1
|
Li H, Ai Y, Zeng K, Deng L. The response of Midknight Valencia oranges to ethephon degreening varies in the turning and regreening stages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9569-9580. [PMID: 39078023 DOI: 10.1002/jsfa.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Late-ripening citrus plays an important role in the stability of the global citrus industry. However, the regreening phenomenon in Valencia oranges impacts the peel color and commercial value. Ethylene degreening is an effective technique to improve the color of citrus fruits, but this effect may be delayed in regreened oranges. To better clarify this phenomenon, plastid morphology, pigment and phytohormone content in ethephon-degreened Midknight Valencia oranges harvested in different stages were evaluated. RESULTS Results showed that in fruits harvested at the turning stage, ethephon degreening treatment induced a chloroplast-to-chromoplast transition, and chlorophyll degradation and carotenoid accumulation were accelerated. Conversely, in fruits harvested at the regreening stage, the changes in plastid morphology were minimal, with delayed changes in chlorophyll and carotenoids. Genes related to ethylene biosynthesis and signaling pathways supported these responses. Variations in endogenous auxin, jasmonic acid, abscisic acid and gibberellins could partially explain this phenomenon. CONCLUSION The response of Midknight Valencia oranges to ethephon degreening was delayed in the regreening stage, possibly due to the dynamic variations in endogenous phytohormones. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Li
- College of Food Science, Southwest University, Chongqing, PR China
| | - Yeru Ai
- College of Food Science, Southwest University, Chongqing, PR China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, PR China
- National Citrus Engineering Research Center, Chongqing, PR China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, PR China
- National Citrus Engineering Research Center, Chongqing, PR China
| |
Collapse
|
2
|
Lafuente MT, Sampedro R, Romero P. Hormones metabolism as affected by LED blue light in citrus fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108970. [PMID: 39094479 DOI: 10.1016/j.plaphy.2024.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The LED Blue Light (LBL) (450 nm) effect on hormones levels and on jasmonates (JAs) metabolism in oranges was investigated. The quantum flux (2 days, 60 μmol m-2. s-1) was chosen for its efficacy in reducing postharvest rot caused by this crop's main postharvest phytopathogenic fungus (Penicillium digitatum). The analysis of abscisic (ABA), salicylic (SA) and indole-3-acetic (IAA) acids, and of JAs-related metabolites, revealed that LBL modifies all studied metabolites and had major effects on JAs levels, mainly on jasmonic acid (JA) and its precursor cis-(+)-12-oxo-phytodienoic acid (OPDA). This agrees with the up-regulation of the genes participating in their synthesis. Results highlight the relevance of CsLOX1 and CsLOX5, and the contribution of CsAOC3, in the LBL-induced OPDA biosynthesis, whereas CsOPR2, CsACX1 and CsACX3 would play a part in the synthesis of JA from OPDA. Data also suggest that the applied LBL quantum flux favors fruit JA perception by increasing the expression of the coronatine insensitive 1 (COI1) receptor; and signaling by down-regulating abundant CsJAZ negative regulators. Differences in OPDA and JA between the LBL-treated oranges and their control fruit left in the dark disappeared after shifting the LBL-treated oranges to darkness for 3 more days. However, the LBL and darkness combination slightly increased IAA and SA contents.
Collapse
Affiliation(s)
- María T Lafuente
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Raúl Sampedro
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Paco Romero
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
3
|
Zhu M, Tang Y, Xie Y, He B, Ding G, Zhou X. Research progress on differentiation and regulation of plant chromoplasts. Mol Biol Rep 2024; 51:810. [PMID: 39001942 DOI: 10.1007/s11033-024-09753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.
Collapse
Affiliation(s)
- Mengyao Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, 350012, China
| | - BingBing He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
| |
Collapse
|
4
|
Huo J, Zhang N, Gong Y, Bao Y, Li Y, Zhang L, Nie S. Effects of different light intensity on leaf color changes in a Chinese cabbage yellow cotyledon mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1371451. [PMID: 38689838 PMCID: PMC11058996 DOI: 10.3389/fpls.2024.1371451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Leaf color is one of the most important phenotypic features in horticultural crops and directly related to the contents of photosynthetic pigments. Most leaf color mutants are determined by the altered chlorophyll or carotenoid, which can be affected by light quality and intensity. Our previous study obtained a Chinese cabbage yellow cotyledon mutant that exhibited obvious yellow phenotypes in the cotyledons and the new leaves. However, the underlying mechanisms in the formation of yellow cotyledons and leaves remain unclear. In this study, the Chinese cabbage yellow cotyledon mutant 19YC-2 exhibited obvious difference in leaf color and abnormal chloroplast ultrastructure compared to the normal green cotyledon line 19GC-2. Remarkably, low-intensity light treatment caused turn-green leaves and a significant decrease in carotenoid content in 19YC-2. RNA-seq analysis revealed that the pathways of photosynthesis antenna proteins and carotenoid biosynthesis were significantly enriched during the process of leaf color changes, and many differentially expressed genes related to the two pathways were identified to respond to different light intensities. Remarkably, BrPDS and BrLCYE genes related to carotenoid biosynthesis showed significantly higher expression in 19YC-2 than that in 19GC-2, which was positively related to the higher carotenoid content in 19YC-2. In addition, several differentially expressed transcription factors were also identified and highly correlated to the changes in carotenoid content, suggesting that they may participate in the regulatory pathway of carotenoid biosynthesis. These findings provide insights into the molecular mechanisms of leaf color changes in yellow cotyledon mutant 19YC-2 of Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | - Lugang Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanshan Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Zhou Q, Li R, Fernie AR, Che Y, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. Integrated Analysis of Morphological, Physiological, Anatomical and Molecular Responses of Cassava Seedlings to Different Light Qualities. Int J Mol Sci 2023; 24:14224. [PMID: 37762526 PMCID: PMC10531943 DOI: 10.3390/ijms241814224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Light quality is highly important for growth control of in vitro plant cultures. Here, we investigated the effect of blue light (BL), red light (RL) and combined red and blue light (RBL) on in vitro cassava growth. Our results indicate that RL facilitated radial elongation of cassava and increased stomatal conductance as well as glucose, sucrose, fructose and starch content in leaves and cellulose content in the stem. It also enhanced SOD and POD activities but decreased the stomatal density and chlorophyll and carotenoid content in leaves. In addition, RL leads to shorter palisade cells, denser chloroplasts and more starch granules. These phenotypic changes were inverted following BL treatment. The expression levels of photosynthesis-related genes MeLHCA1, MeLHCA3, MePSB27-2, MePSBY, MePETE1 and MePNSL2 in leaves were at their lowest following RL treatment, while the expression levels of MePSB27-2, MePSBY, MePETE1 and MePNSL2 were at their highest after BL treatment. The phenotypic changes after RBL treatment were between the values observed for the RL and BL treatments alone. Moreover, the responses of SC8 and SC9 cassava varieties to light quality were largely conserved. As such, we believe that the results of this study lay the foundation for controlling the in vitro growth of cassava seedlings by light quality.
Collapse
Affiliation(s)
- Qin Zhou
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Ruimei Li
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam, Germany;
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam, Germany;
| | - Yannian Che
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Zhongping Ding
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
| | - Jianchun Guo
- School of Life Sciences, Hainan University, Haikou 570228, China; (Q.Z.); (R.L.); (Y.C.); (Z.D.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| |
Collapse
|
6
|
Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The changes in the state of the climate have a high impact on perennial fruit crops thus threatening food availability. Indeed, climatic factors affect several plant aspects, such as phenological stages, physiological processes, disease-pest frequency, yield, and qualitative composition of the plant tissues and derived products. To mitigate the effects of climatic parameters variability, plants implement several strategies of defense, by changing phenological trends, altering physiology, increasing carbon sequestration, and metabolites synthesis. This review was divided into two sections. The first provides data on climate change in the last years and a general consideration on their impact, mitigation, and resilience in the production of food crops. The second section reviews the consequences of climate change on the industry of two woody fruit crops models (evergreen and deciduous trees). The research focused on, citrus, olive, and loquat as evergreen trees examples; while grape, apple, pear, cherry, apricot, almond, peach, kiwi, fig, and persimmon as deciduous species. Perennial fruit crops originated by a complex of decisions valuable in a long period and involving economic and technical problems that farmers may quickly change in the case of annual crops. However, the low flexibility of woody crops is balanced by resilience in the long-life cycle.
Collapse
|
7
|
Ma G, Zhang L, Seoka M, Nakata A, Yahata M, Shimada T, Fujii H, Endo T, Yoshioka T, Kan T, Kato M. Characterization of a Caffeic Acid 8- O-Methyltransferase from Citrus and Its Function in Nobiletin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:543-553. [PMID: 34964635 DOI: 10.1021/acs.jafc.1c06513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nobiletin (3',4',5,6,7,8-hexamethoxyflavone) is a polymethoxylated flavonoid specifically accumulated in citrus fruit with numerous beneficial effects to human health. In this study, a novel O-methyltransferase (CitOMT2) was isolated from three citrus varieties, Ponkan mandarin (Citrus reticulata Blanco), Nou 6 ("King mandarin" × "Mukaku-kishu"), and Satsuma mandarin (Citrus unshiu Marc.), and its functions were characterized in vitro. The gene expression results showed that CitOMT2 was highly expressed in the two nobiletin abundant varieties of Ponkan mandarin and Nou 6. However, the expression level of CitOMT2 was low in the flavedo of Satsuma mandarin, in which only a small amount of nobiletin was accumulated. Functional analysis suggested that CitOMT2 was a caffeic acid 8-O-methyltransferase, and it catalyzed the O-methylation of 7,8-dihydroxyflavone at 8-OH. As the methylation of flavone at 8-OH was required for nobiletin biosynthesis, the results presented in this study suggested that CitOMT2 was a key gene regulating nobiletin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Akari Nakata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takehiko Shimada
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Tomoko Endo
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Terutaka Yoshioka
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| |
Collapse
|
8
|
Keawmanee N, Ma G, Zhang L, Yahata M, Murakami K, Yamamoto M, Kojima N, Kato M. Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:14-24. [PMID: 35091187 DOI: 10.1016/j.plaphy.2022.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we studied the effects of gibberellic acid (GA) on chlorophyll and carotenoid metabolites and related gene expression during the regreening process in Valencia orange fruits (Citrus sinensis Osbeck). During the regreening, fruits treated with GA turned green much faster than those of the control. Compared with untreated fruits, chlorophyll accumulation was induced and the content of carotenoids (β-cryptoxanthin, all-trans-violaxanthin, and 9-cis-violaxanthin) was decreased by the GA treatment. Chlorophyll and carotenoid contents following GA treatment appeared to be highly regulated at the gene transcription level. Correspondingly, the up-regulation of chlorophyll biosynthesis genes (CitGGDR, CitCHL27, CitPORA, and CitCAO) and down-regulation of degradation genes (CitCLH1, CitSGR, CitPPH, CitPAO, and CitRCCR) led to the increase of chlorophyll contents, and the down-regulation of carotenoid biosynthesis genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) led to the decrease of carotenoid contents. These observations indicated that GA acted as a crucial regulator in the regreening process of citrus fruits.
Collapse
Affiliation(s)
- Nichapat Keawmanee
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan; Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Kan Murakami
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masashi Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Nami Kojima
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.
| |
Collapse
|
9
|
Choi H, Yi T, Ha SH. Diversity of Plastid Types and Their Interconversions. FRONTIERS IN PLANT SCIENCE 2021; 12:692024. [PMID: 34220916 PMCID: PMC8248682 DOI: 10.3389/fpls.2021.692024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Plastids are pivotal subcellular organelles that have evolved to perform specialized functions in plant cells, including photosynthesis and the production and storage of metabolites. They come in a variety of forms with different characteristics, enabling them to function in a diverse array of organ/tissue/cell-specific developmental processes and with a variety of environmental signals. Here, we have comprehensively reviewed the distinctive roles of plastids and their transition statuses, according to their features. Furthermore, the most recent understanding of their regulatory mechanisms is highlighted at both transcriptional and post-translational levels, with a focus on the greening and non-greening phenotypes.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
10
|
Ma G, Zhang L, Kudaka R, Inaba H, Furuya T, Kitamura M, Kitaya Y, Yamamoto R, Yahata M, Matsumoto H, Kato M. Exogenous Application of ABA and NAA Alleviates the Delayed Coloring Caused by Puffing Inhibitor in Citrus Fruit. Cells 2021; 10:cells10020308. [PMID: 33546256 PMCID: PMC7913354 DOI: 10.3390/cells10020308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/14/2023] Open
Abstract
Combined spraying of gibberellin (GA) and prohydrojasmon (PDJ) was an effective method to reduce peel puffing in Satsuma mandarins. However, in the GA-and-PDJ combined treatment, fruit color development was delayed during the ripening process. In the present study, to improve the coloration of the GA and PDJ-treated fruit, the effects of exogenous application of 1-naphthaleneacetic acid (NAA) and abscisic acid (ABA) on chlorophyll and carotenoid accumulation were investigated. The results showed that both ABA and NAA treatments accelerated the color changes from green to orange in the GA and PDJ-treated fruit during the ripening process. With the NAA and ABA treatments, chlorophylls contents were decreased rapidly, and the contents of β,β-xanthophylls were significantly enhanced in the GA and PDJ-treated fruit. In addition, gene expression results showed that the changes of the chlorophyll and carotenoid metabolisms in the NAA and ABA treatments were highly regulated at the transcriptional level. The results presented in this study suggested that the application of NAA and ABA could potentially be used for improving the coloration of the GA and PDJ-treated fruit.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
| | - Rin Kudaka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hayato Inaba
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Takuma Furuya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Minami Kitamura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Yurika Kitaya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Risa Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hikaru Matsumoto
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan;
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
- Correspondence: ; Tel.: +81-54-238-4830
| |
Collapse
|