period of blackberry plants. The results showed that NH4+-N significantly improved the appearance of blackberry fruits, including their size, firmness, and color, and promoted the accumulation of soluble solids, sugars, anthocyanin, ellagic acid, and vitamin C (VC), while fruit treated with NO3--N accumulated more flavonoids and organic acids and had improved antioxidant capacity. In addition, the fruit size, firmness, and color brightness decreased with the harvest period. While the contents of sugars, anthocyanin, ellagic acid, flavonoids, and VC were higher in the early harvests and then decreased as the season progressed, the total antioxidant capacity and DPPH radical scavenging capacity increased. In all, application of NH4+-N is recommended, as it is more beneficial to fruit appearance, taste, and nutritional quality. Harvests in the early stage help to obtain a good fruit appearance, while harvests in the middle and later stages are more beneficial to fruit taste and quality. This study may help growers to determine the best fertilization scheme for blackberries and choose the appropriate harvest time according to their needs.
Collapse
Affiliation(s)
- Yongkang Duan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Sufan Fan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
20
|
Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. Food Chem 2023; 408:135155. [PMID: 36528989 DOI: 10.1016/j.foodchem.2022.135155] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB) have exhibited strain/species specificity for different food matrices. We investigated the impact of LAB fermentation on the flavor, chemical profile, and bioactivity of goji juice. The colony counts of five selected strains reached above 8.5 log CFU/mL. The fermentation increased the organic acids, decreased the sugars, and improved the sensory quality of goji juice. The majority of the strains had increased acetic acid, heptanoic acid, ethyl phenylacetate, and linalool levels. Specific strains suppressed α-glucosidase and pancreatic lipase activities and increased the antioxidant activities of fermented goji juice. Based on non-targeted metabolomics and activities, 23 important differential metabolites were screened among 453 metabolites. The quantification results showed that isoquercitrin and m-coumaric content varied among strains, reflecting the strain specificity in flavone and flavonol biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis. These findings will provide useful information for fermented goji juice biochemistry research.
Collapse
|
21
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
22
|
Wu D, Xia Q, Huang H, Tian J, Ye X, Wang Y. Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice. Molecules 2023; 28:molecules28062446. [PMID: 36985418 PMCID: PMC10056822 DOI: 10.3390/molecules28062446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
When the total phenolic content (TPC) and antioxidant activity of sea buckthorn juice were assayed by spectrophotometry, the reaction solutions were not clarified, so centrifugation or membrane treatment was needed before determination. In order to find a suitable method for determining TPC and antioxidant activity, the effects of centrifugation and nylon membrane treatment on the determination of TPC and antioxidant activity in sea buckthorn juice were studied. TPC was determined by the Folin-Ciocalteau method, and antioxidant activity was determined by DPPH, ABTS, and FRAP assays. For Treatment Method (C): the sample was centrifuged for 10 min at 10,000 rpm and the supernatant was taken for analysis. Method (CF): The sample was centrifuged for 10 min at 4000 rpm, filtered by Nylon 66 filtration membranes with pore size of 0.22 μm, and taken for analysis. Method (F): the sample was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and taken for analysis. Method (N): after the sample of ultrasonic extract solution reacted completely with the assay system, the reaction solution was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and colorimetric determination was performed. The results showed that centrifugation or transmembrane treatment could affect the determination of TPC and antioxidant activity of sea buckthorn juice. There was no significant difference (p > 0.05) between methods (CF) and (F), while there was a significant difference (p < 0.05) between methods (C) (F) (N) or (C) (CF) (N). The TPC and antioxidant activity of sea buckthorn juice determined by the four treatment methods showed the same trend with fermentation time, and the TPC and antioxidant activity showed a significant positive correlation (p < 0.05). The highest TPC or antioxidant activity measured by method (N) indicates that method (N) has the least loss of TPC or antioxidant activity, and it is recommended for sample assays.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (D.W.); (Y.W.); Tel./Fax: +86-0571-8898-2156 (D.W.); +86-0571-8775-5294 (Y.W.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Wang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Academy of Forestry, Hangzhou 310023, China
- Correspondence: (D.W.); (Y.W.); Tel./Fax: +86-0571-8898-2156 (D.W.); +86-0571-8775-5294 (Y.W.)
| |
Collapse
|
23
|
Yan XT, Zhang Z, Wang Y, Zhang W, Zhang L, Liu Y, Chen D, Wang W, Ma W, Qian JY, Gu R. Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:7. [PMID: 36742290 PMCID: PMC9883607 DOI: 10.1186/s13765-022-00762-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED The ability of natural plants to treat chronic diseases is closely related to their antioxidant function. Lactic acid bacteria (LAB) fermentation is an effective way to improve the nutritional value, biological activity and flavor of food. This study investigated the pH, titratable acidity, total polysaccharide, total flavone, total saponin, total polyphenol, and antioxidant activity of the FH06 beverage before and after probiotic fermentation. Results: After fermentation, FH06 had lower contents of total polysaccharides, total flavonoids, total saponins and total polyphenols but higher titratable acidity. The antioxidant activity was tested by total antioxidant capacity (FRAP method) and DPPH· scavenging ability. The FRAP value significantly increased after fermentation (P < 0.05), and the maximum increase was observed for Lactobacillus fermentum grx08 at 25.87%. For DPPH· scavenging ability, the value of all fermentations decreased, and L. fermentum grx08 had the smallest reduction at 2.21% (P < 0.05). The results of GC-MS and sensory analysis showed that fermentation eliminated bad flavors, such as grass, cassia and bitterness, and highlighted the fruit aroma and soft sour taste. Conclusion: The FRAP value and sensory flavor of FH06 fermentation by L. fermentum grx08 were significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-022-00762-2.
Collapse
Affiliation(s)
- Xian-Tao Yan
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
- Department of Cuisine and Nutrition, Hanshan Normal University, Chaozhou, People’s Republic of China
| | - Ziqi Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yubao Wang
- Tourism College of Zhejiang, Hangzhou, People’s Republic of China
| | - Wenmiao Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Longfei Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yang Liu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Dawei Chen
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenqiong Wang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenlong Ma
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Jian-Ya Qian
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Ruixia Gu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| |
Collapse
|
24
|
Ma J, Wang Y, Zhao M, Tong P, Lv L, Gao Z, Liu J, Long F. High Hydrostatic Pressure Treatments Improved Properties of Fermentation of Apple Juice Accompanied by Higher Reserved Lactobacillus plantarum. Foods 2023; 12:foods12030441. [PMID: 36765970 PMCID: PMC9913918 DOI: 10.3390/foods12030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
This study aimed to assess the feasibility of high hydrostatic pressure (HHP) treatment to obtain high quality juice, and prepared functional apple juice using fermentation technology. The physicochemical properties of HHP (10 min) pasteurized and pasteurized (85 °C, 15 min) apple juices were compared during fermentation. Moreover, the survival of Lactobacillus plantarum after fermentation under simulated gastrointestinal conditions was evaluated. Results showed that HHP-treated apple juice had better properties than that of pasteurized in terms of color difference, total phenol content, and antioxidant activity. After fermentation, about 2.00 log CFU/mL increase in viability of cells was observed and there was around 0.8 reduction in pH value, and the antioxidant capacities were also significantly improved. Additionally, the content of caffeic acid, ferulic acid, and chlorogenic acid significantly increased after 24 h of fermentation. The survival of Lactobacillus plantarum in simulated gastric fluid reached 97.37% after fermentation. Overall, HHP treatment is expected to be a substitute technology to pasteurization in order to obtain higher quality fermented fruit juice. This study could also be helpful for exploitation of fermented juice.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yu Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Mengya Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Liuqing Lv
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel./Fax: +86-29-87092486
| |
Collapse
|
25
|
The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Value-added utilization of pineapple waste is very import for the food industry and environmental protection. In this study, whey protein (2.6%, w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics. Autochthonous Lactococcus lactis LA5 and Hanseniaspora opuntiae SA2 were used for the co-inoculation of pineapple by-products; during fermentation, the metabolite profiling and microbial community dynamics were investigated. Results showed that the contents of organic acids, total FAAs, total phenolic compounds and flavonoids significantly increased with fermentation, and 152 kinds of peptides were identified in the final products. Relevant analyses demonstrated that dominant strains including Lactococcus lactis, Hanseniaspora and Saccharomyces not only significantly promoted the accumulation of organic acids, total phenols and other active substances, but also inhibited the growth of pathogenic bacteria and further influenced the fermentation process of pineapple waste.
Collapse
|
26
|
Liang JR, Deng H, Hu CY, Zhao PT, Meng YH. Vitality, fermentation, aroma profile, and digestive tolerance of the newly selected Lactiplantibacillus plantarum and Lacticaseibacillus paracasei in fermented apple juice. Front Nutr 2022; 9:1045347. [PMID: 36562036 PMCID: PMC9764440 DOI: 10.3389/fnut.2022.1045347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background To enrich the probiotic lactic acid bacteria (LAB) strains and expand the commercialization of new fermented juice products, we have identified two LAB strains with excellent potential in fermenting apple juice from pickles. Methods The two strains were morphologically, physiologically, and genetically characterized. The strains' fermentation performance and alterations in volatile aroma components of apple juice and ability to survive in a simulated gastrointestinal environment were evaluated. Results Two strains were identified as Lacticaseibacillus paracasei (WFC 414) and Lactiplantibacillus plantarum (WFC 502). The growth of WFC 414 and WFC 502 in apple juice for 48 h reached 8.81 and 9.33 log CFU/mL, respectively. Furthermore, 92% and 95% survival rates were achieved in 2 h simulated gastric juice, and 80.7 and 83.6% survival rates in 4 h simulated intestinal juice. During the fermentation, WFC 414 and WFC 502 reduced the soluble sugars and total polyphenols in apple juice, and consumed malic acid to produce large amounts of lactic acid (3.48 and 5.94 mg/mL). In addition, the esters and aldehydes were reduced, and the production of alcohols, acids and ketones was elevated in the apple juice fermented by both strains. Conclusion These results show that WFC 414 and WFC 502 have great potential applications in the fermented fruit juice industry.
Collapse
Affiliation(s)
- Jia Rui Liang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an, China
| | - Hong Deng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an, China,*Correspondence: Hong Deng,
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an, China,Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Peng Tao Zhao
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an, China
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an, China,Yong Hong Meng,
| |
Collapse
|
27
|
Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Influence on the aroma substances and functional ingredients of apple juice by lactic acid bacteria fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Hot Air Drying of Seabuckthorn ( Hippophae rhamnoides L.) Berries: Effects of Different Pretreatment Methods on Drying Characteristics and Quality Attributes. Foods 2022; 11:foods11223675. [PMID: 36429267 PMCID: PMC9689206 DOI: 10.3390/foods11223675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Seabuckthorn berries are difficult to dry because the outermost surface is covered with a dense wax layer, which prevents moisture transfer during the drying process. In this study, uses of ultrasonic-assisted alkali (UA), pricking holes in the skin (PH) and their combination (UA + PH) as pretreatment methods prior to hot air drying and their effects on drying characteristics and quality attributes of seabuckthorn berries were investigated. Selected properties include color, microstructure, rehydration capacity, as well as total flavonoids, phenolics and ascorbic acid contents. Finally, the coefficient of variation method was used for comprehensive evaluation. The results showed that all pretreatment methods increased the drying rate; the combination of ultrasonic-assisted alkali (time, 15 min) and pricking holes (number, 6) (UA15 + PH6) had the highest drying rate that compared with the control group, the drying time was shortened by 33.05%; scanning electron microscopy images revealed that the pretreatment of UA could dissolve the wax layer of seabuckthorn berries, helped to form micropores, which promoted the process of water migration. All the pretreatments reduced the color difference and increased the lightness. The PH3 samples had the highest value of vitamin C content (54.71 mg/100 g), the UA5 and PH1 samples had the highest value of total flavonoid content (11.41 mg/g) and total phenolic content (14.20 mg/g), respectively. Compared to other pretreatment groups, UA15 + PH6 achieved the highest quality comprehensive score (1.013). Results indicate that UA15 + PH6 treatment is the most appropriate pretreatment method for improving the drying characteristics and quality attributes of seabuckthorn berries.
Collapse
|
30
|
Wu D, Xia Q, Cheng H, Zhang Q, Wang Y, Ye X. Changes of Volatile Flavor Compounds in Sea Buckthorn Juice during Fermentation Based on Gas Chromatography-Ion Mobility Spectrometry. Foods 2022; 11:3471. [PMID: 36360085 PMCID: PMC9655934 DOI: 10.3390/foods11213471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Sea buckthorn is rich in polyphenolic compounds with antioxidant activities. However, it is very sour, and its odor is slightly unpleasant, so it requires flavor improvement. Fermentation is one potential method. Sea buckthorn juice was fermented at 37 °C for 72 h and then post-fermented at 4 °C for 10 days. The flavor-related properties of the sea buckthorn juice were evaluated during fermentation, including the pH, total soluble solids (TSS), color, sensory evaluation, and volatile flavors. The sea buckthorn fermented juice had a low pH. The total soluble solids decreased from 10.60 ± 0.10% to 5.60 ± 0.12%. The total color change was not more than 20%. Fermentation increased the sweet odor of the sea buckthorn juice, but the fruity flavor decreased and the bitter flavor increased. A total of 33 volatile flavors were identified by headspace gas chromatography-ion mobility spectrometry (GC-IMS), including 24 esters, 4 alcohols, 4 terpenes, and 1 ketone. Their total relative contents were 79.63-81.67%, 10.04-11.76%, 1.56-1.22%, and 0.25-0.55%, respectively. The differences in the characteristic volatile molecular species of the sea buckthorn juice at different fermentation stages could be visually discerned using fingerprint maps. Through principal component analysis (PCA), the total flavor difference of the sea buckthorn juice at different fermentation stages could be effectively distinguished into three groups: the samples fermented for 0 h and 12 h were in one group, the samples fermented for 36 h, 48 h, 60 h, and 72 h were in another group, and the samples fermented for 24 h were in another group. It is suggested that sea buckthorn juice be fermented for 36 h to improve its flavor. GC-IMS and PCA are effective methods of identifying and distinguishing the flavor characteristics of sea buckthorn juice. The above results can provide a theoretical basis for studying the changes in sea buckthorn's characteristics as a result of fermentation, particularly with regard to its flavor.
Collapse
Affiliation(s)
- Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qile Xia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Post-Harvest Handling of Fruits, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Zhang J, Fang L, Huang X, Ding Z, Wang C. Evolution of polyphenolic, anthocyanin, and organic acid components during coinoculation fermentation (simultaneous inoculation of LAB and yeast) and sequential fermentation of blueberry wine. J Food Sci 2022; 87:4878-4891. [PMID: 36258662 DOI: 10.1111/1750-3841.16328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
This research aims to investigate the effects of both sequential fermentation and coinoculation fermentation with yeast and lactic acid bacterial (LAB) on the dynamics of changes in basic quality parameters and organic acid, anthocyanin, and phenolic components as well as antioxidant activity during the fermentation of blueberry. The coculture-fermented blueberry wine showed significant decreases in total phenolics, flavonoids, and anthocyanins,by 23.9%, 15.9%, and 13.7%, respectively, as compared with those before fermentation Fermentation changed the contents of organic acids in each group, with a more than 7-fold increase in lactic acid contents as well as a more than 4-fold reduction in quinic acid and malic acid contents. The content of all investigated anthocyanins first increased and then decreased. Moreover, different fermentation strategies exerted a profound influence on the dynamic change in phenolic components during fermentation; specifically, most of the phenolic acids showed a trend of increasing first, then decreasing, and finally increasing. Gallic acid, p-coumaric acid, quercetin, and myricetin were increased by 116.9%, 130.1%, 127.2% and 177.6%, respectively, while syringic acid, ferulic acid, cinnamic acid, and vanillic acid were decreased by 49.5%, 68.5%, and 37.1% in sequentially fermented blueberry wine. Coinoculation fermentation with yeast and LAB produces faster dynamic variations and higher organic acid, anthocyanin, and phenolic profiles than sequential inoculation fermentation. PRACTICAL APPLICATION: In this work, brewing technology of sequential fermentation and coinoculation fermentation with yeast and LAB (Lactobacillus plantarum SGJ-24 and Oenococcus oeni SD-2a) was adopted to ferment blueberry wine. This is an innovative technology of fruit wine brewing technology to produce wine products. Compared with traditional sequential brewing, simultaneous inoculation brewing can significantly accelerate the brewing process of fruit wine and slightly improve the quality of fruit wine in terms of active ingredients.
Collapse
Affiliation(s)
- Jigang Zhang
- School of Biological Food and Environment, Hefei University, Hefei, People's Republic of China
| | - Ling Fang
- Tongling Testing Center for Food and Drug Control, Tongling City, People's Republic of China
| | - Xudong Huang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, People's Republic of China
| | - Zhien Ding
- Department of Biological and Food Engineering, Bozhou University, Bozhou City, People's Republic of China
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, People's Republic of China
| |
Collapse
|
32
|
Flavor and Functional Analysis of Lactobacillus plantarum Fermented Apricot Juice. FERMENTATION 2022. [DOI: 10.3390/fermentation8100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The small white apricot is a juicy, delicious fruit with a short shelf life. Slight fermentation can significantly promote the flavors and nutrient value of apricot juice. This study used high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS) to examine the physicochemical properties, nutritive value and flavor substances of apricot juice fermented by Lactobacillus plantarum LP56. Fermentation significantly increased lactic acid bacteria (LAB) and their product lactic acid, adding probiotic benefits to fermented apricot juice. In addition, the total phenolic compounds and antioxidant capacity increased, while the levels of soluble solids and organic acids decreased. Gallic acid, 3-caffeoylquinic acid and rutin mainly contributed to the antioxidant activity of fermented apricot juice. Alcohols, aldehyde, acid, ester, etc., were the main volatile compounds. Among the flavors, 12 substances with high odor activity values (OAV > 1) were the key aroma-producing compounds with fruit, pine and citrus flavors. In conclusion, this study shows that L. plantarum LP56 fermentation can improve the nutritional value and aroma characteristics of apricot juice.
Collapse
|
33
|
Yang W, Liu J, Zhang Q, Liu H, Lv Z, Zhang C, Jiao Z. Changes in nutritional composition, volatile organic compounds and antioxidant activity of peach pulp fermented by lactobacillus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Chu H, Zhang Z, Zhong H, Yang K, Sun P, Liao X, Cai M. Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. MEMBRANES 2022; 12:808. [PMID: 36005724 PMCID: PMC9414217 DOI: 10.3390/membranes12080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This study is to evaluate the athermal forward osmosis (FO) concentration process of blueberry juice using food additives as a draw solution (DS). The effects of food additives, including citric acid, sodium benzoate, and potassium sorbate, on the concentration processes are studied, and their effects on the products and membranes are compared. Results show that all these three food additives can be alternative DSs in concentration, among which citric acid shows the best performance. The total anthocyanin content (TAC) of blueberry juice concentrated by citric acid, sodium benzoate, and potassium sorbate were 752.56 ± 29.04, 716.10 ± 30.80, and 735.31 ± 24.92 mg·L-1, respectively, increased by 25.5%, 17.8%, and 19.9%. Meanwhile, the total phenolic content (TPC) increased by 21.0%, 10.6%, and 16.6%, respectively. Citric acid, sodium benzoate, and potassium sorbate all might reverse into the concentrated juice in amounts of 3.083 ± 0.477, 1.497 ± 0.008, and 0.869 ± 0.003 g/kg, respectively. These reversed food additives can make the TPC and TAC in juice steadier during its concentration and storage. Accordingly, food additives can be an excellent choice for DSs in the FO concentration process of juices, not only improving the concentration efficiency but also increasing the stability of blueberry juice.
Collapse
Affiliation(s)
- Haoqi Chu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Zhihan Zhang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Huazhao Zhong
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou 310014, China
| |
Collapse
|
35
|
Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that provides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respectively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antioxidant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buckthorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.
Collapse
|
36
|
Ma Q, Guan Y, Sang Z, Dong J, Wei R. Isolation and characterization of auronlignan derivatives with hepatoprotective and hypolipidemic activities from the fruits of Hippophae rhamnoides L. Food Funct 2022; 13:7750-7761. [PMID: 35762868 DOI: 10.1039/d2fo01079h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fruit of Hippophae rhamnoides L. is not only used as delicious food with nutritional values, but also served as traditional Chinese medicine with multiple bioactivities. In order to find structurally interesting and bioactive isolates from the fruits of H. rhamnoides L., a bioassay-guided investigation was applied to seek the hepatoprotective and hypolipidemic ingredients in this study. As a result, three new (10 → 10'')-biauronlignans (1-3), three new 10-(4''-hydroxy-benzyl)-auronlignans (4-6), three new 10-O-β-D-glucopyranosyl-auronlignans (7-9), and eleven known auronlignan derivatives (10-20) were isolated from the fruits of H. rhamnoides L. for the first time, and their structures were determined by extensive and comprehensive IR, UV, NMR, MS spectral analyses and compared with the reported references. Among them, compounds 1, 4, 7, 11, 15, and 19 showed moderate hepatoprotective activities against the damage in acetaminophen-induced HepG2 cells; compounds 2, 5, 8, and 12 exhibited moderate inhibition of pancreatic lipase activity, and decreased the moderately FFA-induced lipid accumulation in HepG2 liver cells. The plausible biogenetic pathway and preliminary structure-activity relationship of the selected compounds are scientifically summarized and discussed in this study.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yang Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China. .,School of Pharmaceutical Sciences, Hanan University, Haikou 570228, China
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongrui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
37
|
Zhang M, Wang X, Wang X, Han M, Li H, Yue T, Wang Z, Gao Z. Effects of fermentation with Lactobacillus fermentum 21828 on the nutritional characteristics and antioxidant activity of Lentinus edodes liquid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3405-3415. [PMID: 34825372 DOI: 10.1002/jsfa.11688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies to date have evaluated the use of Lactobacillus and Bifidobacterium in edible fungus fermentation. To obtain a fermented Lentinus edodes liquid product with good taste and effects, a strain with good fermentation performance from nine strains tested was selected, and the physicochemical properties and antioxidant capacity of the resulting product were evaluated. RESULTS Lactobacillus fermentum 21828 exhibited adhesion, tolerance to low pH and bile salts, and good fermentation performance. The number of viable bacteria was 1.05 × 108 CFU mL-1 , and the extraction rate of crude polysaccharide from L. edodes was 2.79% after fermentation. The effects of fermentation on the contents and composition of nutrients in L. edodes liquid were marked, with changes in total soluble protein, total soluble sugar, total acid, and total phenol levels. The 2,2-diphenyl-1-picrylhydrazyl radical-scavenging rate in the fermentation liquid was 93.01%, which was significantly higher than that in non-fermented liquid (80.33%). Furthermore, analysis of volatile and 5'-nucleotide contents showed that fermentation altered the flavor of the product, whereas sensory evaluation showed that the fermented product was preferred. CONCLUSION Our study demonstrated that the fermented L. edodes liquid exhibited better nutritional and functional properties, as well as sensory characteristics, compared with unfermented liquid. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meina Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaowei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
38
|
Jabłońska-Ryś E, Sławińska A, Skrzypczak K, Goral K. Dynamics of Changes in pH and the Contents of Free Sugars, Organic Acids and LAB in Button Mushrooms during Controlled Lactic Fermentation. Foods 2022; 11:1553. [PMID: 35681303 PMCID: PMC9180291 DOI: 10.3390/foods11111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the study was to assess changes in the basic quality parameters induced by controlled lactic fermentation of fruiting bodies of the button mushroom (Agaricus bisporus). Lactiplantibacillus plantarum 299v with documented probiotic properties and L. plantarum EK3, i.e., an isolate obtained from spontaneously fermented button mushrooms, were used as starter strains. The fruiting bodies of fresh, blanched, and fermented mushrooms were analyzed at different stages of the lactic fermentation process. The content of free sugars (high-performance liquid chromatography with charged aerosol detector method; HPLC-CAD) and organic acids (high-performance liquid chromatography with diode array detector method; HPLC-DAD) was determined both in the mushroom fruiting bodies and in the brine. Five free sugars (ribose, trehalose, sucrose, glucose, and fructose), mannitol, and six organic acids (lactic, malic, succinic, citric, acetic, and fumaric acids) were detected in the samples. Lactic acid dominated in the final products. The starter cultures exhibited varying degrees of utilization of available mushroom sugars and sucrose used as an additional substrate. Sucrose was utilized at a higher rate and in greater amounts by the L. plantarum EK3 isolate. This starter culture was characterized by a significantly higher final amount of produced lactic acid, a lower pH value, and higher numbers of LAB (lactic acid bacteria). These important quality parameters largely determine the stability of fermented products. Based on the analysis results and the high scores in the organoleptic evaluation of the fermented mushrooms, the L. plantarum EK3 isolate can be recommended as an appropriate starter culture for lactic fermentation of mushroom fruiting bodies.
Collapse
Affiliation(s)
- Ewa Jabłońska-Ryś
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.S.); (K.S.)
| | - Aneta Sławińska
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.S.); (K.S.)
| | - Katarzyna Skrzypczak
- Department of Plant Food Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.S.); (K.S.)
| | - Karolina Goral
- Clinical Dietetics Unit, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland;
| |
Collapse
|
39
|
Impact of UHT processing on volatile components and chemical composition of sea buckthorn (Hippophae rhamnoides) pulp: A prediction of the biochemical pathway underlying aroma compound formation. Food Chem 2022; 390:133142. [PMID: 35551024 DOI: 10.1016/j.foodchem.2022.133142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The effects of ultrahigh-temperature sterilization (UHT) on the volatile components and chemical composition of sea buckthorn pulp (SBP) were evaluated firstly. UHT had significant effects on the volatiles of SBP (mainly occurring at 140 °C for 2 s and 4 s), in which 140 °C for 2 s resulted in a decrease of 3.48% and 14.60% in total volatiles and esters, and an increase of 6.73% in alcohols, while alcohols contents sharply decreased by 6.90% at 140 °C for 4 s. Moreover, 140 °C for 2 s and 4 s decreased the amino acid content by 35.39% and 29.75%, respectively, while UHT significantly promoted the increase of fatty acids, but only a small increase at 140 °C for 4 s. The speculation is that a large number of volatiles were formed during the 140 °C for 2 s and 4 s, mainly from amino acid reactions and lipid oxidation.
Collapse
|
40
|
Li Z, Xie S, Sun B, Zhang Y, Liu K, Liu L. Effect of
KCl
replacement of
NaCl
on fermentation kinetics, organic acids and sensory quality of sauerkraut from Northeast China. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Shuangyu Xie
- College of Food Science Northeast Agricultural University Harbin China
| | - Bo Sun
- College of Food Science Northeast Agricultural University Harbin China
| | - Yu Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Kai Liu
- College of Food Science Northeast Agricultural University Harbin China
| | - Li Liu
- Heilongjiang Institute for Drug Control affiliated to Heilongjiang Medical Products Administration Heilongjiang Province People’s Government Harbin China
| |
Collapse
|
41
|
Liu Y, Sheng J, Li J, Zhang P, Tang F, Shan C. Influence of lactic acid bacteria on physicochemical indexes, sensory and flavor characteristics of fermented sea buckthorn juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
da Silva MCS, da Luz JMR, Veloso TGR, Gomes WDS, Oliveira ECDS, Anastácio LM, Cunha Neto A, Moreli AP, Guarçoni RC, Kasuya MCM, Pereira LL. Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03980-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Li N, Cui R, Zhang F, Meng X, Liu B. A novel enzyme from Rhodotorula mucilaginosa Aldolase: isolation, identification and degradation for patulin in apple juice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Tkacz K, Gil-Izquierdo Á, Medina S, Turkiewicz IP, Domínguez-Perles R, Nowicka P, Wojdyło A. Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:185-197. [PMID: 34061348 DOI: 10.1002/jsfa.11345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Juices are currently a fast-growing segment in the fruit and vegetable industry sector. However, there are still no reports on the diversity of the phytochemical profile and health-promoting properties of commercial sea buckthorn (Hippophaë rhamnoides) juices. This study aimed to identify and quantify phytoprostanes, phytofurans by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), tocopherols, tocotrienols by ultra-performance liquid chromatography coupled with a fluorescence detector (UPLC-FL), carotenoids, and free amino acids by ultra-performance liquid chromatography coupled with a photodiode detector-quadrupole and tandem time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS), and assess their anti-cholinergic, anti-diabetic, anti-obesity, anti-inflammatory, and antioxidant potential by in vitro assays of commercial sea buckthorn juices. RESULTS Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in sea buckthorn juices were identified for the first time. Juices contained eight F1 -, D1 -, B1 - and L1 -phytoprostanes and one phytofuran (32.31-1523.51 ng and up to 101.47 μg/100 g dry weight (DW)), four tocopherol congeners (22.23-94.08 mg 100 g-1 DW) and three tocotrienols (5.93-25.34 mg 100 g-1 DW). Eighteen carotenoids were identified, including ten xanthophylls, seven carotenes and phytofluene, at a concentration of 133.65 to 839.89 mg 100 g-1 DW. Among the 20 amino acids (175.92-1822.60 mg 100 g-1 DW), asparagine was dominant, and essential and conditionally essential amino acids constituted 11 to 41% of the total. The anti-enzyme and antioxidant potential of juices correlated selectively with the composition. CONCLUSION Sea buckthorn juice can be a valuable dietary source of vitamins E and A, oxylipins and amino acids, used in the prevention of metabolic syndrome, inflammation, and neurodegenerative processes. The differentiation of the composition and the bioactive potential of commercial juices indicate that, for the consumer, it should be important to choose juices from the declared berry cultivars and crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
45
|
Zhao YS, Eweys AS, Zhang JY, Zhu Y, Bai J, Darwesh OM, Zhang HB, Xiao X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants (Basel) 2021; 10:2004. [PMID: 34943107 PMCID: PMC8698425 DOI: 10.3390/antiox10122004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
This review reports on the effects of fermentation on the chemical constituents and antioxidant activity of plant-based food materials. Fermentation involves a series of reactions that modify the chemical components of the substrate. It could be considered a tool to increase the bioactive compounds and functional properties of food plant materials. Oxidative damage is key to the progression of many human diseases, and the production of antioxidant compounds by fermentation will be helpful to reduce the risk of these diseases. Fermentation also can improve antioxidant activity given its association with increased phytochemicals, antioxidant polysaccharides, and antioxidant peptides produced by microbial hydrolysis or biotransformation. Additionally, fermentation can encourage the breakdown of plant cell walls, which helps to liberate or produce various antioxidant compounds. Overall, results indicated that fermentation in many cases contributed to enhancing antioxidants' content and antioxidant capacity, supporting the fermentation use in the production of value-added functional food. This review provides an overview of the factors that impact the effects of fermentation on bioactive compound composition and antioxidant activity. The impacts of fermentation are summarized as a reference to its effects on food plant material.
Collapse
Affiliation(s)
- Yan-Sheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Aya Samy Eweys
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Jia-Yan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| | - Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt;
| | - Hai-Bo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443004, China;
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.-S.Z.); (A.S.E.); (J.-Y.Z.); (Y.Z.); (J.B.)
| |
Collapse
|
46
|
Preparation and aroma analysis of flavonoid-rich ginkgo seeds fermented using rice wine starter. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Ding J, Ruan C, Guan Y, Li H, Du W, Lu S, Wen X, Tang K, Chen Y. Nontargeted metabolomic and multigene expression analyses reveal the mechanism of oil biosynthesis in sea buckthorn berry pulp rich in palmitoleic acid. Food Chem 2021; 374:131719. [PMID: 34875440 DOI: 10.1016/j.foodchem.2021.131719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sea buckthorn berry pulp (SBP) oil is abundant in palmitoleic acid (C16:1). However, metabolic mechanisms of oil biosynthesis in SBP (non-seed tissues) are not clear. Thus, comparative nontargeted metabolomic analysis of the four developmental stages of berry pulp in two lines, Za56 and TF2-36, was performed. The results revealed that glycerol-3-phosphate (G3P) was critical for high oil accumulation in the mid-early developmental stages. In particular, the metabolism of phosphatidylcholine (PC) (16:0/16:0), PC (16:0/16:1), and PC (16:1/16:1) was also significantly altered. Sufficient supply of G3P and 16:1-CoA, coupled with upregulated expression of the glycerol-3-phosphate dehydrogenase (GPD1) and delta-9 desaturase (Δ9D) genes, were associated with high oil content enriched in C16:1 in SBP. Our results provide a scientific basis for the development of metabolic engineering strategies to increase the oil content in SBP with a high level of C16:1.
Collapse
Key Words
- Berry pulp oil
- Choline, PubChem CID: 305
- Gene expression
- Glycerol, PubChem CID: 753
- Glycerol-3-phosphate
- Glycerol-3-phosphate, PubChem CID: 754
- Glycerophosphocholine, PubChem CID: 439285
- Lysophosphatidycholine (16:0), PubChem CID: 10097314
- Nontargeted metabolomics
- Palmitic acid, PubChem CID: 985
- Palmitoleic acid
- Palmitoleic acid, PubChem CID: 445638
- Phosphatidylcholine (16: 1/16: 1), PubChem CID: 24778764
- Phosphatidylcholine (16:0/160), PubChem CID: 3032281
- Phosphatidylcholine (16:0/161), PubChem CID: 6443788
- Sea buckthorn
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Ying Guan
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Shunguang Lu
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing 100000, China
| | - Xiufeng Wen
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing 100000, China
| | - Ke Tang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ye Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
48
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
49
|
Li S, Tao Y, Li D, Wen G, Zhou J, Manickam S, Han Y, Chai WS. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. CHEMOSPHERE 2021; 276:130090. [PMID: 33740651 DOI: 10.1016/j.chemosphere.2021.130090] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 05/10/2023]
Abstract
In this study, 4 Lactobacillus plantarum strains and 5 Lactobacillus fermentum strains adapting well to the unfavorable fruit system were isolated under different fruit environments. The fermentation ability of these autochthonous lactic acid bacteria (LAB) strains in blueberry juice, and the influence of microbial metabolism on juice composition were explored. After 48 h of fermentation, the viable cell counts exceeded 10.0 log CFU/mL, malic acid content decreased from 511.47 ± 10.50 mg/L to below 146.38 ± 3.79 mg/L, and lactic acid content increased from 0 mg/L to above 2184.90 ± 335.80 mg/L. Moreover, the metabolism of these strains exerted a profound influence on the phenolic composition of juice. Total phenolic content in blueberry juice increased by 6.1-81.2% under lactic acid fermentation, and the antioxidant capacity in vitro enhanced by at least 34.0%. Anthocyanin content showed a declining trend, while the profile of non-anthocyaninic phenolics exhibited complex changes. The increments of rutin, myricetin and gallic acid contents through 48 h lactic acid fermentation exceeded 136%, 71% and 38%, respectively. Instead, the contents of p-hydroxybenzoic acid and caffeic acid decreased with fermentation. Overall, Lactobacillus plantarum LSJ-TY-HYB-T9 and LSJ-TY-HYB-T7, and Lactobacillus fermentum LSJ-TY-HYB-C22 and LSJ-TY-HYB-L16 could be the suitable strains to produce fermented fruit juices, including blueberry in practical applications.
Collapse
Affiliation(s)
- Sujin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhong Wen
- Blueberry Industry Development Service Center, Majiang, Guizhou, 557600, China
| | - Jianzhong Zhou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar SeCi Begawan BE1410, Brunei Darussalam
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wai Siong Chai
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
50
|
Guo Z, Ge X, Gou Q, Yang L, Han M, Han G, Yu QL, Han L. Changes in chilled beef packaged in starch film containing sea buckthorn pomace extract and quality changes in the film during super-chilled storage. Meat Sci 2021; 182:108620. [PMID: 34246834 DOI: 10.1016/j.meatsci.2021.108620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 01/30/2023]
Abstract
This study aimed to evaluate the effects of super-chilled storage (-1.3 °C) combined with starch film packaging containing different contents of sea buckthorn pomace extract (SSF, 0, 1, 2, and 3%, w/w) on the quality of chilled beef. The release kinetics, microstructure, and mechanical properties of the film were also measured to investigate its suitability for super-chilled storage. The results of the meat quality assessment showed that the L*, a*, and sensory evaluation values of the SSF-3% samples were significantly higher (P < 0.05), and the pH, b*, thiobarbituric acid reactive substance (TBARS), total volatile basic nitrogen (TVB-N), and total viable count (TCA) were significantly lower (P < 0.05) than the SSF-0%. The release of SBP from the SSF film was controlled by diffusion. Furthermore, SSF-3% was found to have a compact microstructure and good mechanical properties at the end of the super-chilled storage. The results demonstrated that SSF is an effective packaging material for beef at super-chilling temperatures.
Collapse
Affiliation(s)
- Zonglin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiaomin Gou
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Lihua Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Mingshan Han
- Inner Mongolia Horqin Cattle Industry Co. Ltd, Tongliao, China
| | | | - Qun-Li Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|