1
|
Zhong YX, Xu CY, Cao YF, Li HL, Yang CX. Synthesis of sulfonamide-functionalized magnetic microporous organic network for magnetic solid-phase extraction of polar aromatic amines from tea beverages. J Chromatogr A 2025; 1746:465773. [PMID: 39965268 DOI: 10.1016/j.chroma.2025.465773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Aromatic amines (AAs) are a typical class of carcinogenic contaminants frequently present in food packaging materials. Considering the huge consumption of tea beverages in our daily life and the frequently usage of packaging materials in tea beverages, establishment of sensitive and selective method to detect polar and trace AAs in tea beverages is urgently needed. Herein, a sulfonamide-functionalized magnetic microporous organic network (MMON-SO2NH2) was synthesized for the efficient magnetic solid-phase extraction (MSPE) of AAs from tea beverages through the pre-designed electrostatic attraction, π-π, hydrophobic, and hydrogen bonding interactions. MMON-SO2NH2 demonstrated large surface area (304.4 m2 g-1), rapid magnetic responsiveness (38.3 emu g-1, < 15 s), and good stability and reusability (> 8 times), being an ideal magnetic adsorbent for AAs. The established MMON-SO2NH2-MSPE-HPLC-UV method gave wide linear ranges (1-1000 µg L-1), low limits of detection (0.3-1.0 µg L-1) and limits of quantitation (1.0-3.0 µg L-1), large enrichment factors (80.3-85.6), and good anti-interference ability. Satisfactory recoveries were obtained, which demonstrated the potential of MMON-SO2NH2 for efficient enrichment of trace AAs in complex samples and uncovered the promising of sulfonamide-functionalized magnetic adsorbent in sample pretreatment.
Collapse
Affiliation(s)
- Yi-Xin Zhong
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi-Fan Cao
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| | - Hong-Liang Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Barzegar F, Nabizadeh S, Kamankesh M, Mohammadi A, Shariatifar N. Three liquid phase membrane extraction method based on the electro-migration assisted by high-performance liquid chromatography for the analysis of carcinogenic heterocyclic aromatic amines in steak samples. Food Chem 2024; 467:142037. [PMID: 39667300 DOI: 10.1016/j.foodchem.2024.142037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
A combination of microwave digestion and three-phase hollow fiber electromembrane extraction (HF-EME) with high-performance liquid chromatography (HPLC) was designed to determine carcinogenic heterocyclic aromatic amines (HAAs) in steak samples. The recorded fingers of merit (LOD: 1.4-1.6 ng/g, LOQ: 4.5-5.2 ng/g, RSD: 6.1-7.2 %, recovery: 91-95 % and EF: 107-112) underlines the adequacy of the proposed technique. The total of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4 dimethylimidazo[4,5-f] quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4'5-b] pyridine (PhIP) in steak samples were 93.46 ± 4.93-174.52 ± 10.91 ng/g, 31.65 ± 1.87-877.97 ± 56.19 ng/g, 10.08 ± 1.01-535.73 ± 18.93 ng/g, and 62.56 ± 1.89-341.23 ± 41.45 ng/g, respectively. Lamb steak contain highest amount of MeIQx (877.97 ± 56.19 ng/g) and beef steak showed lowest concentration of MeIQ (10.08 ± 1.07 ng/g). In conclusion, several interesting features such as great recovery, suitable enrichment factor, very low sample amount and organic solvent requirement and short extraction time make this novel method appropriate for the analysis of the negligible levels of HAAs in complex food matrices.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran; School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li W, Ren N, Shi Y, Wang R, Li G. The magnetic layered double hydroxide/zeolitic imidazolate framework-8 nanocomposite coupled with HPLC-MS/MS for the detection of heterocyclic aromatic amines in thermally processed meat. J Chromatogr A 2024; 1727:464988. [PMID: 38749348 DOI: 10.1016/j.chroma.2024.464988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.
Collapse
Affiliation(s)
- Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nanjiang Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ruihong Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
4
|
Aoudeh E, Oz E, Oz F. Understanding the heterocyclic aromatic amines: An overview and recent findings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:1-66. [PMID: 38906585 DOI: 10.1016/bs.afnr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
5
|
Katthanet K, Supo S, Jaroensan J, Khiaophong W, Kachangoon R, Ponhong K, Pramual P, Thanee I, Vichapong J. Preconcentration of Heterocyclic Aromatic Amines in Edible Fried Insects Using Surfactant-Assisted Hydrophobic Deep Eutectic Solvent for Homogeneous Liquid-Liquid Microextraction prior to HPLC. ACS OMEGA 2024; 9:3962-3970. [PMID: 38284016 PMCID: PMC10809262 DOI: 10.1021/acsomega.3c08365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Thermal processing techniques are often accompanied by the production of many harmful compounds such as heterocyclic aromatic amines (HAAs). To protect human health, an efficient and environmentally friendly method, namely, homogeneous liquid-liquid microextraction (HLLME), was investigated. This method is based on a surfactant-assisted hydrophobic deep eutectic solvent for the determination of HAAs in edible fried insect samples prior to their analysis by high-performance liquid chromatography coupled with UV detection. A hydrophobic deep eutectic solvent (as extraction solvent) was synthesized using decanoic acid as a hydrogen bond donor and tetrabutylammonium bromide (TBABr) as a hydrogen bond acceptor and then characterized by Fourier transform infrared (FTIR) spectroscopy. The surfactant was used as the emulsifier and induces mass transfer, resulting in an increasing extraction efficiency of the proposed method. Various factors affecting the extraction performance were investigated and optimized. A matrix-match calibration method was used to analyze HAAs in high heat-treated edible fried insect samples. Under optimized conditions, the proposed method showed good linearity (R2 ≥ 0.99) with satisfactory limits of detection and satisfactory reproducibility with relative standard deviation of less than 10.0%. Furthermore, the procedure greenness was assessed using the Analytical Eco-Scale. This paper represents the first application of HLLME based on a surfactant-assisted hydrophobic deep eutectic solvent to analyze HAAs in edible fried insect samples.
Collapse
Affiliation(s)
- Kanlayanee Katthanet
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Suangchon Supo
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Jedsada Jaroensan
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Wannipha Khiaophong
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Rawikan Kachangoon
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Kraingkrai Ponhong
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
- Multidisciplinary
Research Unit of Pure and Applied Chemistry (MRUPAC), Department of
Chemistry and Center of Excellent for Innovation in Chemistry, Faculty
of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Pairot Pramual
- Department
of Biology, Faculty of Science, Mahasarakham
University, Maha Sarakham 44150, Thailand
| | - Isara Thanee
- Department
of Biology, Faculty of Science, Mahasarakham
University, Maha Sarakham 44150, Thailand
| | - Jitlada Vichapong
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
- Multidisciplinary
Research Unit of Pure and Applied Chemistry (MRUPAC), Department of
Chemistry and Center of Excellent for Innovation in Chemistry, Faculty
of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
6
|
Zhu Z, Wang L, Jia Y, Duan S, Li S, Jiang L, Lin X, Yan F, Hou C, Hu C, Di B. Magnetic Liposomes Infused with GPCR-Expressing Cell Membrane for Targeted Extraction Using Minimum Organic Solvent: An Investigative Study of Trace THC in Sewage. Anal Chem 2023; 95:12613-12622. [PMID: 37583350 DOI: 10.1021/acs.analchem.2c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Trace analysis of lipophilic substances in complex environmental, food, or biological matrices has proven to be a challenge, on account of their high susceptibility to adsorption by particulate matter and liquid-solid interfaces. For this purpose, liquid-liquid extraction (LLE) is often employed as the separation method, which uses water-immiscible organic solvents. As an alternative, magnetic solid-phase extraction (MSPE) allows for adsorption, separation, and recovery of analytes from large volumes of aqueous samples with minimum usage of organic solvents. However, the poor selectivity hampers its performance in various scenarios, especially in sewage samples where complicated and unpredictable interference exists, resulting in block of the active adsorption sites of the sorbent. To this end, we propose receptor-affinity MSPE employing magnetic liposomes decorated with cell membranes expressing G-protein-coupled receptor as the sorbents. Application of the novel sorbent CM@Lip@Fe infused with CB1 cannabinoid receptors was demonstrated for the targeted extraction and enrichment of tetrahydrocannabinol from sewage matrix. Thanks to the high affinity and molecular selectivity of the ligand-receptor interactions, a limit of quantitation of 5.17 ng/L was achieved coupled with HPLC-MS/MS in unfiltered raw sewage, featuring minimum usage of organic solvents, fivefold enhanced sensitivity, low sorbent dosage (75 mg/L of sewage), and high efficiency as major advantages over conventional LLE. This work establishes a framework for efficient separation of specific molecules from complex media, thus promising to extend and refine standard LLE as the clean-up procedure for trace analysis.
Collapse
Affiliation(s)
- Zhihang Zhu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Lancheng Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Yan Jia
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Shiqi Duan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Siyu Li
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Le Jiang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Xiaoxuan Lin
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Fang Yan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chenzhi Hou
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chi Hu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Bin Di
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| |
Collapse
|
7
|
Feng Y, Shi Y, Huang R, Wang P, Li G. Simultaneous detection of heterocyclic aromatic amines and acrylamide in thermally processed foods by magnetic solid-phase extraction combined with HPLC-MS/MS based on cysteine-functionalized covalent organic frameworks. Food Chem 2023; 424:136349. [PMID: 37244185 DOI: 10.1016/j.foodchem.2023.136349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Acrylamide (AA) and heterocyclic aromatic amines (HAAs), as classic hazards produced during food thermal processing, have been widely concerned, but because of their polarity difference, it is very difficult to detect these contaminants simultaneously. Herein, novel cysteine (Cys)-functionalized magnetic covalent organic frameworks (Fe3O4@COF@Cys) were synthesized via a thiol-ene click strategy and then used as adsorbents for magnetic solid-phase extraction (MSPE). Benefiting from the hydrophobic properties of COFs and the modification of hydrophilic Cys, AA and HAAs could be enriched simultaneously. Then, a rapid and reliable method based on MSPE coupled with HPLC-MS/MS was developed for the simultaneous detection of AA and 5 HAAs in thermally processed foods. The proposed method showed good linearity (R2 ≥ 0.9987) with satisfactory limits of detection (0.012-0.210 μg kg-1) and recoveries (90.4-102.8%). Actual sample analysis showed that the levels of AA and HAAs in French fries were affected by frying time and temperature, water activity of samples, content and type of reaction precursors, and reuse of oils.
Collapse
Affiliation(s)
- Yanmei Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Huang
- Zhongken Huashanmu Dairy Co., Ltd, Weinan 714019, China
| | - Panpan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Wang N, Zhou X, Cui B. Recent advances and applications of magnetic covalent organic frameworks in food analysis. J Chromatogr A 2023; 1687:463702. [PMID: 36508770 DOI: 10.1016/j.chroma.2022.463702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022]
Abstract
Recently, covalent organic frameworks (COFs) have been widely used to prepare magnetic adsorbents for food analysis due to their highly tunable porosity, large specific surface area, excellent chemical and thermal stability and large delocalised π-electron system. This review summarises the main types and preparation methods of magnetic COFs and their applications in food analysis for the detection of pesticide residues, veterinary drugs, endocrine-disrupting phenols and estrogens, plasticisers and other food contaminants. Furthermore, challenges and future outlook in the development of magnetic COFs for food analysis are discussed.
Collapse
Affiliation(s)
- Na Wang
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuesheng Zhou
- School of automotive engineering, ShanDong JiaoTong University, Jinan 250357, China.
| | - Bo Cui
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
9
|
Li M, Wang P, Zhang X, Wang H, Li K, Bai Y. Development of a Modified QuEChERS Method Based on Magnetic Multi-Walled Carbon Nanotubes as a Clean-Up Adsorbent for the Analysis of Heterocyclic Aromatic Amines in Braised Sauce Beef. Foods 2022; 12:foods12010138. [PMID: 36613354 PMCID: PMC9818259 DOI: 10.3390/foods12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) generated during the cooking of meats cause adverse effects on human health. The purpose of the current research was to develop a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method using magnetic multi-walled carbon nanotubes (Fe3O4-MWCNTs) as clean-up adsorbents for the rapid determination of HAAs in braised sauce beef. The significant parameters in extraction and clean-up processes were screened and optimized. Under optimal conditions, the LODs ranged from 3.0 ng/g to 4.2 ng/g. The recoveries (78.5−103.2%) and relative standard deviations RSDs (<4.6%) of five HAAs were obtained. These are in accordance with the validation criteria (recovery in the range of 70−120% with RSD less than 20%). Compared with conventional clean-up adsorbents (PSA or C18), Fe3O4-MWCNTs displayed equivalent or better matrix removal efficiency, while making the pretreatment process easier and more time-saving through magnetic separation. Less usage of adsorbent makes the method possess another advantage of being lower in cost per sample. The method developed was successfully applied to analyze real samples collected from local deli counters, demonstrating Fe3O4-MWCNTs could be considered as an effective alternative adsorbent with great potential in the QuEChERS process.
Collapse
Affiliation(s)
- Min Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Pengxiang Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xu Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongyu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
10
|
Study of meat content and frying process on the formation of polar heterocyclic aromatic amines in heated sausage samples: Optimization and method validation of three‐phase
EME
coupled with
RP‐HPLC. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Improved enrichment and analysis of heterocyclic aromatic amines in thermally processed foods by magnetic solid phase extraction combined with HPLC-MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Luo X, Hu S, Xu X, Du M, Wu C, Dong L, Wang Z. Improving air-fried squid quality using high internal phase emulsion coating. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Determination of Heterocyclic Aromatic Amines in Various Fried Food by HPLC–MS/MS Based on Magnetic Cation-Exchange Resins. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Jiang X, Pan H, Ruan G, Hu H, Huang Y, Chen Z. Wettability tunable metal organic framework functionalized high internal phase emulsion porous monoliths for fast solid-phase extraction and sensitive analysis of hydrophilic heterocyclic amines. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128565. [PMID: 35359099 DOI: 10.1016/j.jhazmat.2022.128565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Surface wettability greatly influences the adsorptive, catalytic, and diffuse performances of a porous material. To realize the improved adsorption performance to hydrophilic heterocyclic amines (HAs), polymeric high internal phase emulsions (polyHIPEs) that can be tuned from hydrophobic to hydrophilic is synthesized by facilely regulating the amount of metal organic frameworks (MOFs). The water contact angle of the MOFs and polyHIPEs hybrids (MOFs@polyHIPEs) decreases from 133° to 0° as the amount of amide-modified MOFs increases from 0% to 10%. The hydrophilization of divinybenzene (DVB) based polyHIPEs by MOFs hybridization significantly enhances their adsorption performance and enables them to be suitable for the solid phase extraction (SPE) of hydrophilic HAs. Under the optimized conditions, the MOFs@polyHIPEs achieve adsorption capacities ranging from 42.89 to 86.71 µg/g for HAs through the π-π interaction and hydrogen bonding. The adsorption follows the pseudo-second-order kinetic model, and the nitrogen atoms in/on the imidazole ring are identified as the active adsorption sites for hydrogen bonding. This SPE method, along with HPLC-MS detection, provides detection limits of HAs as low as 0.00020-0.00040 ng/mL. This work offers a feasible strategy in tuning the surface wettability of polyHIPEs without post-modification to achieve high-efficiency enrichment and analysis of HAs.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Hong Pan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| | - Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004, China.
| | - Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guangxi 541004, China
| |
Collapse
|
15
|
Wei D, Zhang C, Pan A, Guo M, Lou C, Zhang J, Wang X, Wu H. Facile synthesis and evaluation of three magnetic 1,3,5-triformylphloroglucinol based covalent organic polymers as adsorbents for high efficient extraction of phthalate esters from plastic packaged foods. Food Chem X 2022; 14:100346. [PMID: 35663596 PMCID: PMC9160344 DOI: 10.1016/j.fochx.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022] Open
Abstract
A facile synthetic route for synthesis of three magnetic Tp-based COPs adsorbents was provided. Magnetic COP2 showed best extraction performance for PAEs. The potential adsorption mechanism was systematically investigated. This method was suitable for high efficient extraction of hydrophobic PAEs from foods.
Three covalent organic polymers (COPs) were successfully fabricated by room-temperature solvent-free mechanochemical grinding method between 1,3,5-triformylphloroglucinol (TP) and p-phenyl enediamine (COP1), benzidine (COP2), 4, 4″-diamino-p-terphenyl (COP3), and followed by coprecipitation on the surface of Fe3O4 nanoparticles to form three corresponding magnetic Tp-series COPs. The fabricated magnetic COPs were evaluated and then applied for the extraction of phthalate esters from food samples before gas chromatography-tandem spectrometry analysis. Magnetic COP2 exhibited the highest extraction efficiency, which can be attributed to its larger pore size, and its strong hydrophobic and π-π interactions with phthalate esters. The method possessed good linearity (10–1000 μg·kg−1), high sensitivity (0.29–2.59 µg·kg−1 for LODs and 0.97–8.63 µg·kg−1 for LOQs), and satisfactory recoveries (70.2–108.1%) with relative standard deviations lower than 5.2%. This method has potentials for high efficient separation/preconcentration of hydrophobic phthalate esters from foods.
Collapse
|
16
|
Karami-Osboo R, Ahmadpoor F, Nasrollahzadeh M, Maham M. Polydopamine-coated magnetic Spirulina nanocomposite for efficient magnetic dispersive solid-phase extraction of aflatoxins in pistachio. Food Chem 2022; 377:131967. [PMID: 34979397 DOI: 10.1016/j.foodchem.2021.131967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
An efficient adsorbent was synthesized and used in magnetic dispersive solid phase extraction (MDSPE) of aflatoxins B1, B2, G1, and G2 at trace levels in pistachio prior to analysis by HPLC equipped with a fluorescence detector. Spirulina (Sp) algae was first magnetized, followed by surface modification with dopamine (Dp). The adsorbent was characterized using FT-IR, XRD, FE-SEM, EDX, VSM, and BET analyses. The effects of different analytical parameters on the extraction performance were evaluated. Under optimal conditions, good limits of detection (LODs) and quantifications (LOQs) were achieved in the ranges of 0.02-0.07 and 0.06-0.21 ng g-1, respectively. The RSDs were 5.9, 6.3, 5.6, and 7.3% for AFB1, G1, B2, and G2, respectively. The proposed method was successfully used to determine AFs in pistachio samples and acceptable recoveries in the range of 72-95% were obtained.
Collapse
Affiliation(s)
- Rouhollah Karami-Osboo
- Mycotoxins Research Laboratory, Agricultural Research Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran
| | | | - Mehdi Maham
- Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran.
| |
Collapse
|
17
|
Tajdar-oranj B, Kamankesh M, Mohammadi A. Application of novel and efficient hollow fiber electro-membrane extraction assisted by microwave extraction and high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Feng X, Li Y, Yang Y, Ma Y, Ji W, Sun Y, Chen T, Chen Y. Preparation of a ZIF-67-modified magnetic solid phase extraction material and its application in the detection of pyridine ring insecticides. NEW J CHEM 2021. [DOI: 10.1039/d1nj00703c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An advanced and reliable m-SPE material of a water-stable ZIF was developed for the determination of trace praziquantel and pymetrozine in spinach and broccoli.
Collapse
Affiliation(s)
- Xiangzhi Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Yuanyuan Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- China
- College of Chemistry and Chemical Engineering
- Ningxia University
| | - Tong Chen
- Comprehensive Technology Centre
- Zhenjiang Customs District P. R. of China
- Zhenjiang
- China
| | - Yang Chen
- Shanghe New Materials Company
- Zhenjiang
- China
| |
Collapse
|