1
|
Liu Q, Ma S, Wang H, Zhu W, Peng S, Zou H, Zhang P, Li Z, Zhang Z, Lin H. Elucidating the cleavage patterns of allergenic epitopes of Parvalbumin by L. helveticus fermentation through cell envelope proteinase hydrolysis and computer simulation. Food Chem 2025; 482:144111. [PMID: 40179562 DOI: 10.1016/j.foodchem.2025.144111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Parvalbumin (PV) is recognized as a primary allergen in fish. Previous studies showed that L.helveticus Lh191404 reduces the immunogenicity of Atlantic cod through fermentation, primarily by producing cell envelope proteinase (CEP) to hydrolyze the substrate. However, the cleavage sites of allergenic epitopes during fermentation remained unclear. Peptidomic analysis revealed that the enzymatic hydrolysis process can serve as a proxy for the fermentation process to some extent. Both the fermentation and enzymatic hydrolysis groups contained cleavage sites located within the epitopes. Computer simulations demonstrated that the flexible region of PV is the optimal binding site for CEP. Ala4, Asp52, Gln69, Arg76, and Ala77 located within this flexible region were the cleavage sites in a simulated fermentation environment. The majority of the predicted cleavage sites aligned closely with those observed experimentally. MD simulation offers a framework for the targeted screening of LABs that can compromise the structural integrity of target proteins.
Collapse
Affiliation(s)
- Qingwen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Shuai Ma
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Shanyu Peng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Zou
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Pingyuan Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Wang Y, Cheng J, McClements DJ, Chen J, Ma D. A novel synergistic inhibition mechanism of pancreatic lipase by 2-mercaptobenzothiazole and stearic acid migrants from dairy contact rubbers. Food Chem 2025; 479:143816. [PMID: 40081066 DOI: 10.1016/j.foodchem.2025.143816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
This study explores the inhibitory effects of two migrants-2-mercaptobenzothiazole (MBT) and stearic acid-from dairy rubber contact materials on pancreatic lipase (PL). Enzyme assays showed significant, dose-dependent inhibition, with stearic acid being more potent. MBT and stearic acid exhibited reversible inhibition, with MBT acting competitively and stearic acid non-competitively. Fluorescence spectroscopy and circular dichroism indicated conformational changes in PL upon binding, while molecular docking confirmed specific interactions at the active site (MBT) and near it (stearic acid). Binding affinities for MBT-PL and stearic acid-PL complexes were - 24.90 and - 20.23 kJ/mol, respectively. High concentrations of both compounds exhibited synergistic inhibition, potentially affecting lipid digestion in dairy products. This study highlights the influence of rubber-derived migrants on PL activity and suggests limiting their use in food contact materials to safeguard dairy nutritional quality.
Collapse
Affiliation(s)
- Yujie Wang
- Key Laboratory of Product Packaging and Logistics, College of Packaging and Engineering, Jinan University, Zhuhai 519070, China
| | - Juan Cheng
- Key Laboratory of Product Packaging and Logistics, College of Packaging and Engineering, Jinan University, Zhuhai 519070, China
| | | | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Zhuhai 519070, China.
| | - Da Ma
- Key Laboratory of Product Packaging and Logistics, College of Packaging and Engineering, Jinan University, Zhuhai 519070, China.
| |
Collapse
|
3
|
Kong Q, Lin S, Wang R, Chen S, Ge K, Chen D. Changes in quality, endogenous enzyme activities, and their relationships during post-harvest storage of Phlebopus portentosus- an edible fungus. Food Chem 2025; 474:143240. [PMID: 39923520 DOI: 10.1016/j.foodchem.2025.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The postharvest quality of Phlebopus portentosus, a valuable edible fungus, is highly susceptible to spoilage due to endogenous enzymes during storage. This study investigated changes in firmness, weight loss, color, browning degree, malondialdehyde concentration, oxidation level, enzyme activities, and volatile compounds in P. portentosus during storage at 4 °C and 25 °C, alongside their interrelationships. Both storage conditions exhibited similar trends in quality deterioration, with slower changes at 4 °C and a critical turning point observed on the 4th day. The activities of polyphenol oxidase (PPO), peroxidase (POD), lipoxygenase (LOX), and phenylalanine ammonia-lyase (PAL) increased during storage, significantly impacting browning, oxidation, and volatile compounds, as confirmed by Pearson correlation analysis. These enzymes might be key factors affecting the postharvest quality of P. portentosus. This study would provide a theoretical basis for the development of post-harvest preservation techniques for P. portentosus.
Collapse
Affiliation(s)
- Qinglong Kong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Ruixue Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Siqi Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Kailun Ge
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China
| | - Dong Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food, the Education Department of Liaoning Province, Dalian 116034, PR China.
| |
Collapse
|
4
|
Shen Q, You J, Xie Z, Zhang J, Zhou Q, Ruan Z. Inhibitory effect of chlorogenic acid on tannase-mediated astringency removal and its mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40302179 DOI: 10.1002/jsfa.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Phenolic acids, such as chlorogenic acid (CGA) and rosmarinic acid (RA), are added to plant-based beverages as nutritional supplements to enhance their health benefits. However, these compounds can also interfere with the astringency-reducing effect of tannase. This study employed electronic tongue analysis, enzyme inhibition kinetics, spectroscopy, molecular docking and molecular dynamics simulations to investigate the inhibitory mechanisms of CGA and RA on tannase-mediated deastringency. RESULTS Our research results indicate that CGA can inhibit tannase-mediated deastringency. It, along with RA, inhibits tannase activity in a non-competitive manner and quenches its intrinsic fluorescence through static quenching. The binding of CGA and RA to tannase led to the exposure of aromatic amino acid residues and a more polar microenvironment. Fourier transform infrared spectroscopy showed that CGA and RA reduced the α-helix and β-turn content in tannase, while increasing the unordered coil content. Molecular docking and dynamics simulations revealed that CGA and RA bind tightly to tannase primarily through hydrogen bonds and van der Waals interactions, occupying the substrate-binding site and thus inhibiting tannase's astringency-reducing activity. Additionally, other polyphenols, such as epicatechin, hesperidin and naringin, were also found to inhibit tannase activity. CONCLUSION The study demonstrated that CGA and RA inhibit the astringency-removal activity of tannase, offering important mechanistic insights for the development of plant-based beverages and deastringency techniques. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianyu Shen
- State Key Laboratory of Food Science and Resources, Institute of Nutrition, Nanchang University, Nanchang, China
| | - Jiaxin You
- State Key Laboratory of Food Science and Resources, Institute of Nutrition, Nanchang University, Nanchang, China
| | - Zhike Xie
- State Key Laboratory of Food Science and Resources, Institute of Nutrition, Nanchang University, Nanchang, China
| | | | - Quancheng Zhou
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Resources, Institute of Nutrition, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Guan W, Cheng J, McClements DJ, Tu Z, Chen J, Ma D. Impact of 2,4-di-tert-butylphenol on pancreatic lipase activity in emulsions: Multispectral, molecular docking, and in vitro digestion analysis. Food Chem 2025; 470:142730. [PMID: 39752741 DOI: 10.1016/j.foodchem.2024.142730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
2,4-di-tert-butylphenol (2,4-DTBP) is an additive used in food packaging. The inhibitory effects of 2,4-DTBP on pancreatic lipase (PL) were investigated in this study. Kinetic analysis indicated that 2,4-DTBP competitively and reversibly inhibited PL activity. At 4.85 mM, PL activity decreased by 35.5 ± 1.6 %. 2,4-DTBP quenched the fluorescence of PL by hydrogen bonding and van der Waals forces. Circular dichroism spectroscopy showed that 2,4-DTBP induced changes in the secondary structure of PL. Molecular docking revealed that 2,4-DTBP interacted with Phe77, Leu153, and Ser152 residues of PL, which account for suppressing lipid hydrolysis. An in vitro digestion study showed that 2,4-DTBP inhibited the digestion of lipid in oil-in-water emulsions. This study improved our understanding of the effects of 2,4-DTBP on digestive enzyme. It also underscored the need for better monitoring and control of the leaching of this additive from packaging materials into foods.
Collapse
Affiliation(s)
- Weiyan Guan
- Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China
| | - Juan Cheng
- Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China
| | | | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai 519070, China.
| | - Da Ma
- Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China.
| |
Collapse
|
6
|
Ribeiro J, Silva V, Igrejas G, Barros L, Heleno SA, Reis FS, Poeta P. Phenolic Compounds from Pyrus communis Residues: Mechanisms of Antibacterial Action and Therapeutic Applications. Antibiotics (Basel) 2025; 14:280. [PMID: 40149091 PMCID: PMC11939275 DOI: 10.3390/antibiotics14030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The food industry produces substantial amounts of fruit byproducts, which are often discarded despite their high content of bioactive compounds with potential therapeutic applications. Pyrus communis (pear) residues, which are particularly rich in phenolic compounds, represent a valuable yet underutilized resource. These byproducts have demonstrated significant antioxidant and antibacterial properties, suggesting their potential for medical and pharmaceutical applications. This review aims to provide a comprehensive analysis of the phenolic profile of P. communis byproducts, emphasizing their antioxidant and antibacterial mechanisms and their prospective use in combating oxidative stress and antibacterial resistance. METHODS A comprehensive review of the key phenolic compounds from P. communis residues was conducted using ScienceDirect and Google Scholar databases (from 2014 to 2024). Studies assessing antioxidant and antibacterial activities were reviewed, with a focus on their mechanisms of action against Gram-positive and Gram-negative bacterial pathogens. RESULTS A minimum of 14 distinct phenolic compounds were identified among P. communis residues. However, chlorogenic acid and catechin were identified as the primary contributors to the antioxidant activity of P. communis residues. Hydroquinone and chlorogenic acid exhibited strong antibacterial effects through membrane disruption, enzyme inhibition, and metabolic interference. Despite this potential, hydroquinone's cytotoxicity and regulatory concerns limit its direct pharmaceutical application. CONCLUSIONS While P. communis phenolics show promise as natural antibacterial agents, future research should address bioavailability, extraction standardization, and safe formulation strategies. Investigating their synergy with conventional antibiotics and improving stability for cosmetic applications are key steps toward their practical use. In vivo and clinical studies are crucial to validating their therapeutic potential and ensuring regulatory approval.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Wang Y, Zeng L, Deng W, Wang J, Zhang J. The molecular reactive pathway between lipoxygenase and lipase and reactive species generated in dielectric barrier discharge atmospheric cold plasma: An investigation using molecular docking. Food Chem 2025; 465:141973. [PMID: 39522334 DOI: 10.1016/j.foodchem.2024.141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The molecular docking was explored to study the interactions between reactive species generated by cold plasma and the enzymes lipoxygenase (LOX) and lipase (LPS), with the aim of elucidating the molecular mechanisms governing these interactions. Molecular docking results suggest that both LOX and LPS are primarily involved in hydrogen bonding interactions with the seven reactive species. The key binding sites for LOX and LPS were identified as Ile 663 and Glu 188, respectively. Notably, the lowest docking energy was observed between LOX and NO (-13.75 kcal/mol), whereas for LPS, it is between LPS and NO3 (-12.08 kcal/mol). Increased treatment voltage and time resulted in higher inactivation levels, with LPS exhibiting higher residual activity compared to LOX. When the voltage was 75 kV and the time was 120 s, the residual activities of LOX and LPS were 42.88% and 56.77%, respectively. Consequently, the results enhance our understanding of the mechanisms underlying the inhibition of enzyme activity by reactive species generated by cold plasma. Moreover, cold plasma may serve as a novel preservation technology for inhibiting lipid oxidation of food by controlling enzyme activity.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China
| |
Collapse
|
8
|
Kumbhar PS, Kamble V, Kolekar KA, Vishwas S, Kumbhar P, Patil KS, Gupta G, Kharabe PM, Singh M, Gurav S, Chellappan DK, Singh SK, Dua K, Disouza J, Patravale V. Unraveling the Role of Repurposed Drugs in the Treatment of Acne: Success so Far and the Road Ahead. Drug Dev Res 2025; 86:e70057. [PMID: 39925109 DOI: 10.1002/ddr.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Acne is a skin disease that impacts 9.4% of the world's population. Available treatments for managing acne include retinoid-like drugs, antibiotics, corticosteroids, photo, and radiotherapy. Howevere, the aforementioned treatments have certain limitations such as possibility of developing skin cancer from tetracycline, doxycycline, and corticosteroids, microbial resistance to antibiotics, and deadly side effects, and so forth. Repurposing of existing therapeutics having excellent safety profile can be promising way to treat acne efficiently. The repurposed drugs and phytoceuticals from diverse classes have demonstrated promising effects in treating acne. These repurposed drugs have displayed antiacne effectiveness by targeting single or multiple signaling pathways. Various repurposed therapeutics undergoing clinical trials at different phases demonstrated their safety and efficacy in treating acne. Despite being a very good, safe, and less time-consuming strategy, drug repurposing (DR) faces multiple challenges such as lack of regulatory guidelines, preservation of intellectual property, and clinical validation of claimed therapeutic indication. DR appears to be a viable approach and is likely to offer effective treatment at a reasonable cost in alleviating acne.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Maharashtra, India
| | - Vikas Kamble
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Maharashtra, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | | | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pranav Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Maharashtra, India
| | - Kalpana S Patil
- Department of Pharmacognosy, Tatyasaheb Kore College of Pharmacy, Warananagar, Maharashtra, India
| | - Gaurav Gupta
- Center for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pankaj M Kharabe
- Ultrachrom Innovatives Pvt. Ltd., Burande Lay Out, Wardha, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher and Research, Sri Shivarathreeshwara Nagara, Mysuru, India
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, Australia
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - John Disouza
- SYBES's Bombay Institute of Pharmacy and Research, Dombivli (East), Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Xu Z, Du H, Wang Y, Gong Z, Xiong S. New insights into the reduction of protein degradation in freshwater fish by proanthocyanidins: Inhibition mechanism and the conformational changes of endogenous cathepsin B. Food Chem 2025; 464:141830. [PMID: 39509888 DOI: 10.1016/j.foodchem.2024.141830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Endogenous cathepsin B (CTSB) plays an important role in protein degradation, which accelerates the decline in the quality of grass carp muscle. Proanthocyanidins (PC) can protect fish texture by inhibiting protein degradation; however, the corresponding mechanism is still unclear. This study comprehensively explored the inhibitory effect of PC on the conformational changes of CTSB through multispectral and molecular simulation methods. PC inhibited CTSB activity through a reversible mixed-type inhibition mode with IC50 value of 134.56 ± 0.02 μmol/L. The binding of PC damaged the hydrogen bonding network structure of CTSB. The docking score was -7.1 kcal/mol, representing a high affinity between CTSB and PC. Molecular simulation found that PC maintained the stability of the CTSB-PC complex by interacting with several key residues (Trp221, Gly24 and Gly198) of CTSB. Therefore, this study can provide a theoretical basis for the application of polyphenols in inhibiting endogenous CTSB-induced fish muscle protein degradation.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei Province, China
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Bai T, Wang X, Du W, Cheng J, Zhang J, Zhang Y, Klinjapo R, Asavasanti S, Yasurin P. Recent Advances, Challenges, and Functional Applications of Natural Phenolic Compounds in the Meat Products Industry. Antioxidants (Basel) 2025; 14:138. [PMID: 40002324 PMCID: PMC11851614 DOI: 10.3390/antiox14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Natural phenolic compounds (NPCs) have been proven to effectively extend the storage time of meat products in recent years. To promote the discovery of more NPCs and their applications, this review examines recent progress in the classification, antioxidant, and antibacterial mechanisms of NPCs used in meat products. These compounds are found in both edible and inedible parts of plants, including fruits, vegetables, and trees. The recycling of agricultural by-products aligns with green agricultural trends and serves as a guideline for developing new sources of natural additives. Studies on the application of NPCs in various livestock and poultry products, either directly mixed into the matrix or indirectly contacted by preparation into bioactive films and packaging materials, has highlighted the great potential of NPCs. The pro-oxidative effects of NPCs on proteins and their interactions with biological macromolecules, such as proteins, provide new ideas for in-depth research on antioxidant and antibacterial mechanisms.
Collapse
Affiliation(s)
- Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Xiulian Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenqing Du
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Roungdao Klinjapo
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Suvaluk Asavasanti
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| | - Patchanee Yasurin
- Theophane Venard School of Biotechnology, Assumption University, Bangkok 10240, Thailand
| |
Collapse
|
11
|
Shaker SE, Fayed DB, Shawky H, Farrag EK. Co-administration of Ceratonia siliqua extract nanoparticles promotes the oral bioavailability and neurotherapeutic efficacy of donepezil in a dementia model. J Pharm Pharmacol 2025; 77:153-169. [PMID: 39046816 DOI: 10.1093/jpp/rgae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND This study aimed to assess the herb-drug interactions between crude/silver nanoparticle (SNP)-loaded carob extract (Car, NCar, respectively) and donepezil-HCl (DPZ) and their impact on neurotherapeutic outcomes in a dementia model. METHODS Carob pods were subjected to ethanol extraction, and their phytoconstituents were chromatographically analysed. SNP-loaded extract was synthesized and characterized, and dementia-like symptoms were induced in Wistar rats by repeated dosing with 175 mg/kg AlCl3 for 60 days, after which the animals were treated with Car, NCar, DPZ, and combinations of Car/NCar-DPZ for 30 days. The effect of carob formulations on DPZ bioavailability was in-silico profiled and the herb-drug interactions were mathematically assessed as combination indices. RESULTS Different formulations significantly improved cognitive/spatial memory functions, restored dysregulated brain redox and cholinergic functions, and markedly inhibited cholinesterase, as reflected by the reduction/absence of amyloid plaques and neurofibrillary tangles. In silico profiling of the major phytoconstituents revealed their non-P-glycoprotein substrate nature and CYP3A4, 2C19, and 2C9 inhibition, which might have improved the oral bioavailability of DPZ. The combination index calculations revealed strong synergy between DPZ and both carob formulations, with the strongest effect exhibited by the DPZ/NCar combination. CONCLUSION The co-administration of carob extract/SNPs represents a promising approach for enhancing the neurotherapeutic efficacy of DPZ.
Collapse
Affiliation(s)
- Sylvia E Shaker
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Dalia B Fayed
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ebtehal K Farrag
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
12
|
Habib M, Singh S, Ahmad S, Jan S, Gupta A, Jan K, Bashir K. Ultrasonication modifies the structural, thermal and functional properties of pumpkin seed protein isolate (PSPI). ULTRASONICS SONOCHEMISTRY 2025; 112:107172. [PMID: 39581038 PMCID: PMC11626063 DOI: 10.1016/j.ultsonch.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Protein isolates from pumpkin seeds were prepared and then treated with high-intensity ultrasound (HIUS) using a probe-based method. The impact of ultrasonication on the physicochemical, molecular, and thermal properties of these isolates were analyzed and compared to untreated controls. Results showed significant improvements (p ≤ 0.05) in color (L*, a*, b* values), solubility, emulsification capacity, and stability, as well as a reduction in molecular weight, indicating enhanced functionality of the pumpkin seed protein isolates (PSPIs) after HIUS treatment. However, HIUS treatment decreased the denaturation temperature (Td), denaturation enthalpy (ΔH), thermal stability, and particle size of the isolates. With treatment durations ranging from 5 to 20 min, Td dropped from 67.31 °C to 56.38 °C, and ΔH declined from 45.78 to 35.43 J/g, likely due to structural and conformational modifications from ultrasonic-induced molecular bond disruptions. The greatest reduction in particle size, from 117.46 μm to 85.26 μm, was observed after 20 min of ultrasonication. X-ray diffraction (XRD) analysis showed two distinct diffraction peaks at 2θ = 10° and 2θ = 20°, indicating altered crystallite sizes post-ultrasound treatment. Ultrasonication induced structural and conformational changes in the pumpkin seed protein isolates, as confirmed by SDS-PAGE and weight loss analyses. Alterations in the SDS-PAGE profile and reduced weight loss were associated with improved solubility and enhanced thermal and functional properties in the treated pumpkin seed protein isolates. This emphasizes the potential of PSPI to increase their value-added potential through ultrasonication.
Collapse
Affiliation(s)
- Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sakshi Singh
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sameer Ahmad
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Shumaila Jan
- Department of Food Science & Technology, NIFTEM-K, 131028, India
| | - Ankit Gupta
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Guo X, Lu Q, Wang W, Liu Y, Wang X. Epigallocatechin Gallate Combine with Ice Glazing: A Promising Way to Preserve the Quality of Frozen Eriocheir sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27365-27377. [PMID: 39615040 DOI: 10.1021/acs.jafc.4c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The quality of frozen Eriocheir sinensis plays an important role in influencing consumer preference. Polyphenol oxidase (PPO) activity changes are commonly used to evaluate melanosis in aquatic products. In this study, we examined the interactions between epigallocatechin gallate (EGCG) and PPO. Further, we investigated whether treatment with EGCG in combination with ice glazing could restrict melanosis in E. sinensis during frozen storage and maintain its quality. The results demonstrated that EGCG inhibited PPO activity in a dose-dependent manner and firmly binds to the active pocket of PPO, thereby altering its tertiary structure. The melanosis and oxidation of E. sinensis in frozen storage were significantly reduced by adding 0.1 g/L EGCG combined with ice-glazing treatment (EGCG + IG). EGCG + IG improved the melanosis score of E. sinensis after six-week storage by 77.17%, and reduced protein and lipid oxidation by 10.80% and 62.46%, respectively, compared with untreated specimens. Moreover, the umami and sweet amino acids were better retained. Among the combined treatments, ice glazing effectively inhibited oxidation, whereas EGCG significantly inhibited melanosis. In summary, EGCG combine with ice glazing, is an effective way to maintain the quality of frozen E. sinensis and could also be studied to store other aquatic products.
Collapse
Affiliation(s)
- Xueqian Guo
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qi Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Wenli Wang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuan Liu
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
14
|
Li S, Mao X, Diao X, Yang K, Shan K, Li C. Effects of sodium tripolyphosphate on the quality and digestion properties of PSE pork. Food Chem 2024; 460:140558. [PMID: 39067389 DOI: 10.1016/j.foodchem.2024.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to examine the impact of sodium tripolyphosphate (STPP) on the quality and digestive characteristics of PSE pork. The results showed a notable decrease in cooking loss of PSE pork from 29.11% to 25.67% with increasing STPP concentration (P < 0.05). Additionally, the gastric digestibility of PSE pork decreased significantly from 52.01% to 45.81% (P < 0.05). The particle size of digesta decreased significantly after gastrointestinal digestion (P < 0.05). These changes were primarily due to the enhanced cross-linking of proteins through ionic interactions, hydrogen bonds and hydrophobic interactions, and resulted in the embedding of hydrophobic groups and endogenous fluorophores. Furthermore, denser network was formed. These findings give a new insight into considering the impact of STPP on meat nutrition when used to enhance texture and water holding capacity.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinrui Mao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinyue Diao
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kun Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Zhang M, Han Y, Liu H, Chen B, Li Q, Li C. Microstructure and digestive behaviors of inner, middle, and outer layers of pork during heating. Food Chem 2024; 458:140263. [PMID: 38981396 DOI: 10.1016/j.foodchem.2024.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
To investigate the effects of heat treatment on the microstructure and digestive behaviors of pork, meat samples were subjected to a 100 °C water bath for 26 min. The inner, medium, and outer layers were assigned and analyzed according to the temperature gradient. Compared to the raw samples, significant changes were observed in the microscopic structure of pork. As the temperature increased, the myofibrillar structure of pork underwent increasingly severe damage and the moisture content decreased significantly (P < 0.05). Moreover, differential peptides were identified in digested products of the inner, middle, and outer layers of cooked pork, which are mainly derived from the structural proteins of pork. The outcomes of molecular docking indicated that a greater number of hydrogen bonds were formed between myosin and the digestive enzyme in the inner layer, rather than other parts, contributing to the transformation of digestive behaviors.
Collapse
Affiliation(s)
- Miao Zhang
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Shanghai Institute for Food and Drug Control, Nanjing 200233, China
| | - Hui Liu
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Chen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qian Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Warinhomhoun S, Viwatpinyo K, Nokkaew N, Limcharoen T, Ngamdokmai N. Effect of Thai Herbal Remedy NL Inhibits Lipid Accumulation on 3T3-L1 Adipocyte Cells. Adv Pharmacol Pharm Sci 2024; 2024:2350186. [PMID: 39564001 PMCID: PMC11576086 DOI: 10.1155/2024/2350186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Obesity is a global health concern, steadily rising and posing risks to various health conditions. Despite available antiobesity drugs, their withdrawal due to severe side effects highlights the need for safer alternatives. Natural products, particularly mixed herbal formulations, present a promising avenue in obesity research. This study aimed to investigate the potential antiobesity effects of the NL herbal formula, a traditional remedy in Nakhon Si Thammarat, Thailand, composed of nine herbs. The specific focus was on the inhibitory effects on α-glucosidase and pancreatic lipase enzyme activities, adipogenesis inhibition and lipolysis promotion. NL extract was phytochemically analyzed and assessed for its inhibitory effects on α-glucosidase and pancreatic lipase. Its impact on lipid accumulation and glycerol release was also evaluated. Phytochemical analysis using liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified piperine as the major compound in the NL extract. NL extract exhibited significant inhibition of α-glucosidase, moderate pancreatic lipase inhibition, and dose-dependent reduction in fat accumulation and triglyceride content. Glycerol release increased compared to the control, indicating potential benefits in weight management. This research underscores the potential of the NL formula in combating obesity through its effects on adipogenesis, lipolysis, and enzyme activities. Further investigations into the molecular mechanisms are warranted to fully elucidate its therapeutic potential.
Collapse
Affiliation(s)
- Sakan Warinhomhoun
- College of Oriental Medicine, Rangsit University, Pathum Thani 12000, Thailand
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kittikun Viwatpinyo
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nuttikarn Nokkaew
- Center of Excellence in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Thanchanok Limcharoen
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ngamrayu Ngamdokmai
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
17
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Duangnin N, Kiattisin K. Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications. Int J Mol Sci 2024; 25:9416. [PMID: 39273362 PMCID: PMC11395326 DOI: 10.3390/ijms25179416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Airborne particulate matter (PM) contains polycyclic aromatic hydrocarbons (PAHs) as primary toxic components, causing oxidative damage and being associated with various inflammatory skin pathologies such as premature aging, atopic dermatitis, and psoriasis. Coffee cherry pulp (CCS) extract, rich in chlorogenic acid, caffeine, and theophylline, has demonstrated strong antioxidant properties. However, its specific anti-inflammatory effects and ability to protect macrophages against PAH-induced inflammation remain unexplored. Thus, this study aimed to evaluate the anti-inflammatory properties of CCS extract on RAW 264.7 macrophage cells exposed to atmospheric PAHs, compared to chlorogenic acid (CGA), caffeine (CAF), and theophylline (THP) standards. The CCS extract was assessed for its impact on the production of nitric oxide (NO) and expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Results showed that CCS extract exhibited significant antioxidant activities and effectively inhibited protease and lipoxygenase (LOX) activities. The PAH induced the increase in intracellular reactive oxygen species, NO, TNF-α, IL-6, iNOS, and COX-2, which were markedly suppressed by CCS extract in a dose-dependent manner, comparable to the effects of chlorogenic acid, caffeine, and theophylline. In conclusion, CCS extract inhibits PAH-induced inflammation by reducing pro-inflammatory cytokines and reactive oxygen species (ROS) production in RAW 264.7 cells. This effect is likely due to the synergistic effects of its bioactive compounds. Chlorogenic acid showed strong antioxidant and anti-inflammatory activities, while caffeine and theophylline enhanced anti-inflammatory activity. CCS extract did not irritate the hen's egg chorioallantoic membrane. Therefore, CCS extract shows its potential as a promising cosmeceutical ingredient for safely alleviating inflammatory skin diseases caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Bu Y, Fan M, Sun C, Zhu W, Li J, Li X, Zhang Y. Study on the interaction mechanism between (-)-epigallocatechin-3-gallate and myoglobin: Multi-spectroscopies and molecular simulation. Food Chem 2024; 448:139208. [PMID: 38608400 DOI: 10.1016/j.foodchem.2024.139208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is remarkably efficacious in inhibiting the browning of red meat. We therefore propose a hypothesis that EGCG forms complexes with myoglobin, thereby stabilizing its structure and thus preventing browning. This study investigated the interaction mechanism between EGCG and myoglobin. EGCG induced static quenching of myoglobin. Noncovalent forces, including hydrogen bonds and van der Waals, primarily governing the interactions between myoglobin and EGCG. The interactions primarily disrupted myoglobin's secondary structure, thus significantly reducing surface hydrophobicity by 53% (P < 0.05). The modification augmented the solubility and thermal stability of myoglobin. The radius of gyration (Rg) value fluctuated between 1.47 and 1.54 nm, and the hydroxyl groups in EGCG formed an average of 2.93 hydrogen bonds with myoglobin. Our findings elucidated the formation of stable myoglobin-EGCG complexes and the myoglobin-EGCG interaction, thus confirming our initial hypothesis.
Collapse
Affiliation(s)
- Ying Bu
- College of Food Science, Fujian Agriculture and Forestry University, Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China; College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
| | - Maomei Fan
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China.
| |
Collapse
|
19
|
Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct 2024; 15:7452-7467. [PMID: 38910519 DOI: 10.1039/d4fo01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental caries is a chronic and destructive disease and matrix metalloproteinase-2 (MMP-2) plays a major role in caries. The inhibitory mechanisms of theaflavins [theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3)] on MMP-2 were investigated using techniques such as enzyme inhibition kinetics, multi-spectral methods, molecular docking, and molecular dynamics simulations. The results showed that TF1, TF2A, TF2B, and TF3 all competitively and reversibly inhibited MMP-2 activity. Fluorescence spectra and molecular docking indicated that four theaflavins spontaneously bind to MMP-2 through noncovalent interactions, driven by hydrogen bonds and hydrophobic interactions, constituting a static quenching mechanism and resulting in an altered tryptophan residue environment around MMP-2. Molecular dynamic simulations demonstrated that four theaflavins can form stable, compact complexes with MMP-2. In addition, the order of theaflavins' ability to inhibit MMP-2 was found to be TF1 > TF2B > TF2A > TF3. Interestingly, the order of binding capacity between MMP-2 and TF1, TF2A, TF2B, and TF3 was consistent with the order of inhibitory capacity, and was opposite to the order of steric hindrance of theaflavins. This may be due to the narrow space of the active pocket of MMP-2, and the smaller the steric hindrance of theaflavins, the easier it is to enter the active pocket and bind to MMP-2. This study provided novel insights into theaflavins as functional components in the exploration of natural MMP-2 inhibitors.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Mengna Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Huang Cao
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Hongan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jiayu Zhu
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Shuang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
20
|
Cao Q, Mei S, Mehmood A, Sun Y, Chen X. Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study. Food Chem 2024; 444:138514. [PMID: 38310782 DOI: 10.1016/j.foodchem.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The suppression of pancreatic lipase has been employed to mitigate obesity. This study explored the mechanism of coffee leaf extracts to inhibit pancreatic lipase. The ethyl acetate fraction derived from coffee leaves (EAC) exhibited the highest inhibitory capacity with a half-maximal inhibitory concentration (IC50) of 0.469 mg/mL and an inhibitor constant (Ki) of 0.185 mg/mL. This fraction was enriched with 3,5-dicaffeoylquinic acid (3,5-diCQA, 146.50 mg/g), epicatechin (87.51 mg/g), and isoquercetin (48.29 mg/g). EAC inhibited lipase in a reversible and competitive manner, and quenched its intrinsic fluorescence through a static mechanism. Molecular docking revealed that bioactive compounds in EAC bind to key amino acid residues (HIS-263, PHE-77, and SER-152) located within the active cavity of lipase. Catechin derivatives play a key role in the lipase inhibitory activity within EAC. Overall, our findings highlight the promising potential of coffee leaf extract as a functional ingredient for alleviating obesity through inhibition of lipase.
Collapse
Affiliation(s)
- Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
21
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
22
|
Cheng Z, Wu B, Bai J, Fan S, Daglia M, Li J, Zhao Y, He Y, Zhu L, Xiao X. Heterologous expression and enzymatic characteristics of sulfatase from Lactobacillus plantarum dy-1. Food Funct 2024; 15:5439-5449. [PMID: 38650575 DOI: 10.1039/d3fo04616h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Barley, rich in bioactive components including dietary fiber, polyphenolic compounds and functional proteins, exhibits health benefits such as regulating glucose and lipid metabolism. Previous studies have found that the content and composition of free phenolic acids in barley may be significantly changed by fermentation with the laboratory patented strain Lactobacillus plantarum dy-1 (L. p dy-1), but the mechanism of enzymatic release of phenolic acid remains to be elucidated. Based on this, this study aimed to identify the key enzyme in L. p dy-1 responsible for releasing the bound phenolic acid and to further analyze its enzymatic properties. The Carbohydrate-Active enZYmes database revealed that L. p dy-1 encodes 7 types of auxiliary enzymes, among which we have identified a membrane sulfatase. The enzyme gene LPMS05445 was heterologous to that expressed in E. coli, and a recombinant strain was induced to produce the target protein and purified. The molecular weight of the purified enzyme was about 59.9 kDa, with 578.21 U mg-1 enzyme activity. The optimal temperature and pH for LPMS05445 expression were 40 °C and 7.0, respectively. Furthermore, enzymatic hydrolysis by LPMS05445 can obviously change the surface microstructure of dietary fiber from barley bran and enhance the release of bound phenolic acid, thereby increasing the free phenolic acid content and improving its physiological function. In conclusion, sulfatase produced by Lactobacillus plantarum dy-1 plays a key role in releasing bound phenolic acids during the fermentation of barley.
Collapse
Affiliation(s)
- Zhangchen Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Beiqi Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, 80131, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Huang F, Dai Q, Zheng K, Ma Q, Liu Y, Jiang S, Jiang W, Yan X. Exploring the inhibitory potential of KPHs-AL-derived GLLF peptide on pancreatic lipase and cholesterol esterase activities. Food Chem 2024; 439:138108. [PMID: 38061297 DOI: 10.1016/j.foodchem.2023.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
The effective modulation of pancreatic lipase and cholesterol esterase activities proves critical in maintaining circulatory triglycerides and cholesterol levels within physiological boundaries. In this study, peptides derived from KPHs-AL, produced through the enzymatic hydrolysis of skipjack tuna dark muscle using alkaline protease, have a specific inhibitory effect on pancreatic lipase and cholesterol esterase. It is hypothesized that these peptides target and modulate the activities of enzymes by inducing conformational changes within their binding pockets, potentially impacting the catalytic functions of both pancreatic lipase and cholesterol esterase. Results revealed these peptides including AINDPFIDL, FLGM, GLLF and WGPL, were found to nestle into the binding site groove of pancreatic lipase and cholesterol esterase. Among these, GLLF stood out, demonstrating potent inhibition with IC50 values of 0.1891 mg/mL and 0.2534 mg/mL for pancreatic lipase and cholesterol esterase, respectively. The kinetics studies suggested that GLLF competed effectively with substrates for the enzyme active sites. Spectroscopic analyses, including ultraviolet-visible, fluorescence quenching, and circular dichroism, indicated that GLLF binding induced conformational changes within the enzymes, likely through hydrogen bond formation and hydrophobic interactions, thereby increasing structural flexibility. Molecular docking and molecular dynamics simulations supported these findings, showing GLLF's stable interaction with vital active site residues. These findings position GLLF as a potent inhibitor of key digestive enzymes, offering insights into its role in regulating lipid metabolism and highlighting its potential as functional ingredient.
Collapse
Affiliation(s)
- Fangfang Huang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qingfei Dai
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Kewei Zheng
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Yu Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Wei Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China; Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
24
|
Han M, Sun C, Bu Y, Zhu W, Li X, Zhang Y, Li J. Exploring the interaction mechanism of chlorogenic acid and myoglobin: Insights from structure and molecular dynamics simulation. Food Chem 2024; 438:138053. [PMID: 38007953 DOI: 10.1016/j.foodchem.2023.138053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/28/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
This study focused on non-covalent complex of myoglobin-chlorogenic acid (Mb-CA) and the changes in conformation, oxidation, and microstructure induced by varying concentrations of CA (10-40 μmol/g Mb). Employing molecular docking and dynamics simulations, further insights into the interaction between Mb and CA were obtained. The findings revealed that different CA concentrations enhanced Mb's thermal stability, while diminishing particle size, solubility, and relative content of metmyoglobin (MetMb%). The optimal interaction occurred at 40 μmol/g Mb. Furthermore, CA exhibited static quenching of Mb, with thermodynamic analysis confirming a 1:1 complex formation. These insights deepen our understanding of interaction between Mb and CA, providing valuable clarity.
Collapse
Affiliation(s)
- Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China; Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China; College of Food Science, Fujian Agriculture and Forestry University, Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China.
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, PR China
| |
Collapse
|
25
|
Shang GJ, Liu SY, Zhu R, Li DL, Meng ST, Wang YT, Wu LF. Chlorogenic acid improves common carp (Cyprinus carpio) liver and intestinal health through Keap-1/Nrf2 and NF-κB signaling pathways: Growth performance, immune response and antioxidant capacity. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109378. [PMID: 38272333 DOI: 10.1016/j.fsi.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1β were decreased. The IL-10 and TGF-β were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.
Collapse
Affiliation(s)
- Guo-Jun Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Ying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Deng-Lai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Tong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yin-Tao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
26
|
Che H, Yi J, Zhao X, Yu H, Wang X, Zhang R, Li X, Fu J, Li Q. Characterization of PKCα-rutin interactions and their application as a treatment strategy for pulmonary arterial hypertension by inhibiting ferroptosis. Food Funct 2024; 15:779-793. [PMID: 38126185 DOI: 10.1039/d3fo01306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
As a common plant-derived dietary flavonoid, rutin receives widespread attention because of its good antioxidant bioactivities. Protein kinase Cα (PKCα) is a serine/threonine kinase that is involved in uncountable cellular processes, among which ferroptosis, a novel form of cell death, is triggered by lipid peroxidation and has been reported to be associated with pulmonary arterial hypertension (PAH). But it is still not well appreciated how rutin inhibits ferroptosis in PAH and what function PKCα has in this process. In this study, we first observed whether rutin could prevent PAH by attenuating ferroptosis with a PAH animal model and pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Mitochondrial metabolomics and network pharmacology were employed to clarify the metabolic alterations and screen target proteins, and the results showed that PKCα was a vital node in rutin regulating mitochondrial metabolism related to ferroptosis in PAH. Based on molecular docking and multispectral analysis, we found that rutin could directly interact with PKCα through hydrogen bonds, which could induce static quenching, and then influence the secondary structure of PKCα. In conclusion, these findings mainly point to a novel mechanism that rutin protects PAH rats by modifying the structure and altering the activity of PKCα, and thus suppressing ferroptosis. This work reveals that the interaction behaviors between small molecules and bio-macromolecules are a critical factor to develop natural biological active ingredients and gives an insight into the potential applications of flavonoids in health and disease.
Collapse
Affiliation(s)
- Haixia Che
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Jie Yi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xiaoting Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Hong Yu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xianyao Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Rui Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| | - Xin Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jia Fu
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Heilongjiang Province, China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Xu Z, Du H, Manyande A, Xiong S. A comprehensive investigation on the interaction between jaceosidin, baicalein and lipoxygenase: Multi-spectroscopic analysis and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123423. [PMID: 37742591 DOI: 10.1016/j.saa.2023.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Lipoxygenase (LOX) has the harmful effect of accelerating lipid oxidation, and polyphenols have the inhibitory effect on lipoxygenase. However, there were rare researches investigated on the interactions between polyphenols and LOX. In this study, the binding mechanisms between polyphenols (Jaceosidin-JSD and baicalein-BCL) and LOX were investigated by multi-spectroscopic analysis and computational study. Both JSD and BCL binding to LOX resulted in static fluorescence quenching, and the complexes of JSD-LOX and BCL-LOX were built at a molar ratio of 1:1, respectively. The binding constants of LOX-JSD (72.18 × 105 L/mol at 298 K) and LOX-BCL (12.43 × 105 L/mol at 298 K) indicated that LOX had stronger binding affinity to JSD compared to BCL. Compared with BCL-LOX, the JSD-LOX system formed more hydrogen bonds which ensured a stronger bond between JSD and LOX. The studies in molecular dynamics also demonstrated that the JSD-LOX complex is more stable, and the addition of JSD is more conducive to the complex formation. The current study provides some new insights for the study on the inhibition of lipid oxidation and affords a new strategy for the discovery of novel food preservatives.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
28
|
Li YJ, Liang CC, Jin L, Chen J. Inhibition mechanisms of four ellagitannins from terminalia chebula fruits on acetylcholinesterase by inhibition kinetics, spectroscopy and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123115. [PMID: 37453379 DOI: 10.1016/j.saa.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Acetylcholinesterase (AChE) is an important therapeutic target for the treatment of Alzheimer's disease (AD), and the development of natural AChE inhibitors as candidates has played a significant role in drug discovery. In this study, the inhibition mechanisms of four ellagitannins, punicalagin, chebulinic acid, geraniin and corilagin, from Terminalia chebula fruits on AChE were investigated systematically by a combination of inhibition kinetics, multi-spectroscopic methods and molecular docking. The kinetic results showed that punicalagin, chebulinic acid and geraniin exhibited strong reversible inhibitory effects on AChE in an uncompetitive manner with the IC50 values of 0.43, 0.50, and 0.51 mM, respectively, while corilagin inhibited AChE activity in a mixed type with the IC50 value of 0.72 mM. The results of fluorescence and UV-vis spectra and fluorescence resonance energy transfer (FRET) revealed that four ellagitannins could significantly quenched the intrinsic fluorescence of AChE though a static quenching along with non-radiative energy transfer. Thermodynamic analyses showed that values of ΔG, ΔH and ΔS were negative, indicating that all binding processes were spontaneous, and the hydrogen bonding and Van der Waals forces might make a great contribution to the formation of inhibitor-AChE complexes. The synchronous fluorescence, three-dimensional (3D) fluorescence, UV-vis, and FT-IR spectra studies suggested that four ellagitannins could lead to alterations in the micro-environment and secondary structure of AChE, and thus the conformational change of AChE. Moreover, molecular docking demonstrated that four ellagitannins could interacted with main amino acid residues of AChE with affinity energies ranging from -9.9 to -8.7 kJ/mol, and further confirmed the above experimental results. This study provided valuable findings for the potential application of four ellagitannins as promising candidates in the exploration of natural AChE inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Yan-Jun Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Cai-Cai Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Leng W, Wu X, Qi X, Liu H, Yuan L, Gao R. Systematic functional analysis and potential application of a serine protease from cold-adapted Planococcus bacterium. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
30
|
Yao WH, Mo LY, Fang LS, Qin LT. Molecular dynamics simulations on interactions of five antibiotics with luciferase of Vibrio Qinghaiensis sp.-Q67. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114910. [PMID: 37062261 DOI: 10.1016/j.ecoenv.2023.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
A large number of antibiotics have been used in the medical industry, agriculture, and animal husbandry industry in recent years. It may cause pollution to the aquatic environment and ultimately threaten to human health due to their prolonged exposure to the environment. We aim to study the toxicity mechanism of enrofloxacin (ENR), chlortetracycline hydrochloride (CTC), trimethoprim (TMP), chloramphenicol (CMP), and erythromycin (ETM) to luciferase of Vibrio Qinghaiensis sp.-Q67 (Q67) by using toxicity testing combined with molecular docking, molecular dynamics, and binding free energy analysis. The curve categories for ENR were different from the other four antibiotics, with ENR being J-type and the rest being S-type, and the toxicity of these five antibiotics (pEC50) followed the order of ENR (7.281) > ETM (6.814) > CMP (6.672) > CTC (6.400) > TMP (6.123), the order of toxicity value is consistent with the the magnitude of the binding free energy (ENR (-47.759 kcal/mol), ETM (-46.821 kcal/mol), CMP (-42.905 kcal/mol), CTC (-40.946 kcal/mol), TMP (-28.251 kcal/mol)). The van der Waals force provided the most important contribution to the binding free energy of the five antibiotics in the binding system with Q67 luciferase. Therefore, the dominant factor for the binding of antibiotics to luciferase was shape compensation. The face-to-face π-π stacking interaction between the diazohexane structure outside the active pocket region and the indoles structure of Phe194 and Phe250 in the molecular structure was the main reason for the highest toxicity value of antibiotic ENR. The hormesis effect of ENR has a competitive binding relationship with the α and β subunits of luciferase. Homology modeling, molecular docking, molecular dynamics simulations and binding free energy calculations were used to derive the toxicity magnitude of different antibiotics against Q67, and insights at the molecular level. The conclusion of toxicological experiments verified the correctness of the simulation results. This study contributes to the understanding of toxicity mechanisms of five antibiotics and facilitates risk assessment of antibiotic contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Wei-Hao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China; Technology Innovation Center for Mine Geological Environment Restoration Engineering in Southern Shishan Region, Ministry of Natural Resources, Nanning 530028, China.
| | - Liu-Sen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Technology Innovation Center for Mine Geological Environment Restoration Engineering in Southern Shishan Region, Ministry of Natural Resources, Nanning 530028, China.
| |
Collapse
|
31
|
Serdaroğlu M, Can H, Sarı B, Kavuşan HS, Yılmaz FM. Effects of natural nitrite sources from arugula and barberry extract on quality characteristic of heat-treated fermented sausages. Meat Sci 2023; 198:109090. [PMID: 36610293 DOI: 10.1016/j.meatsci.2022.109090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
This study was designed to compare the effects of natural nitrite sources from the arugula leaves (arugula extract and pre-converted arugula extract) and the use of barberry extract (BE) in heat-treated fermented sausage formulations. Eight different sausages were manufactured as follows: pre-converted arugula extract (PA), arugula extract (A), pre-converted arugula extract + BE (PAB), arugula extract + BE (AB), nitrite +BE (POB), no nitrite+ BE (NEB), also positive and negative control groups were prepared with (POC) or without nitrite (NEC). The addition of arugula and barberry extracts reduced the residual nitrite content, in fact PAB had the lowest value with a reduction ratio of 47%. The addition of BE lowered the lipid oxidation compared to other counterparts. The use of arugula extract or pre-converted arugula extract resulted in a lower carbonylation than nitrite free samples. The use of natural extracts lowered the a* and b* values compared to control. At the end of the storage, no differences were observed on the overall acceptability of all samples. Combined use of barberry extract with arugula and pre-converted arugula extracts could be used as alternative novel curing agent in heat-treated fermented sausages.
Collapse
Affiliation(s)
- Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey.
| | - Hilal Can
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Burcu Sarı
- Gastronomy and Culinary Arts, School of Applied Sciences, Kapadokya University, Nevşehir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, Aydın, Turkey
| |
Collapse
|
32
|
The Improved Inhibition of Mn (II)-EGCG on α-Glucosidase: Characteristics and Interactions Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
33
|
Effect of Catechin on Yolk Immunoglobulin Structure and Properties: A Polyphenol-Protein Interaction Approach. Foods 2023; 12:foods12030462. [PMID: 36765991 PMCID: PMC9914673 DOI: 10.3390/foods12030462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
The preparation of the interaction between polyphenols and protein is of great significance for increasing added value and promoting the application of egg yolk immunoglobulin (IgY). This study systematically investigated the effect of catechin on yolk immunoglobulin structural characteristics and functional properties. The binding conditions, force types, molecular conformation, and residual microenvironment of the interaction between catechin and IgY were analyzed by molecular docking technology, UV-vis absorption and fluorescence spectroscopy studies. The results showed that the main binding forces in the complex were hydrogen bonding and van der Waals forces. After the interaction, fluorescence quenching occurred and the maximum emission wavelength was redshifted. The results showed that the microenvironment around IgY increased polarity, increased hydrophilicity and decreased hydrophobicity, and the structure of the peptide chain changed. The bacteriostatic thermal stability of the compound against Escherichia coli and Staphylococcus aureus was lower than that of catechin IgY. The bacteriostatic acid and base stability were higher than that of catechin and IgY. The antioxidant activity was catechin, complex, and IgY, in descending order. The antioxidant activity of catechin and complex was significantly higher than that of IgY. At the same concentration, the apparent viscosity of the three samples was complex, IgY and catechin, in descending order. G' was greater than G" indicating that elastic properties dominate in G". The G' and G" values of the complex were higher than those of the other groups. Rheological results indicated that the complex may have high physical stability. This study provides theoretical support for broadening the application field of IgY and suggest its properties change in the machining process. It also provides new ideas for the development of functional foods from poultry eggs.
Collapse
|
34
|
Chai TT, Huang YN, Ren ST, Jin DL, Fu JJ, Guo JY, Chen YW. Inhibitory effects of ultrasonic and rosmarinic acid on lipid oxidation and lipoxygenase in large yellow croaker during cold storage. ULTRASONICS SONOCHEMISTRY 2023; 92:106229. [PMID: 36459902 PMCID: PMC9712690 DOI: 10.1016/j.ultsonch.2022.106229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Lipid oxidation will lead to the deterioration of flavor, color and texture of aquatic products with high fatty acid content. The mechanism of ultrasound (US) combined with rosmarinic acid (RA) on lipid oxidation and endogenous enzyme activities of large yellow croaker during cold-storage (4 ℃) was investigated. The result showed that the US and RA have synergistic effects in delaying lipid oxidation and inhibiting endogenous lipase and lipoxygenase (LOX) activities related to oxidation. The inhibition of LOX activity by RA was dose-dependent, and US showed a negative effect on the inhibition of enzyme activity in the presence of low concentration RA. Moreover, RA changes the enzyme structure through static fluorescence quenching and interaction with enzyme molecules. Hydrogen bonding and hydrophobic interaction are the main interaction forces between RA and LOX. This study could provide basic mechanism of US treatment cooperating with polyphenols to inhibit lipid oxidation during food preservation.
Collapse
Affiliation(s)
- Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yang-Na Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jun-Yan Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
35
|
Synergistic inhibition of Pseudomonas fluorescens growth and proteases activities via sodium chlorite-based oxyhalogen. World J Microbiol Biotechnol 2023; 39:33. [PMID: 36469174 PMCID: PMC9722865 DOI: 10.1007/s11274-022-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/15/2022] [Indexed: 12/07/2022]
Abstract
Pseudomonas fluorescens is considered among the main spoilage microorganisms due to its ability to produce proteases. Food deterioration caused by spoilage microorganisms has a major impact on food quality and the environment. The inactivation of Pseudomonas fluorescens growth and protease production was intensively investigated with the use of Salmide®, A Sodium Chlorite-Based Oxy-halogen Disinfectant. A unique M9 media was also developed to assure sufficient protease productions with different mutants of Pseudomonas fluorescens as a microbioreactor. Mutations were induced by classical whole-cell mutagenesis using N-methyl-N'- nitro-N-nitrosoguanidine (NTG). A dramatic decrease occurred in protease activity when different Salmide concentrations (5, 10, and 15 ppm) were added to the growth culture followed by a complete inhibition concentration (20, 25, 50, and 100 ppm) of Salmide. However, no significant inhibition occurred once it is secreted out of cells. Some mutants were resistant and remains highly stable with high protease production under stressful conditions of Sodium Chlorite-Based Oxy-halogen. The production of the protease showed a linear correlation with the increase in incubation time using a continuous culture bioreactor system and recorded maximum protease activity after 40 h. Our findings would offer alternative antimicrobial procedures for food and industrial sectors.
Collapse
|
36
|
Yang X, Lan W, Lu M, Wang Z, Xie J. Characterization of different phenolic acids grafted chitosan and their application for Japanese sea bass (Lateolabrax japonicus) fillets preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Wang Y, Shi H, Li T, Yu L, Qi Y, Tian G, He F, Li X, Sun N, Liu R. Size-dependent effects of nanoplastics on structure and function of superoxide dismutase. CHEMOSPHERE 2022; 309:136768. [PMID: 36223827 DOI: 10.1016/j.chemosphere.2022.136768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous existence of nano-plastics (NPs) has attracted widespread concern. Currently, the uptake of NPs by organisms and cells has been reported. However, knowledge about the interaction between NPs and protein is still limited, and there is a gap in research on the size-dependent toxicity of NPs toward protein. In this study, multi-spectroscopic techniques and enzyme activity determination were used to explore the structure and function changes of the main antioxidant enzyme superoxide dismutase (SOD), caused by the binding of NPs with different particle sizes. Results indicated NPs with different sizes can directly interact with SOD. NPs with smaller sizes result in looser skeletons of SOD, while the larger lead to tighter peptide chains. In addition, NPs can bind with SOD to form complexes, and the smaller the NPs are easier to be induced to coalesce by SOD. The surface curvature of 100 nm NPs was more conducive to varying the secondary structure of SOD. NPs of 100 nm and 500 nm can cause greater sensitization of SOD endogenous fluorescence, and increase the polarity around tyrosine residue. The enzyme activity assay further revealed the functional differences caused by the size-dependent effects of NPs. NPs of 100 nm and 20 nm induced a more significant change in SOD activity (increased by 20% and 8%, respectively), while NPs of 500 nm and 1000 nm had a little impact on it. Together, smaller NPs have a greater impact on the structure and function of SOD. This study revealed the size-dependent toxicity of NPs to protein, which provided a rationale for the necessary avoidance and substitution of NPs in engineering applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Shandong Province, 21# Minziqian Road, Jinan, Shandong, 250014, PR China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Shandong Province, 21# Minziqian Road, Jinan, Shandong, 250014, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
38
|
Shen H, Wang J, Ao J, Ye L, Shi Y, Liu Y, Li M, Luo A. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Tian X, Rao L, Zhao L, Wang Y, Liao X. Multispectroscopic and computational simulation insights into the inhibition mechanism of epigallocatechin-3-gallate on polyphenol oxidase. Food Chem 2022; 393:133415. [PMID: 35689921 DOI: 10.1016/j.foodchem.2022.133415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/13/2022]
Abstract
Polyphenol oxidase (PPO)-mediated enzymatic browning occurs in fruit, vegetables and aquatic products and causes huge economic losses every year. In this study, epigallocatechin-3-gallate (EGCG) displayed high affinity for and efficient inhibitory capacity against PPO. To explore the inhibition mechanism, multispectroscopic methods and computational simulations were implemented. Initially, EGCG inhibited PPO activity reversibly in a mixed-type manner. Then, the conformation and secondary structure changes of PPO after binding with EGCG were discovered by fluorescence emission spectra and circular dichroism. Molecular docking and dynamic simulation results revealed that EGCG could tightly bind with the binuclear copper domain of PPO through hydrophobic stacking and hydrogen bonds. Moreover, EGCG might act as a linker to interact with different PPO molecules at another binding site. Transmission electron microscopy observation suggested that EGCG induced the aggregation of PPO. Therefore, the inhibition mechanism of EGCG on PPO included competition for catalytic centers and induced aggregation.
Collapse
Affiliation(s)
- Xuezhi Tian
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
40
|
Yang X, Lan W, Zhao X, Lang A, Xie J. Inhibitory effects of chitosan grafted chlorogenic acid on antioxidase activity, and lipid and protein oxidation of sea bass (Lateolabrax japonicus) fillets stored at 4 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6236-6245. [PMID: 35502594 DOI: 10.1002/jsfa.11972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sea bass (Lateolabrax japonicus), a marine fish, is prone to spoilage due to its high nutritional value. Preservatives are commonly used for storage for the production of fish fillets. In this work, chitosan (CS) was grafted onto chlorogenic acid (CA) to obtain a new preservative, chitosan grafted chlorogenic acid (CS-g-CA), which could enhance the biochemical properties of chitosan and obtain better antibacterial and antibacterial properties. This study therefore investigated the inhibitory effects of CS-g-CA on antioxidant enzyme activity, and lipid and protein oxidation of sea bass fillets stored at 4 °C. RESULTS Compared with the control group on day 9, the activity of 63% catalase (CAT), 78% superoxide diamidase (SOD), 73% glutathione peroxide enzyme (GSH-Px) and 60% DPPH scavenging activity was retained by CS-g-CA treatment. Changes in thiobarbituric acid (TBA) and conjugated diene (CD) values were delayed by CS-g-CA treatment. The use of CS-g-CA retards protein oxidation by inhibiting the formation of free amino acid and carbonyl groups, and maintaining a higher sulfhydryl content. Regarding myofibril degradation, CS-g-CA could maintain protein secondary structure by increasing the ratio of α-helices. CONCLUSIONS Chitosan-grafted chlorogenic acid could protect the activity of antioxidant enzymes and inhibit lipid oxidation by slowing down the production of lipid oxidation products. It also delayed protein oxidation by inhibiting oxidation product generation and stabilizing protein structure. It could therefore be used as a promising preservative for seafood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - XinYu Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
41
|
Wang Y, Liu T, Xie J, Cheng M, Sun L, Zhang S, Xin J, Zhang N. A review on application of molecular simulation technology in food molecules interaction. Curr Res Food Sci 2022; 5:1873-1881. [PMID: 36276243 PMCID: PMC9579209 DOI: 10.1016/j.crfs.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Molecular simulation is a new technology to analyze the interaction between molecules. This review mainly summarizes the application of molecular simulation technology in the food industry. This technology has been employed to assess structural changes of biomolecules, the interaction between components, and the mechanism of physical and chemical property alterations. These conclusions provide a deeper understanding of the molecular interaction mechanism in foods, break through the limitations of scientific experiments and avoid blind and time-consuming scientific research. In this paper, the advantages and development trends of molecular simulation technology in the food research field are described. This methodology can be used to contribute to further studies of the mechanism of molecular interactions in food, confirm experimental results and provide new ideas for research in the field of food sciences.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Tianjiao Liu
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Jinhui Xie
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Meijia Cheng
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Lirui Sun
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Shuai Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Jiaying Xin
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China,State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Na Zhang
- Key Laboratory for Food Science & Engineering, Harbin University of Commerce, Harbin, 150076, PR China,Corresponding author.
| |
Collapse
|
42
|
Molecular crowding induced loss of native conformation and aggregation of α-chymotrypsinogen A. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Effects of High Pressure Processing and Thermal Treatment on the Interaction between α-Lactalbumin and Pelargonium-3-Glucoside. Molecules 2022; 27:molecules27154944. [PMID: 35956895 PMCID: PMC9370543 DOI: 10.3390/molecules27154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, high pressure processing (HPP) and thermal treatment were comparatively evaluated by examining their impacts on the binding behavior and interaction between α-lactalbumin (α-La) and pelargonium-3-glucoside (P3G) under pH values of 6.0, 7.4, and 8.0. The methods of circular dichroism spectroscopy, fluorescence quenching, dynamic light scattering, and molecular simulation were used to characterize the effects of processing-induced changes in protein structure, size distribution, binding site conformation, and residue charges on their binding characteristics between them. The results indicated that the thermal treatments significantly increased the quenching constants of the complex at pH 7.4/8.0 and 60/80 °C, as well as the accessible fraction of protein at pH 8.0/80 °C. Both HPP and thermal treatments increased the random coil content and showed limited effects on the α-helix and β-sheet contents of α-La and caused the aggregation of the complex to varying degrees. Molecular dynamic simulation and docking analyses revealed that the binding site of the complex did not change under different processing conditions, but the solvent-accessible surface area varied under different conditions.
Collapse
|
44
|
Wu M, Liu M, Wang F, Cai J, Luo Q, Li S, Zhu J, Tang Z, Fang Z, Wang C, Chen H. The inhibition mechanism of polyphenols from Phyllanthus emblica Linn. fruit on acetylcholinesterase: A interaction, kinetic, spectroscopic, and molecular simulation study. Food Res Int 2022; 158:111497. [DOI: 10.1016/j.foodres.2022.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
|
45
|
Xu Z, Cao Q, Manyande A, Xiong S, Du H. Analysis of the binding selectivity and inhibiting mechanism of chlorogenic acid isomers and their interaction with grass carp endogenous lipase using multi-spectroscopic, inhibition kinetics and modeling methods. Food Chem 2022; 382:132106. [PMID: 35240531 DOI: 10.1016/j.foodchem.2022.132106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022]
Abstract
Polyphenols are inhibitors for lipase, but the binding selectivity and mechanism of polyphenol isomers and how they interact with lipase are not clear. Here, chlorogenic acid (CGA) isomers, neochlorogenic acid (NCGA) and cryptochlorogenic acid (CCGA) were used to explore the binding selectivity and mechanism of lipase. An inhibition assay indicated that both CGA isomers had dose-dependent inhibitory effects on lipase; however, the inhibitory effect of NCGA was better (IC50: 0.647 mg/mL) than that of CCGA (IC50: 0.677 mg/mL). NCGA and CCGA formed complexes with lipase at a molar ratio of 1:1, and the electrostatic interaction force plays a major role in the lipase-CCGA system. Molecular dynamics studies demonstrated that NCGA had a greater impact on the structure of lipase. The multi-spectroscopic and modeling results explained the effects of micro-structural changes on the binding site, the interaction force and the inhibition rate of the isomers when they combined with lipase.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Qiongju Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
46
|
Wang H, Xu J, Liu Q, Xia X, Sun F, Kong B. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage. Meat Sci 2022; 189:108827. [PMID: 35429823 DOI: 10.1016/j.meatsci.2022.108827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023]
Abstract
The effect of the addition of different levels of S. carnosus protease (0, 0.15, 0.30, 0.45 and 0.60 g/kg raw meat) on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage was investigated. The results showed that the S. carnosus protease addition to Harbin dry sausage effectively promoted the degradation of meat proteins into peptides and free amino acids, thus resulting in tenderization and inhibiting fat oxidation. Moreover, the S. carnosus protease addition could promote the development of key flavor compounds such as some ketones, acids and esters. Sausage with S. carnosus protease levels of 0.45 g/kg exhibited the most attractive sensory attributes. Molecular docking showed that the S. carnosus protease can interact with myosin heavy chains. In summary, the S. carnosus protease addition can improve quality characteristics and flavor profile of Harbin dry sausage.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
47
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
48
|
Wang H, Li Y, Xia X, Liu Q, Sun F, Kong B. Flavour formation from hydrolysis of pork meat protein extract by the protease from Staphylococcus carnosus isolated from Harbin dry sausage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Yuan JL, Ding CS, Li CL, Zhang Y, Kang X. Protective, controlled-release and embedding mechanism of porcine plasma protein cold-set gel on quercetin: An effective carrier of hydrophobic compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Wang Z, Yang L, Xue S, Wang S, Zhu L, Ma T, Liu H, Li R. Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ziyi Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Sen Xue
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lijie Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Tao Ma
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Ruren Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|