1
|
Dos Santos Lima A, Cruz TM, Mohammadi N, da Silva Cruz L, da Rocha Gaban de Oliveira R, Vieira FV, Zhou F, Zhang L, Granato D, Azevedo L. Turning agro-food waste into resources: Exploring the antioxidant effects of bioactive compounds bioaccessibility from digested jabuticaba tree leaf extract. Food Chem 2025; 469:142538. [PMID: 39708655 DOI: 10.1016/j.foodchem.2024.142538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The jabuticaba tree leaf, considered an agro-food by-product or waste, was evaluated as a potential unconventional ingredient of bioactive compounds. Its hydroalcoholic extracts were assessed for the phenolic chemical profile by LC-QQQ-MS and antioxidant capacity pre- and post-gastrointestinal digestion (i.e., bioaccessibility), along with determining cytotoxicity effects on cell culture, antihaemolytic and cellular antioxidant activity. A total of 9 phenolic compounds, including ellagic acid and flavonoids (hesperidin) were identified in both crude and digested samples. The bioaccessibility of these compounds was increased after digestion process, which was reflected in the erythrocytes' antioxidant activities, reducing the haemolysis, lipid peroxidation and reactive oxygen species (ROS) generation by more than 50 %. Furthermore, the in vitro digestion diminished the cytotoxicity effect, increasing the cell viability by 71 %. These findings underscore the potential of jabuticaba tree leaf extract as a rich source of antioxidant phenolics, emphasizing their potential and promising applications as a new functional ingredient.
Collapse
Affiliation(s)
- Amanda Dos Santos Lima
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.; Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Thiago Mendanha Cruz
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland.; Graduation Program in Chemistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Nima Mohammadi
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Laura da Silva Cruz
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Fernando Vitor Vieira
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Feng Zhou
- Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Hefei, China
| | - Liang Zhang
- Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Hefei, China
| | - Daniel Granato
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland..
| | - Luciana Azevedo
- In vitro and in vivo Nutritional and Toxicological Analysis Lab, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.; Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland..
| |
Collapse
|
2
|
Juliato RA, Brito IPC, Silva EK. Ultrasound-driven chemical and biochemical changes in jabuticaba juice: Phenolic compounds, volatile profile and inactivation of polyphenol oxidase, peroxidase and pectin methylesterase. Food Chem 2025; 481:144037. [PMID: 40163987 DOI: 10.1016/j.foodchem.2025.144037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Fruit juices are widely recognized as excellent vehicles for bioactive compounds, offering both nutritional and health-promoting benefits. Among these, jabuticaba (Myrciaria jaboticaba) stands out as a fruit exceptionally rich in phenolic compounds, particularly anthocyanins. This study evaluated the effects of thermal (90 °C/1 min and 120 °C/1 min) and high-intensity ultrasound (HIUS) treatments (6.3, 15.9, 25.5, and 36 W/cm2) on the physicochemical properties, polyphenol oxidase (PPO), peroxidase (POD), and pectin methylesterase (PME) inactivation, phenolic and volatile compound profiles, antimicrobial potential, and kinetic stability of jabuticaba juice. Compared to thermal processing, HIUS demonstrated superior anthocyanin retention and phenolic stability while effectively inactivating enzymes. HIUS at 25.5 and 36 W/cm2 increased cyanidin-3-O-glucoside content (up to a 40 % increase), whereas the 120 °C/1 min thermal treatment reduced it by 58 %, highlighting the susceptibility of anthocyanins to intense heat. Regarding phenolic acids, HIUS maintained ellagic acid levels and increased gallic acid content at higher intensities (up to a 55 % increase), whereas 120 °C/1 min significantly increased gallic acid and ellagic acid, likely due to thermal degradation and release of bound phenolics. The antimicrobial properties of jabuticaba juice were assessed through microbial growth analysis and challenge testing with Lacticaseibacillus paracasei, revealing its potential to contribute to microbial stability in juice formulations. HIUS at 25.5 W/cm2 was identified as the optimal processing condition, balancing enzymatic inactivation, bioactive compound retention, and physical stability, while avoiding the anthocyanin degradation observed in intense thermal treatments. These findings underscore the potential of HIUS as a nonthermal alternative for producing high-quality, functional jabuticaba juice and provide valuable insights into optimizing processing parameters to maximize bioactive compound retention and kinetic stability in fruit-based beverages.
Collapse
Affiliation(s)
- Rafael Augusto Juliato
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Iuri Procopio Castro Brito
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil..
| |
Collapse
|
3
|
Li F, Peng X, Li W. The interaction between various food components and intestinal microbiota improves human health through the gut-X axis: independently or synergistically. Food Funct 2025; 16:2172-2193. [PMID: 39996355 DOI: 10.1039/d4fo04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Food contains various components that improve health by affecting the gut microbiota, primarily by modulating its abundance or altering its diversity. Active substances in food have different effects on the gut microbiota when they act alone or in synergy, resulting in varying impacts on health. The bioactive compounds in food exert different effects on various gut microbiota through multiple pathways, thereby delaying or preventing different kinds of disease. The combination of two or more active compounds may have a synergistic effect, which can more effectively alter the gut microbiota and alleviate diseases through the microbiota-gut-organ axis. According to reports, multiple different food components have similar effects, some of which have been shown to have a synergistic effect on the gut microbiota to promote health. However, there is currently no systematic review of its synergistic effects and mechanisms. There may be more compounds with synergistic effects that have not yet been discovered, while their mechanisms of synergy and ways of impacting host health through the gut microbiota deserve further investigation. The purpose of this review is to systematically summarize the effects of different food components on intestinal flora and health, and further analyze the potential synergies between different food components. PubMed and Google Scholar databases were searched in this review.
Collapse
Affiliation(s)
- Fenfa Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd, Guangzhou 510405, China.
| |
Collapse
|
4
|
Li J, Miao Y, Guo C, Tang Y, Xin S, Fan Z, Su Y, Li Q. Ultrasound combined mechanical wall-breaking extraction of new Ganoderma leucocontextum polysaccharides and their application as a structural and functional improver in set fat-free goat yogurt production. Food Chem 2025; 468:142374. [PMID: 39674011 DOI: 10.1016/j.foodchem.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Herein, we investigate the yield, micro-structures, rheological properties and bioactivities of new Ganoderma leucocontextum polysaccharide (GLPUBE) obtained from Kangding via ultrasound combined mechanical wall-breaking extraction (UBE), and examine the effect of GLPUBE as a structural and functional improver on the physicochemical, sensory, aromatic, water-holding capacity (WHC), textural, rheological, micro-structural and protein structural properties, and bioactivities of set fat-free goat yogurt (set-FGY). Through response surface optimisation, the extracted GLPUBE achieved a maximum yield of 2.18 %, showing good apparent viscosity and elastic behaviour in 3 % aqueous solution as well as good micro-structure and significant anti-oxidant and anti-diabetic activities. The presence of 0.12 % GLPUBE significantly improved the WHC, pH, acidity, textural and rheological properties, protein concentration and secondary structure, but had no effect on the protein primary structure in set-FGY production. The addition of 0.12 % GLPUBE had an excellent ability in promoting sensory acceptance; total solid, and total polyphenol contents, WHC, pH, acidity, texture, free amino acid contents, viscosity, rheology and aroma properties; enhancing anti-oxidant and anti-diabetic abilities; inhibiting protein degradation; and maintaining the micro-structure and stability of the primary and secondary structures of protein complex of set-FGY during 21 days of storage. Therefore, GLPUBE can be used as an innovative structural and functional improver in set fat-free yogurt industry.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Caifu Guo
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Ying Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Songling Xin
- Sichuan Cuisine Development and Research Center, Sichuan Tourism University, Chengdu 610100, China
| | - Zixi Fan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yanqiu Su
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
5
|
Zalila-Kolsi I, Dhieb D, Osman HA, Mekideche H. The Gut Microbiota and Colorectal Cancer: Understanding the Link and Exploring Therapeutic Interventions. BIOLOGY 2025; 14:251. [PMID: 40136508 PMCID: PMC11939563 DOI: 10.3390/biology14030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
CRC remains a significant public health challenge due to its high prevalence and mortality rates. Emerging evidence highlights the critical role of the gut microbiota in both the pathogenesis of CRC and the efficacy of treatment strategies, including chemotherapy and immunotherapy. Dysbiosis, characterized by imbalances in microbial communities, has been implicated in CRC progression and therapeutic outcomes. This review examines the intricate relationship between gut microbiota composition and CRC, emphasizing the potential for microbial profiles to serve as biomarkers for early detection and prognosis. Various interventions, such as prebiotics, probiotics, postbiotics, fecal microbiota transplantation, and dietary modifications, aim to restore microbiota balance and shift dysbiosis toward eubiosis, thereby improving health outcomes. Additionally, the integration of microbial profiling into clinical practice could enhance diagnostic capabilities and personalize treatment strategies, advancing the field of oncology. The study of intratumoral microbiota offers new diagnostic and prognostic tools that, combined with artificial intelligence algorithms, could predict treatment responses and assess the risk of adverse effects. Given the growing understanding of the gut microbiome-cancer axis, developing microbiota-oriented strategies for CRC prevention and treatment holds promise for improving patient care and clinical outcomes.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| | - Dhoha Dhieb
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussam A. Osman
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| | - Hadjer Mekideche
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates; (H.A.O.); (H.M.)
| |
Collapse
|
6
|
Benvenutti L, Moura FM, Zanghelini G, Barrera C, Seguí L, Zielinski AAF. An Upcycling Approach from Fruit Processing By-Products: Flour for Use in Food Products. Foods 2025; 14:153. [PMID: 39856819 PMCID: PMC11765213 DOI: 10.3390/foods14020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
The growing global population has led to increased food consumption and a significant amount of food waste, including the non-consumed parts of fruits (e.g., stems, rinds, peels, seeds). Despite their nutrient richness, these by-products are often discarded. With the rising interest in nutrient-dense foods for health benefits, fruit by-products have potential as nutritious ingredients. Upcycling, which repurposes waste materials, is one solution. White flour, which is common in food products like bread and pasta, has good functional properties but poor nutritional value. This can be enhanced by blending white flour with fruit by-product flours, creating functional, nutrient-rich mixtures. This review explores using flours from common Brazilian fruit by-products (e.g., jaboticaba, avocado, guava, mango, banana, jackfruit, orange, pineapple, and passion fruit) and their nutritional, physical-chemical properties, quality and safety, and applications. Partially replacing wheat flour with fruit flour improves its nutritional value, increasing the amount of fiber, protein, and carbohydrates present in it. However, higher substitution levels can alter color and flavor, impacting the sensory appeal and acceptability. While studies showed the potential of fruit by-product flours in food formulation, there is limited research on their long-term health impacts.
Collapse
Affiliation(s)
- Laís Benvenutti
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Fernanda Moreira Moura
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Gabriela Zanghelini
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Cristina Barrera
- Instituto de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.B.); (L.S.)
| | - Lucía Seguí
- Instituto de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.B.); (L.S.)
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| |
Collapse
|
7
|
do Nascimento RDP, Rizzato JS, Polezi G, Boughanem H, Williams NG, Borguini RG, Santiago MCPDA, Marostica Junior MR, Parry L. Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2907. [PMID: 39458854 PMCID: PMC11510877 DOI: 10.3390/plants13202907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Jaboticaba (Myrciaria jaboticaba) is a recognizable and unique crop from Brazil. The fruit's byproducts are currently being studied, given their bioactive composition and promising anti-cancer potential. It is not evident, however, if different harvesting seasons can modify the chemical profile and antioxidant capacity of jaboticaba fruit fractions. Furthermore, as there is limited data for jaboticaba's anti-proliferative effects, additional assessments are required to improve the robustness of these findings. Therefore, this study aimed to determine the composition of the peel of jaboticaba collected in two periods (May-off-season, sample 1-and August-October-peak season, sample 2) and test the peel's richest anthocyanin sample against colorectal cancer (CRC) cell lines. To accomplish this, proximate, spectrophotometric, and chromatographic analyses were performed in two freeze-dried samples; and anti-proliferative and/or colony-forming assays were carried out in Caco-2, HT29, and HT29-MTX cells. As a result, sample 2 showed the highest levels of polyphenols overall, including flavonoids and anthocyanins. This sample displayed significative higher contents of cyanidin-3-O-glucoside (48%) and delphinidin-3-O-glucoside (105%), in addition to a superior antioxidant capacity (23% higher). Sample 1 showed higher amounts of total protein, gallic acid (20% higher), and specific carotenoids. An aqueous extract from sample 2 was tested against CRC, showing anti-proliferative effects for Caco-2 cells at 1 and 2 mg/mL concentrations, with IC50 values of 1.2-1.3 mg/mL. Additionally, the extract was able to inhibit cell colony formation when tested at both low and high concentrations. In conclusion, jaboticaba collected in the main season stands out regarding its polyphenol composition and holds potential against cancer cell growth.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Julia Soto Rizzato
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Gabriele Polezi
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Hatim Boughanem
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Non Gwenllian Williams
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Renata Galhardo Borguini
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindustria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil; (R.G.B.); (M.C.P.d.A.S.)
| | | | - Mario Roberto Marostica Junior
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Lee Parry
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| |
Collapse
|
8
|
Zhong Y, Liu Z, Wang Y, Cai S, Qiao Z, Hu X, Wang T, Yi J. Preventive Methods for Colorectal Cancer Through Dietary Interventions: A Focus on Gut Microbiota Modulation. FOOD REVIEWS INTERNATIONAL 2024:1-29. [DOI: 10.1080/87559129.2024.2414908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory for Plateau Food Advanced Manufacturing, Kunming University of Science and Technology, Kunming, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Calliari CM, Shirai MA, Casazza AA, Pettinato M, Perego P. Inulin as prebiotic encapsulating agent for the production of spray-dried Hibiscus sabdariffa L. tea microcapsules. Nat Prod Res 2024; 38:3311-3320. [PMID: 37585694 DOI: 10.1080/14786419.2023.2244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Due to the high content of phenolics and anthocyanins of Hibiscus sabdariffa L. tea and the sensibility of these bioactive compounds, this work aimed to optimize the obtention of microcapsules by spray-drying, using inulin as a carrier agent. Using a Box-Behnken Design, the effects of inlet temperature (130, 150, and 170 °C), feed flow rate (5, 10, and 15 mL min-1), and inulin concentration (5, 10, and 15 g L-1) were evaluated. It was possible to obtain pale-rose, slightly sweet instant powders with good total polyphenol content (1.12 mgGAE g-1) and anthocyanins encapsulation efficiency (32.3-60.6%), besides moisture (4.61-17.79%) and water activity (0.221-0.501), indicating physico-chemical and microbiological stability of the microcapsules. A simultaneous optimization with the desirability function was performed to maximize all the response variables analyzed, and the optimum conditions of 5 g L-1 of inulin, inlet temperature of 170 °C, and feed flow rate of 83 mL min-1 were found.
Collapse
Affiliation(s)
- Caroline Maria Calliari
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | - Marianne Ayumi Shirai
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Zhong M, Miao Y, Lan Y, Ma Q, Li K, Chen W. Effects of Exidia yadongensis polysaccharide as emulsifier on the stability, aroma, and antioxidant activities of fat-free stirred mango buffalo yogurt. Int J Biol Macromol 2024; 276:133785. [PMID: 39084987 DOI: 10.1016/j.ijbiomac.2024.133785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Because of the poor stability and rheological properties of fat-free stirred yogurt fortified with fruit pulp, new functional polysaccharides as a natural emulsifier, which can increase viscosity in the aqueous phase, may be needed. This study aimed to evaluate the effects of Exidia yadongensis polysaccharide (EYP) as emulsifier on the stability, aroma, and antioxidant activities of mango buffalo yogurt at 4 °C for 25 days. The yogurt with 15 g/L EYP gave a higher content of 215 g/L total solids, 11.3 g/L exopolysaccharides, 0.10 g/L total polyphenols, 630.5 g/L water-holding capacity, and 11.43 g/kg total free amino acids, and maintained better texture, DPPH scavenging activity of 54.05 % and OH scavenging rates of 67.16 %. Moreover, the EYP exhibited the expected ability to weaken postacidification, syneresis, and growth of microorganism, and greatly promote the textural, rheological properties, suspension stability, microstructure, and aroma profiles of stirred mango-flavored buffalo yogurt (p < 0.05). In addition, the addition of 15 g/L EYP can inhibit protein degradation and improve the stability of secondary structure of the protein complex in mango yogurt during 25 days of storage. Therefore, EYP (15 g/L) could be used as natural positive functional factors and emulsifiers in such fat-free stirred yogurt industry.
Collapse
Affiliation(s)
- Maoling Zhong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry Education of China, Chengdu, Sichuan 610066, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Yi Lan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qinqin Ma
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Kejuan Li
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Wanying Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
11
|
Coelho VS, Aguiar LL, Grancieri M, Lourenço JMP, Braga DP, Saraiva SH, Costa AGV, Silva PI. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response. Food Res Int 2024; 189:114567. [PMID: 38876609 DOI: 10.1016/j.foodres.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Lara Louzada Aguiar
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | | | | | - Sergio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Pharmacy and Nutrition Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil.
| |
Collapse
|
12
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
14
|
Araújo CM, de Albuquerque TMR, Sampaio KB, de Oliveira JN, da Silva JYP, Lima MDS, do Nascimento YM, da Silva EF, da Silva MS, Tavares JF, de Souza EL, de Oliveira MEG. Fermenting Acerola ( Malpighia emarginata D.C.) and Guava ( Psidium guayaba L.) Fruit Processing Co-Products with Probiotic Lactobacilli to Produce Novel Potentially Synbiotic Circular Ingredients. Foods 2024; 13:1375. [PMID: 38731747 PMCID: PMC11083529 DOI: 10.3390/foods13091375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
This study evaluated the effects of acerola and guava fruit processing co-products fermented with probiotic Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 on the abundance of different intestinal bacterial groups and microbial metabolic activity during 48 h of in vitro fecal fermentation. Digested fermented fruit co-products increased the relative abundance of beneficial bacterial groups while overall decreasing or maintaining the relative abundance of non-beneficial bacterial groups, suggesting selective stimulatory effects on beneficial bacterial intestinal populations. The fermented co-products stimulated microbial metabolic activity due to decreased pH, sugar consumption, short-chain fatty acid production, phenolic compound and metabolic profile alteration, and high antioxidant capacity during fecal fermentation. Acerola and guava co-products have high nutritional value and bioactive compounds whose fermentation with probiotics improves their potential functionalities. The results show that fermented fruit co-products could induce beneficial changes in the relative abundance of several bacterial groups as well as in the metabolic activity of the human intestinal microbiota. These results highlight their potential as novel and circular candidates for use as synbiotic ingredients.
Collapse
Affiliation(s)
- Caroliny M. Araújo
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Thatyane Mariano R. de Albuquerque
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Karoliny B. Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Jordana N. de Oliveira
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Jaielison Yandro P. da Silva
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Marcos dos S. Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302-100, Brazil;
| | - Yuri M. do Nascimento
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Evandro F. da Silva
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Marcelo S. da Silva
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Josean F. Tavares
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Evandro L. de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Maria Elieidy G. de Oliveira
- Laboratory of Food Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
15
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
16
|
Bevilacqua A, Campaniello D, Speranza B, Racioppo A, Sinigaglia M, Corbo MR. An Update on Prebiotics and on Their Health Effects. Foods 2024; 13:446. [PMID: 38338581 PMCID: PMC10855651 DOI: 10.3390/foods13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Prebiotic compounds were originally defined as "a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improves host health"; however, a significant modulation of the definition was carried out in the consensus panel of The International Scientific Association for Probiotics and Prebiotics (ISAPP), and the last definition states that "prebiotics are substrates that are selectively utilized by host microorganisms conferring a health benefit". Health effects of prebiotics compounds attracted the interest of researchers, food companies and Regulatory Agencies, as inferred by the number of articles on Scopus for the keywords "prebiotic" and "health effects", that is ca. 2000, for the period January 2021-January 2024. Therefore, the aim of this paper is to contribute to the debate on these topics by offering an overview of existing knowledge and advances in this field. A literature search was performed for the period 2012-2023 and after the selection of the most relevant items, the attention was focused on seven conditions for which at least 8-10 different studies were found, namely colorectal cancer, neurological or psychiatric conditions, intestinal diseases, obesity, diabetes, metabolic syndrome, and immune system disorders. In addition, the analysis of the most recent articles through the software VosViewer version 1.6.20 pointed out the existence of five clusters or macro-categories, namely: (i) pathologies; (ii) metabolic condvitions; (iii) structure and use in food; (iv) immunomodulation; (v) effect on gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy; (A.B.); (D.C.); (B.S.); (A.R.); (M.S.)
| |
Collapse
|
17
|
Dos Santos de Moraes PG, da Silva Santos IB, Silva VBG, Dede Oliveira FariasAguiar JCR, do Amaral Ferraz Navarro DM, de Oliveira AM, Dos Santos Correia MT, Costa WK, da Silva MV. Essential oil from leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg has antinociceptive and anti-inflammatory potential. Inflammopharmacology 2023; 31:3143-3151. [PMID: 37498376 DOI: 10.1007/s10787-023-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Myrciaria floribunda is a plant that is distributed across different Brazilian biomes such as the Amazon, Caatinga, Cerrado, and Atlantic Forest, and it possesses antioxidant, antimicrobial, and anticancer properties. The antinociceptive and anti-inflammatory properties of the essential oil from M. floribunda leaves (MfEO) were examined in this study using mouse models. Gas chromatography-mass spectrometry was employed to describe the oil, and the results revealed that δ-cadinene, bicyclogermacrene, α-cadinol, and epi-α-muurolol predominated in the chemical profile. The oil stimulated a decrease in nociception in the chemical and thermal models used to evaluate acute antinociceptive activity. Findings from the use of pain pathway blockers to study the presumed underlying mechanism indicated opioid pathway activity. The anti-edematogenic effect, decreased cell migration, and generation of pro-inflammatory cytokines provided evidence of the anti-inflammatory potential of the essential oil from M. floribunda. According to this research, the essential oil from M. floribunda can effectively alleviate acute pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
18
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Lima MDC, do Nascimento HMA, da Silva JYP, de Brito Alves JL, de Souza EL. Evidence for the Beneficial Effects of Brazilian Native Fruits and Their By-Products on Human Intestinal Microbiota and Repercussions on Non-Communicable Chronic Diseases-A Review. Foods 2023; 12:3491. [PMID: 37761200 PMCID: PMC10527964 DOI: 10.3390/foods12183491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.d.C.L.); (H.M.A.d.N.); (J.Y.P.d.S.); (J.L.d.B.A.)
| |
Collapse
|
20
|
de Oliveira SPA, de Albuquerque TMR, Massa NML, Rodrigues NPA, Sampaio KB, do Nascimento HMA, Dos Santos Lima M, da Conceição ML, de Souza EL. Investigating the effects of conventional and unconventional edible parts of red beet (Beta vulgaris L.) on target bacterial groups and metabolic activity of human colonic microbiota to produce novel and sustainable prebiotic ingredients. Food Res Int 2023; 171:112998. [PMID: 37330844 DOI: 10.1016/j.foodres.2023.112998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of freeze-dried red beet root (FDBR) and freeze-dried red beet stem and leaves (FDBSL) on target bacterial groups and metabolic activity of human colonic microbiota in vitro. The capability of FDBR and FDBSL to cause alterations in the relative abundance of different selected bacterial groups found as part of human intestinal microbiota, as well as in pH values, sugar, short-chain fatty acid, phenolic compounds, and antioxidant capacity were evaluated during 48 h of in vitro colonic fermentation. FDBR and FDBSL were submitted to simulated gastrointestinal digestion and freeze-dried prior to use in colonic fermentation. FDBR and FDBSL overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (3.64-7.60%) and Bifidobacterium spp. (2.76-5.78%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (9.56-4.18%), Clostridium histolyticum (1.62-1.15%), and Eubacterium rectale/Clostridium coccoides (2.33-1.49%) during 48 h of colonic fermentation. FDBR and FDBSL had high positive prebiotic indexes (>3.61) during colonic fermentation, indicating selective stimulatory effects on beneficial intestinal bacterial groups. FDBR and FDBSL increased the metabolic activity of human colonic microbiota, evidenced by decreased pH, sugar consumption, short-chain fatty acid production, alterations in phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. The results indicate that FDBR and FDBSL could induce beneficial alterations in the composition and metabolic activity of human intestinal microbiota, as well as that conventional and unconventional red beet edible parts are candidates to use as novel and sustainable prebiotic ingredients.
Collapse
Affiliation(s)
| | | | - Nayara Moreira Lacerda Massa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE, Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
21
|
Dos Santos Lima A, Novaes RD, Pinheiro LC, de Almeida LA, Martino HSD, Giusti-Paiva A, Pap N, Granato D, Azevedo L. From waste to the gut: Can blackcurrant press cake be a new functional ingredient? Insights on in vivo microbiota modulation, oxidative stress, and inflammation. Food Res Int 2023; 170:112917. [PMID: 37316039 DOI: 10.1016/j.foodres.2023.112917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Blackcurrant press cake (BPC) is a source of anthocyanins, and this study evaluated the bioactivity and gut microbiota modulation of blackcurrant diets with or without 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in rats. In colon cancer-induced rats (CRC), BPC at the highest dosages increased pro-inflammatory parameters and the expression of anti-apoptotic cytokines, accentuating colon cancer initiation by aberrant crypts and morphological changes. Fecal microbiome analysis showed that BPC altered the composition and function of the gut microbiome. This evidence suggests that high doses of BPC act as a pro-oxidant, accentuating the inflammatory environment and CRC progression.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Lucas Cezar Pinheiro
- Department of Pharmacology, Federal University Santa Catarina, Santa Catarina, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Alexandre Giusti-Paiva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Nora Pap
- Biorefinery and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
23
|
Castangia I, Fulgheri F, Leyva-Jimenez FJ, Alañón ME, Cádiz-Gurrea MDLL, Marongiu F, Meloni MC, Aroffu M, Perra M, Allaw M, Abi Rached R, Oliver-Simancas R, Escribano Ferrer E, Asunis F, Manca ML, Manconi M. From Grape By-Products to Enriched Yogurt Containing Pomace Extract Loaded in Nanotechnological Nutriosomes Tailored for Promoting Gastro-Intestinal Wellness. Antioxidants (Basel) 2023; 12:1285. [PMID: 37372015 DOI: 10.3390/antiox12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Grape pomace is the main by-product generated during the winemaking process; since it is still rich in bioactive molecules, especially phenolic compounds with high antioxidant power, its transformation in beneficial and health-promoting foods is an innovative challenge to extend the grape life cycle. Hence, in this work, the phytochemicals still contained in the grape pomace were recovered by an enhanced ultrasound assisted extraction. The extract was incorporated in liposomes prepared with soy lecithin and in nutriosomes obtained combining soy lecithin and Nutriose FM06®, which were further enriched with gelatin (gelatin-liposomes and gelatin-nutriosomes) to increase the samples' stability in modulated pH values, as they were designed for yogurt fortification. The vesicles were sized ~100 nm, homogeneously dispersed (polydispersity index < 0.2) and maintained their characteristics when dispersed in fluids at different pH values (6.75, 1.20 and 7.00), simulating salivary, gastric and intestinal environments. The extract loaded vesicles were biocompatible and effectively protected Caco-2 cells against oxidative stress caused by hydrogen peroxide, to a better extent than the free extract in dispersion. The structural integrity of gelatin-nutriosomes, after dilution with milk whey was confirmed, and the addition of vesicles to the yogurt did not modify its appearance. The results pointed out the promising suitability of vesicles loading the phytocomplex obtained from the grape by-product to enrich the yogurt, offering a new and easy strategy for healthy and nutritional food development.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Francisco Javier Leyva-Jimenez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Maria Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | | | - Francesca Marongiu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Cristina Meloni
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Perra
- Biomedical and Tissue Engineering Laboratory, Fundación de Investigación Hospital General Universitario, 46022 Valencia, Spain
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rita Abi Rached
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rodrigo Oliver-Simancas
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Elvira Escribano Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08028 Barcelona, Spain
| | - Fabiano Asunis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| |
Collapse
|
24
|
Miranda BM, Almeida VO, Terstegen T, Hundschell C, Flöter E, Silva FA, Fernandes KF, Wagemans A, Ulbrich M. The microstructure of the starch from the underutilized seed of jaboticaba (Plinia cauliflora). Food Chem 2023; 423:136145. [PMID: 37187005 DOI: 10.1016/j.foodchem.2023.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
This work presents a starch extracted from jaboticaba seeds. The extraction yielded 22.65 ± 0.63% of a slightly beige powder (a* 1.92 ± 0.03, b* 10.82 ± 0.17 and L* 92.27 ± 0.24). The starch presented low protein content (1.19% ± 0.11) and phenolic compounds (0.58 ± 0.02 GAE. g) as contaminants. The starch granules showed small, smooth, irregular shapes and sizes between 6.1 and 9.6 µm. The starch presented a high content of amylose (34.50%±0.90) and a predominance of intermediate chain length (B1-chains 51%), followed by A-chains (26%) in the amylopectin. The SEC-MALS-DRI showed the starch had a low molecular weight (5.3·106 g·mol-1) and amylose/amylopectin content compatible with a Cc-type starch, confirmed in the X-ray diffractogram. Thermal studies showed a low onset temperature (T0 = 66.4 ± 0.46 °C) and gelatinization enthalpy (ΔH = 9.1 ± 1.19 J g-1) but a high-temperature range (ΔT = 14.1 ± 0.52 °C). The jaboticaba starch proved to be a promising material for food and non-food applications.
Collapse
Affiliation(s)
- Bruna M Miranda
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil; Laboratory of Polymers Chemistry, Institute of Biological Science, ICB 2, Federal University of Goiás, Goiânia, Brazil; Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Viviane O Almeida
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil
| | - Tim Terstegen
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Christoph Hundschell
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Flávio A Silva
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil
| | - Kátia F Fernandes
- Laboratory of Polymers Chemistry, Institute of Biological Science, ICB 2, Federal University of Goiás, Goiânia, Brazil.
| | - Anja Wagemans
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Marco Ulbrich
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
25
|
Nascimento RDPD, Rizzato JS, Polezi G, Moya AMTM, Silva MF, Machado APDF, Franchi Junior GC, Borguini RG, Santiago MCPDA, Paiotti APR, Pereira JA, Martinez CAR, Marostica Junior MR. Freeze-dried jaboticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel powder, a rich source of anthocyanins and phenolic acids, mitigates inflammation-driven colorectal cancer in mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
26
|
Ardanareswari K, Lowisia W, Soedarini B, Liao JW, Chung YC. Jaboticaba (Myrciaria cauliflora) Fruit Extract Suppressed Aberrant Crypt Formation in 1,2-Dimetylhydrazine-Induced Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01051-z. [PMID: 36820999 DOI: 10.1007/s11130-023-01051-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Early intervention can significantly improve the colorectal cancer survival rate. Foods rich in phenolic compounds, such as jaboticaba (Myrciaria cauliflora), may prevent tumorigenesis. We investigated the effectivity of jaboticaba whole fruit ethanolic extract (FEX) in suppressing aberrant crypt foci (ACF), the earliest lesion of colorectal cancer (CRC), in 1,2-dimethylhydrazine (DMH)-induced rats and the underlying mechanisms related to the gut microbiota composition and short chain fatty acid (SCFA). This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Providence University (Trial Registration Number 20180419A01, registration date: 22 December 2018). The FEX contains gallic acid and an especially high ellagic acid concentration of 54.41 ± 1.80 and 209.79 ± 2.49 mg/100 g FEX. The highest total ACF number (150.00 ± 43.86) was recorded in the DMH control (D) group. After 56 days of oral FEX treatment, the total ACF number in the low FEX dosage (DL) group was significantly lower compared to the D group (p < 0.05). The large-sized ACF (> 5 foci), which has a higher probability of progressing to later stage, was significantly decreased in the high FEX dosage (DH) group. The 16s rDNA metagenomic sequencing of the cecal material revealed that the CRC biomarker Lachnoclostridium was significantly suppressed in the DH group (p < 0.05), whereas some SCFA-producing taxa and the cecal butyrate concentration were significantly elevated in the DL and DH groups (p < 0.05). This study demonstrated the potential of jaboticaba whole fruit in CRC prevention, especially in the initial stage, by shifting gut microbiota composition and improving cecal butyrate level.
Collapse
Affiliation(s)
- Katharina Ardanareswari
- Department of Food and Nutrition, Providence University, No. 200, Section 7, Taiwan Blvd, Shalu District, Taichung City, 43301, Republic of China (Taiwan)
- Department of Food Technology, Soegijapranata Catholic University, Semarang, Indonesia
| | - Webiana Lowisia
- Department of Food and Nutrition, Providence University, No. 200, Section 7, Taiwan Blvd, Shalu District, Taichung City, 43301, Republic of China (Taiwan)
- Department of Food Technology, Soegijapranata Catholic University, Semarang, Indonesia
| | - Bernadeta Soedarini
- Department of Food Technology, Soegijapranata Catholic University, Semarang, Indonesia
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, Taichung City, Republic of China (Taiwan)
| | - Yun-Chin Chung
- Department of Food and Nutrition, Providence University, No. 200, Section 7, Taiwan Blvd, Shalu District, Taichung City, 43301, Republic of China (Taiwan).
| |
Collapse
|
27
|
Phytochemical Analysis and Toxicity Assessment of Bouea Macrophylla Yoghurt. Toxins (Basel) 2023; 15:toxins15020125. [PMID: 36828439 PMCID: PMC9959104 DOI: 10.3390/toxins15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
The Bouea macrophylla fruit is native to Malaysia and is known for its many beneficial effects on one's health. Probiotics are well-known for their roles as anti-inflammatory, antioxidant, and anti-tumour properties due to their widespread use. As a result, the purpose of this study was to incorporate the ethanolic extract of Bouea macrophylla into yoghurt and then assess the rodents for any toxicological effects. According to the findings of the nutritional analysis, each 100 mL serving of the newly formulated yoghurt contains 3.29 g of fat, 5.79 g of carbohydrates, 2.92 g of total protein, and 2.72 g of sugar. The ability of the newly developed yoghurt to stimulate the growth of Lactobacilli was demonstrated by the fact that the peak intensity of Lactobacillus species was measured at 1.2 × 106 CFU/g while the titratable acidity of the lactic acid was measured at 0.599 CFU/g. In order to carry out the toxicological evaluation, forty-eight male Sprague Dawley (SD) rats were utilized. Oral administration of single doses of 2000 mg/kg over the course of 14 days was used for the study of acute toxicity. Subacute toxicity was studied by giving animals Bouea macrophylla yoghurt (BMY) at repeated doses of 50, 250, 500, and 1000 mg/kg/day over a period of 28 days, while the control group was given normal saline. The results of the acute toxicity test revealed that rats treated with increasing doses up to a maximum of 2000 mg/kg exhibited no signs of toxicity. After an additional 14 days without treatment, acute toxicity of a single dose (2000 mg/kg) of BMY did not show any treatment-related toxicity in any of the rats that were observed. According to the data from the subacute toxicity study, there were no differences between the treated groups and the control groups in terms of food and water intake, body weight, plasma biochemistry (AST, ALT, ALP, and creatinine), haematological products, or organ weights. The architecture of the liver, heart, and kidney were all found to be normal upon histological examination. This indicates that oral consumption of BMY did not result in any negative effects being manifested in the rodents.
Collapse
|
28
|
Tuli HS, Vashishth K, Sak K, Mohapatra RK, Dhama K, Kumar M, Abbas Z, Lata K, Yerer MB, Garg VK, Sharma AK, Kaur G. Anticancer Role of Natural Phenolic Acids by Targeting Angiotensin-Converting Enzyme (ACE). ADVANCES IN BIOCHEMISTRY IN HEALTH AND DISEASE 2023:465-481. [DOI: 10.1007/978-3-031-23621-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
29
|
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, Zhang D, Han L, Lin J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022; 27:7377. [PMID: 36364203 PMCID: PMC9653952 DOI: 10.3390/molecules27217377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.
Collapse
Affiliation(s)
- Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xichuan Wei
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Xu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haozhou Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanhu Fan
- Sichuan Huamei Pharmaceutical Co., Ltd., Sanajon Pharmaceutical Group, Chengdu 610045, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
30
|
Granato D. Functional foods to counterbalance low-grade inflammation and oxidative stress in cardiovascular diseases: a multilayered strategy combining food and health sciences. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
The role of nutrition in harnessing the immune system: a potential approach to prevent cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:245. [PMID: 36180759 DOI: 10.1007/s12032-022-01850-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Cancer is a vital barrier to increase the life expectancy and the foremost cause of death globally. The initial diagnosis and proper management of cancer can expand the survival rate of individuals. This review provides an in-depth investigation of cancer causes symptoms, types of cancer, and worldwide distribution of cancer. The relation between nutrition (i.e., various food items) and cancer is also emphasized to offer a framework of nutrition management in different cancer types. The microbiota is closely associated with the occurrence of cancer. Thus, genomics of intestinal microbes and nutrigenomics have been discussed based on the reported meta-analysis studies. A dramatic increase in cancer rates has been observed due to intake of alcohol, microbial infections, and deficiency of nutrition. Malnutrition is a substantial problem in cancer patients linked with improper treatment and increased morbidity. The detail studies of cancer and nutrigenomics are an eminent approach to comprehend the relation between microbes and the consumption of certain food types which can further reduce the cancer risk. The incorporation of specific nutrients and probiotics improved the gut microbial health, increased life expectancy, and also decreased the incidence of tumorigenesis in individuals.
Collapse
|
32
|
Maroldi WV, Maciel GM, Rossetto R, Bortolini DG, de Andrade Arruda Fernandes I, Haminiuk CWI. Biosorption of phenolic compounds from
Plinia cauliflora
seeds in residual yeast: kinetic, equilibrium and bioaccessibility studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wédisley Volpato Maroldi
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280‐340 PR Brazil
| | - Raquel Rossetto
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | - Débora Gonçalves Bortolini
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | | | - Charles Windson Isidoro Haminiuk
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280‐340 PR Brazil
| |
Collapse
|
33
|
Barroso T, Sganzerla W, Rosa R, Castro L, Maciel-Silva F, Rostagno M, Forster-Carneiro T. Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food Res Int 2022; 158:111547. [DOI: 10.1016/j.foodres.2022.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
|
34
|
Alam Z, Shang X, Effat K, Kanwal F, He X, Li Y, Xu C, Niu W, War AR, Zhang Y. The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer. J Food Biochem 2022; 46:e14302. [PMID: 35816322 DOI: 10.1111/jfbc.14302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a global health issue that is rising swiftly with younger people and an increased number of patients. The role of human microbiota in the pathophysiology of tumors has been paid more and more attention. Microecologics including prebiotics, probiotics, and synbiotics are among the best validated/proven resources for the application of microbiological prophylaxis and therapy. There is strong evidence that microecologics have anti-cancer activity and their potential association with cancer is significant. In this review, we will focus on the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, inhibition of host tumor cell proliferation, and epidemiological-based recommendations. Besides, other signs illuminate the role of microecological agents to adjunct the cancer treatment and counter the toxic side effects of cancer drugs. In addition, we will explore their role in chemotherapy, where these probiotics can be used as an adjunct to chemotherapy, counteracting the toxic side effects of chemotherapy drugs to minimize or optimize the therapeutic effect. In the treatment of cancer, we can see the role of prebiotics, probiotics, synbiotics, and their application in cancer patients, and the effectiveness effect can be considered as a clinical benefit. PRACTICAL APPLICATIONS: A large number of studies have shown that microecologics including prebiotics, probiotics, and synbiotics play an important role in regulating intestinal microecology and contribute to the prevention and treatment of cancer, indicating that prebiotics, probiotics, and synbiotics have the potential to be used as microecological modulators in the adjuvant therapy of cancer. However, it is not clear what is the anti-tumor mechanism of these microecologics and how they antagonize the side effects of cancer chemotherapy and protect normal cells. This paper reviews the role of prebiotics, probiotics, and synbiotics in tumor suppression in maintaining the colon barrier, metabolism, immune regulation, and prevention of rapid growth of host cells, as well as their potential role in cancer chemotherapy. This review helps to better understand the relationship between prebiotics, probiotics, and synbiotics with immune regulation, intestinal microecology, metabolic regulation, and cell proliferation and provides strong evidence for their potential application as microecologics in cancer adjuvant therapy.
Collapse
Affiliation(s)
- Zahoor Alam
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoya Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Khansa Effat
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Freeha Kanwal
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoqin He
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yanye Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Weining Niu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Abdul Rouf War
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong Zhang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
36
|
Guimarães JT, Almeida PP, Brito ML, Cruz BO, Costa NS, Almeida Ito RV, Mota JC, Bertolo MR, Morais ST, Neto RP, Tavares MIB, Souto F, Bogusz Junior S, Pimentel TC, Stockler-Pinto MB, Freitas MQ, Cruz AG. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chem 2022; 380:132193. [DOI: 10.1016/j.foodchem.2022.132193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
37
|
Hacke ACM, Valério TP, Cubo MF, Lima D, Pessôa CA, Vellosa JCR, Pereira RP. Antioxidant capacity of
Myrciaria cauliflora
seed extracts by spectrophotometric, biochemical, and electrochemical methods and its protective effect against oxidative damage in erythrocytes. J Food Biochem 2022; 46:e14222. [DOI: 10.1111/jfbc.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Carolina Mendes Hacke
- Departamento de Química Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
- Department of Chemistry University of Manitoba Winnipeg Manitoba Canada
| | - Taynara Pacheco Valério
- Departamento de Engenharia de Alimentos Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
| | - Mateus Flórido Cubo
- Departamento de Engenharia de Alimentos Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
| | - Dhésmon Lima
- Departamento de Química Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
- Department of Chemistry University of Manitoba Winnipeg Manitoba Canada
| | | | | | | |
Collapse
|
38
|
|
39
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Campos-Vega R, Luzardo-Ocampo I, Cuellar-Nuñez ML, Oomah BD. Designer food and feeds from underutilized fruits and vegetables. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
42
|
Castangia I, Manca ML, Allaw M, Hellström J, Granato D, Manconi M. Jabuticaba ( Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes. Molecules 2021; 26:molecules26216697. [PMID: 34771107 PMCID: PMC8587422 DOI: 10.3390/molecules26216697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The Brazilian berry scientifically known as jabuticaba is a fruit covered by a dark purple peel that is still rich in bioactives, especially polyphenols. Considering that, this work was aimed at obtaining an extract from the peel of jabuticaba fruits, identifying its main components, loading it in phospholipid vesicles specifically tailored for skin delivery and evaluating their biological efficacy. The extract was obtained by pressurized hot water extraction (PHWE), which is considered an easy and low dissipative method, and it was rich in polyphenolic compounds, especially flavonoids (ortho-diphenols and condensed tannins), anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) and gallic acid, which were responsible for the high antioxidant activity detected using different colorimetric methods (DPPH, FRAP, CUPRAC and metal chelation). To improve the stability and extract effectiveness, it was incorporated into ultradeformable phospholipid vesicles (transfersomes) that were modified by adding two different polymers (hydroxyethyl cellulose and sodium hyaluronate), thus obtaining HEcellulose-transfersomes and hyaluronan-transfersomes. Transfersomes without polymers were the smallest, as the addition of the polymer led to the formation of larger vesicles that were more stable in storage. The incorporation of the extract in the vesicles promoted their beneficial activities as they were capable, to a greater extent than the solution used as reference, of counteracting the toxic effect of hydrogen peroxide and even of speeding up the healing of a wound performed in a cell monolayer, especially when vesicles were enriched with polymers. Given that, polymer enriched vesicles may represent a good strategy to produce cosmetical and cosmeceutical products with beneficial properties for skin.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
- Correspondence: (M.L.M.); (D.G.)
| | - Mohamad Allaw
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| | - Jarkko Hellström
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland;
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: (M.L.M.); (D.G.)
| | - Maria Manconi
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (I.C.); (M.A.); (M.M.)
| |
Collapse
|
43
|
Appunni S, Rubens M, Ramamoorthy V, Tonse R, Saxena A, McGranaghan P, Kaiser A, Kotecha R. Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Front Nutr 2021; 8:718389. [PMID: 34708063 PMCID: PMC8542705 DOI: 10.3389/fnut.2021.718389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Dietary factors have important role in modulating the gut microbiome, which in-turn regulates the molecular events in colonic mucosa. The composition and resulting metabolism of the gut microbiome are decisive factors in colorectal cancer (CRC) tumorigenesis. Altered gut microbiome is associated with impaired immune response, and the release of carcinogenic or genotoxic substances which are the major microbiome-induced mechanisms implicated in CRC pathogenesis. Diets low in dietary fibers and phytomolecules as well as high in red meat are important dietary changes which predispose to CRC. Dietary fibers which reach the colon in an undigested form are further metabolized by the gut microbiome into enterocyte friendly metabolites such as short chain fatty acid (SCFA) which provide anti-inflammatory and anti-proliferative effects. Healthy microbiome supported by dietary fibers and phytomolecules could decrease cell proliferation by regulating the epigenetic events which activate proto-oncogenes and oncogenic pathways. Emerging evidence show that predominance of microbes such as Fusobacterium nucleatum can predispose the colonic mucosa to malignant transformation. Dietary and lifestyle modifications have been demonstrated to restrict the growth of potentially harmful opportunistic organisms. Synbiotics can protect the intestinal mucosa by improving immune response and decreasing the production of toxic metabolites, oxidative stress and cell proliferation. In this narrative review, we aim to update the emerging evidence on how diet could modulate the gut microbial composition and revive colonic epithelium. This review highlights the importance of healthy plant-based diet and related supplements in CRC prevention by improving the gut microbiome.
Collapse
Affiliation(s)
- Sandeep Appunni
- Government Medical College, Kozhikode, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | | | - Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Peter McGranaghan
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| |
Collapse
|
44
|
Li Y, Li J, Xu F, Liu G, Pang B, Liao N, Li H, Shi J. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34592876 DOI: 10.1080/10408398.2021.1983768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatigue has many negative effects on human health. As such, it is desirable to develop anti-fatigue foods and understand the mechanisms of their action. Based on a comprehensive review of the literature, this article discusses the important roles of gut microbiota in fatigue and anti-fatigue. Studies have shown that an increase in pathogenic bacteria and a decrease in beneficial bacteria co-exist when fatigue is present in both rodents and humans, whereas changes in gut microbiota were reported after intervention with anti-fatigue foods. The roles of gut microbiota in the activities of anti-fatigue foods can also be explained in the causes and the effects of fatigue. Among the causes of fatigue, the accumulation of lactic acid, decrease of energy, and reduction of central nervous system function were related to gut microbiota metabolism. Among the harmful effects of fatigue, oxidative stress, inflammation, and intestinal barrier dysfunction were related to gut microbiota dysbiosis. Furthermore, gut microbiota, together with anti-fatigue foods, can inhibit pathogen growth, convert foods into highly anti-oxidative or anti-inflammatory products, produce short-chain fatty acids, maintain intestinal barrier integrity, inhibit intestinal inflammation, and stimulate the production of neurotransmitters that regulate the central nervous system. Therefore, it is believed that gut microbiota play important roles in the activities of anti-fatigue foods and may provide new insights on the development of anti-fatigue foods.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Huixin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
45
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
46
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|
47
|
Aschemann-Witzel J, Bizzo HR, Doria Chaves ACS, Faria-Machado AF, Gomes Soares A, de Oliveira Fonseca MJ, Kidmose U, Rosenthal A. Sustainable use of tropical fruits? Challenges and opportunities of applying the waste-to-value concept to international value chains. Crit Rev Food Sci Nutr 2021; 63:1339-1351. [PMID: 34382890 DOI: 10.1080/10408398.2021.1963665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Agriculture and food science literature on waste-to-value applications that allow upcycling of by-product ingredients is increasing. However, this stream of research rarely takes an international trade and sustainability systems perspective. This focused review defines the term of waste-to-value and the sustainable development goals connected to it, and points to the tensions and questions arising when international trade is involved. Further, it exemplifies the challenges and opportunities of waste-to-value in tropical fruit trade through five cases of tropical fruit from South America: Green coconut, açaí, maracujá, cambuci, and jabuticaba. We present a model of the international supply chain that indicates where the opportunities of waste-to-value applications in international tropical fruit trade are situated, and discuss which future research questions need to be addressed to tackle the challenges of waste-to-value in global tropical fruit chains. Establishing the waste-to-value approach in the export of yet-underused tropical fruits can amongst others improve local employment, preserve natural resources, allow favorable use of side-streams in local energy production, environmentally friendly packaging material for transport, and add health functionalities to the end-consumer products, but challenges have to be solved in order to ensure these environmental and social benefits materialize.
Collapse
Affiliation(s)
- Jessica Aschemann-Witzel
- MAPP - Centre for Research on Customer Relations in the Food Sector, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | - Ulla Kidmose
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | | |
Collapse
|
48
|
Antiproliferative Effect of Colonic Fermented Phenolic Compounds from Jaboticaba ( Myrciaria trunciflora) Fruit Peel in a 3D Cell Model of Colorectal Cancer. Molecules 2021; 26:molecules26154469. [PMID: 34361622 PMCID: PMC8347777 DOI: 10.3390/molecules26154469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023] Open
Abstract
Jaboticaba is a Brazilian native berry described as a rich source of phenolic compounds (PC) with health promoting effects. PC from jaboticaba peel powder (JPP) have low intestinal bio-accessibility and are catabolized by gut microbiota. However, the biological implication of PC-derived metabolites produced during JPP digestion remains unclear. This study aimed to evaluate the antiproliferative effects of colonic fermented JPP (FJPP) in a 3D model of colorectal cancer (CRC) composed by HT29 spheroids. JPP samples fermented with human feces during 0, 2, 8, 24 or 48 h were incubated (10,000 µg mL−1) with spheroids, and cell viability was assessed after 72 h. Chemometric analyses (cluster and principal component analyses) were used to identify the main compounds responsible for the bioactive effect. The antiproliferative effect of FJPP in the CRC 3D model was increased between 8 h and 24 h of incubation, and this effect was associated with HHDP-digalloylglucose isomer and dihydroxyphenyl-γ-valerolactone. At 48 h of fermentation, the antiproliferative effect of FJPP was negligible, indicating that the presence of urolithins did not improve the bioactivity of JPP. These findings provide relevant knowledge on the role of colonic microbiota fermentation to generate active phenolic metabolites from JPP with positive impact on CRC.
Collapse
|
49
|
Preventing Colorectal Cancer through Prebiotics. Microorganisms 2021; 9:microorganisms9061325. [PMID: 34207094 PMCID: PMC8234836 DOI: 10.3390/microorganisms9061325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common cancer in the world, has been recently rising in emerging countries due to environmental and lifestyle factors. Many of these factors are brought up by industrialization, which includes lack of physical activity, poor diet, circadian rhythm disruption, and increase in alcohol consumption. They can increase the risk of CRC by changing the colonic environment and by altering gut microbiota composition, a state referred to as gut dysbiosis. Prebiotics, which are nutrients that can help maintain intestinal microbial homeostasis and mitigate dysbiosis, could be beneficial in preventing inflammation and CRC. These nutrients can hinder the effects of dysbiosis by encouraging the growth of beneficial bacteria involved in short-chain fatty acids (SCFA) production, anti-inflammatory immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other cellular mechanisms. This review aims to summarize recent reports about the implication of prebiotics, and probable mechanisms, in the prevention and treatment of CRC. Various experimental studies, specifically in gut microbiome, have effectively demonstrated the protective effect of prebiotics in the progress of CRC. Hence, comprehensive knowledge is urgent to understand the clinical applications of prebiotics in the prevention or treatment of CRC.
Collapse
|
50
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|