1
|
Ruiz-Aracama A, Alberdi-Cedeño J, Nieva-Echevarria B, Martinez-Yusta A, Goicoechea-Oses E. Effect of rosemary extract on sunflower oil degradation studied by 1H NMR: Differences under frying conditions and accelerated storage. Food Chem 2025; 474:143146. [PMID: 39904088 DOI: 10.1016/j.foodchem.2025.143146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
The antioxidant capacity of rosemary extract (RE) has been widely studied using classical methodologies, which offer limited information. Instead, Proton Nuclear Magnetic Resonance (1H NMR) informs about the degradation rate of oil components and the nature and evolution of the products formed. This study aims to investigate the effect of RE-addition (containing 0.005 % and 0.02 % of carnosol+carnosic acid) to sunflower oil on its degradation under frying conditions without food (170 ± 5 ºC) and accelerated storage (70 °C) by 1H NMR. In the former, changes in oil viscosity and colour were also studied. During frying, the commercial RE added did not protect the oil, being the degradation of linoleic very similar to control. In contrast, under storage, RE behaved as an antioxidant, mainly at the highest RE-concentration, delaying the degradation of oil components and the formation of oxidation products. Thus, the effect of RE-enrichment on oil degradation depends on the conditions the oil is subjected to.
Collapse
Affiliation(s)
- Ainhoa Ruiz-Aracama
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jon Alberdi-Cedeño
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Barbara Nieva-Echevarria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Andrea Martinez-Yusta
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Encarnacion Goicoechea-Oses
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Koundal R, Chauhan AK, Das R. A sustainable technology for enhancing the oxidative stability of edible oils using jackfruit (Artocarpus heterophyllus lam.) peel extract as a natural antioxidant. Food Chem 2025; 485:144564. [PMID: 40311577 DOI: 10.1016/j.foodchem.2025.144564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Jackfruit peels, often discarded as waste, represent a valuable source of polyphenols that enhance the resistance of soybean and sunflower oils to oxidation at frying temperatures. The JPE exhibited total polyphenolic content (16.32 mg GAE/g), flavonoid content (0.66 mg QuE/g), antioxidant capacity (0.20 mg/mL), and DPPH scavenging activity (5.65 μg/mL). FTIR analysis confirmed the presence of polyphenols, primary and secondary alcohols, and other functional groups, while HRAMS analysis identified 64 bioactive compounds with antioxidant properties. JPE demonstrated excellent antioxidant activity, particularly under refrigerated (5 °C) and dark conditions. Oils subjected to frying temperatures (150-180 °C) were analyzed for oxidation parameters, composition of fatty acids, and color. The incorporation of JPE significantly (p < 0.05) reduced acid value, peroxide value, TOTOX value, p-anisidine value, total polar compounds, fatty acid degradation, and color changes compared to control samples. Sensory evaluation revealed that polyphenol-enriched sunflower and soybean oils had higher overall acceptability than fresh oil samples.
Collapse
Affiliation(s)
- Rupali Koundal
- Department of Dairy Science and Food Technology, Banaras Hindu University, Uttar Pradesh 221005, India
| | - Anil Kumar Chauhan
- Department of Dairy Science and Food Technology, Banaras Hindu University, Uttar Pradesh 221005, India.
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, Punjab, India
| |
Collapse
|
3
|
Mehany T, González-Sáiz JM, Pizarro C. Improving the Biostability of Extra Virgin Olive Oil with Olive Fruit Extract During Prolonged Deep Frying. Foods 2025; 14:260. [PMID: 39856925 PMCID: PMC11765049 DOI: 10.3390/foods14020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores approaches to enhancing the biostability of extra virgin olive oil (EVOO) supplemented with olive fruit extract (OFE) enriched with hydroxytyrosol (HTyr). The investigation focuses on prolonged deep frying (DF) conditions at 170 °C and 210 °C, over durations ranging from 3 to 48 h, with the aim of improving sensorial attributes, polyphenolic content, and thermal oxidative stability. Parameters, such as acidity, peroxide value (PV), K232, K270, ΔK, phenolic compounds, and sensory attributes, were monitored. The PV did not exceed the standard limit in HTyr-EVOO at 210 °C/24 h; however, in non-supplemented EVOOs, it remained within the limits only up to 210 °C/18 h. Acidity stayed within the acceptable limit (≤0.8) at 170 °C/24 h in both enriched and non-enriched EVOOs. K232 values were ≤2.5 in HTyr-EVOO fried at 170 °C/18 h. K270 and ΔK did not exceed the limits in HTyr-EVOO at 170 °C/3 h, whereas they surpassed them in non-supplemented oils. Additionally, HTyr and tyrosol levels were significantly higher (p < 0.05) in HTyr-EVOOs. Phenolic compounds, including verbascoside, pinoresinol, 1-acetoxypinoresinol, and phenolic acids, such as chlorogenic, vanillic, homovanillic, 4-dihydroxybenzoic, and caffeic acids, were detected in HTyr-EVOOs. Oxidized secoiridoid derivatives increased significantly as DF progressed. Moreover, sensory analysis revealed that positive attributes in EVOOs-such as fruity, bitter, and pungent notes-decreased significantly with increasing temperature and frying duration (p < 0.05). Beyond 210 °C/6 h, these attributes were rated at zero. However, HTyr-EVOOs exhibited lower rancidity compared to non-enriched oils under identical conditions, attributed to the protective effect of HTyr. In conclusion, HTyr-EVOOs demonstrated thermal stability up to 210 °C/6 h, retaining desirable sensory qualities, higher phenolic content, and reduced degradation. These findings indicate that natural OFEs have strong potential as food additive in deep fried EVOOs, enhancing sensory properties, health benefits, and overall oil stability. This innovation provides a practical solution for the food industry by improving the biostability and versatility of EVOO. Further research is recommended to investigate various EVOO categories and oils from diverse origins.
Collapse
Affiliation(s)
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain; (T.M.); (J.M.G.-S.)
| |
Collapse
|
4
|
Jing CX, Hu YM, Jin YR, Li AP, Wang R, Zhang SY, Wu Z, Yan XY, Zhang ZJ, Liang HJ, An JX, Liu YQ. Antifungal Activity of Phloroglucinol Derivatives against Botrytis cinerea and Monilinia fructicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20882-20891. [PMID: 39262056 DOI: 10.1021/acs.jafc.4c05968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Naturally derived compounds show promise as treatments for microbial infections. Polyphenols, abundantly found in various plants, fruits, and vegetables, are noted for their physiological benefits including antimicrobial effects. This study introduced a new set of acylated phloroglucinol derivatives, synthesized and tested for their antifungal activity in vitro against seven different pathogenic fungi. The standout compound, 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one (2b), exhibited remarkable fungicidal strength, with EC50 values of 1.39 μg/mL against Botrytis cinerea and 1.18 μg/mL against Monilinia fructicola, outperforming previously screened phenolic compounds. When tested in vivo, 2b demonstrated effective antifungal properties, with cure rates of 76.26% for brown rot and 83.35% for gray mold at a concentration of 200 μg/mL, rivaling the commercial fungicide Pyrimethanil in its efficacy against B. cinerea. Preliminary research suggests that 2b's antifungal mechanism may involve the disruption of spore germination, damage to the fungal cell membrane, and leakage of cellular contents. These results indicate that compound 2b has excellent fungicidal properties against B. cinerea and holds potential as a treatment for gray mold.
Collapse
Affiliation(s)
- Chen-Xin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - An-Ping Li
- School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province, Weifang University, Weifang 261061, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Yu Yan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
5
|
Villegas C, Cortez N, Ogundele AV, Burgos V, Pardi PC, Cabrera-Pardo JR, Paz C. Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity. Biomolecules 2024; 14:867. [PMID: 39062581 PMCID: PMC11274592 DOI: 10.3390/biom14070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| | - Ayorinde Victor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete 1530, Nigeria
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | | | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (C.V.); (N.C.)
| |
Collapse
|
6
|
Chu M, Noh E, Lee KG. Analysis of oxidation products and toxic compounds in edible and blended oil during the deep-frying of french fries. Food Sci Biotechnol 2024; 33:2275-2287. [PMID: 39145121 PMCID: PMC11319563 DOI: 10.1007/s10068-023-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 08/16/2024] Open
Abstract
This study sought to analyze the oxidative products [acid value (AV), free fatty acids (FFA), conjugated dienoic acid (CDA), p-anisidine value (p-AV), antioxidant-prooxidant balance (APB) value] and toxic compounds [3-monochloropropane diol (3-MCPD), glycidyl ester (GE)] in edible oils after deep-frying. The deep-frying edible oils evaluated herein included soybean oil (S), palm oil (P), canola oil (C), grape seed oil (G), and a 1:1 blend (SC, SG, PC, PG, and CG). As frying time increased, the level of AV in PC, total FFA contents in CG, and p-AV in CG significantly increased up to 200%, 45.5%, and 410.5%, respectively (p < 0.05). The levels of 3-MCPD, and GE were 0.81-6.28 µg/mL and 0.14-2.84 µg/mL, respectively. The levels of 3-MCPD, GE, CDA, and APB changed significantly as frying time increased. Analysis of the correlation between oxidation products and toxic compounds indicated that the contents of 3-MCPD and palmitic acid were positively correlated. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01494-9.
Collapse
Affiliation(s)
- Mingi Chu
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
7
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
8
|
Liu L, Lv L, Dai W, Nie J. The effect of naringenin-phospholipid complex on thermal oxidative stability of soybean oil under heating condition. Food Chem 2024; 444:138631. [PMID: 38325079 DOI: 10.1016/j.foodchem.2024.138631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Naringenin (NGE), a typical flavanone abundant in citrus fruits, exhibits remarkable antioxidant activities. However, its low solubility in oil restricts its widespread use in inhibiting lipid oxidation. In this study, we present a novel and effective approach to address this limitation by developing a naringenin-phospholipid complex (NGE-PC COM). Comprehensive analytical techniques including Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were employed to confirm the formation of the NGE-PC COM and elucidate the interaction mechanism between NGE and phospholipids molecules. Notably, the oil-solubility of NGE was significantly enhanced by approximately 2700-fold when formulated as a phospholipid complex in soybean oil. The improved oil-solubility of NGE-PC COM enabled effective inhibition of oil thermal oxidation under high temperature conditions. Generally, this investigation proposed a novel and promising strategy for employing flavanones with strong antioxidant activities to enhance the thermal oxidative stability of edible oil during heating processes.
Collapse
Affiliation(s)
- Liyao Liu
- College of Basic Science, Tianjin Agriculture University, Tianjin 300392, PR China
| | - Lifei Lv
- College of Basic Science, Tianjin Agriculture University, Tianjin 300392, PR China
| | - Wenjie Dai
- College of Basic Science, Tianjin Agriculture University, Tianjin 300392, PR China
| | - Jinju Nie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, PR China.
| |
Collapse
|
9
|
Zhang L, Chen J, Guo X, Cao Y, Qu G, Li Q, Gao Y, Yu X. Microwave pretreatment effects on the aroma precursors, sensory characteristics and flavor profiles of fragrant rapeseed oil. Food Chem X 2024; 22:101381. [PMID: 38665635 PMCID: PMC11043819 DOI: 10.1016/j.fochx.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Microwave technology offers a rapid and uniform heating method. This study investigated how microwave pretreatment affects the aroma precursors and flavor of fragrant rapeseed oils (FROs). Microwave pretreatment led to decreased levels of polyunsaturated fatty acids, sugars, protein-bound amino acids, and glucosinolates. Using gas chromatography-mass spectrometry, we identified 66 volatile compounds in the oil samples. Among these, based on odor activity values (OAV ≥ 1), we found 9 aldehydes, 1 ketone, 6 pyrazines, 1 isothiocyanate, and 7 nitriles as the key aroma-active compounds, contributing fatty-like, nutty-like, and pungent-like odors, respectively. The electronic nose results highlighted W5S and W1W as primary sensors for determining the flavor profiles of FROs. Notably, aroma-active pyrazines exhibited strong negative correlations with sucrose, cysteine, lysine, and isoleucine. This research provides essential insights for enhancing the aroma of FROs.
Collapse
Affiliation(s)
- Lingyan Zhang
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jia Chen
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Guo
- Agricultural Science and Engineering School, Liaocheng University, 1 Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Guoyi Qu
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
10
|
Ma P, Wen H, Chen X, Zhang W, Rong L, Luo Y, Xie J. Synergistic rosemary extract with TBHQ and citric acid improves oxidative stability and shelf life of peanut. J Food Sci 2024; 89:3591-3602. [PMID: 38685863 DOI: 10.1111/1750-3841.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Lipid oxidation often accompanies the processing and storage of peanuts, which causes a serious waste of peanut resources. To solve the problem of being prone to oxidation in peanut processing, a ternary complex antioxidant based on rosemary extract (RE) was constructed to investigate its effect on the oxidative and thermal stability of peanuts, and the inhibition of peanut oxidation by compound antioxidants was revealed by dynamic Arrhenius formula and complexation theory. The results showed that there was a synergistic effect between RE and Tert-butyl hydroquinone (TBHQ), and the antioxidant effects of RE and TBHQ were 4.86 and 1.45 times higher when used in combination than when used alone, respectively. In addition, RE-TBHQ-CA (citric acid) effectively inhibited primary and secondary oxidation of peanuts with a shelf life 8.7 times longer than that of control peanuts. This study provides a novel antioxidant compounding idea, which has a positive effect on improving the quality of peanut and other nut products, prolonging the shelf life and reducing the waste of resources. PRACTICAL APPLICATION: Compounding a complex antioxidant that permits its use in peanuts. It was found that rosemary and TBHQ might have synergistic antioxidant effects. Meanwhile, this combination of RE-TBHQ-CA effectively inhibited the oxidation of peanut oils and prolonged the shelf life of peanuts. RE-TBHQ-CA is a highly efficient complex antioxidant that can reduce the amounts of antioxidants added while maintaining high antioxidant efficiency, which may be useful for the future preservation and storage of nut products as it positively affects the quality and shelf life of the product.
Collapse
Affiliation(s)
- Ping Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yi Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Salehi H, Zhang L, Alp-Turgut FN, Arikan B, Elbasan F, Ozfidan-Konakci C, Balcı M, Zengin G, Yildiztugay E, Lucini L. The exogenous application of naringenin and rosmarinic acid modulates functional traits in Lepidium sativum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2761-2771. [PMID: 37994181 DOI: 10.1002/jsfa.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Phenolic modulators have attracted attention for their potential in shaping functional traits in plants. This work investigated the impact of naringenin (Nar) and rosmarinic acid (RA) on the functional properties of Lepidium sativum leaves and roots. RESULTS Untargeted metabolomics identified a diverse phenolic profile, including flavonoids, phenolic acids, low molecular weight phenolics, lignans, and stilbenes. Cluster, analysis of variance multiblock orthogonal partial least squares (AMOPLS), and orthogonal projection to latent structures discriminant analysis (OPLS-DA) multivariate analyses confirmed tissue-specific modulation of bioactive compounds. The tissue was the hierarchically most influential factor, explaining 27% of observed variability, while the treatment and their interaction were statistically insignificant. Thereafter, various in vitro assays were employed to assess antioxidant capacity, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, cupric ion reducing antioxidant capacity (CUPRAC), and ferric ion reducing antioxidant power (FRAP), metal chelating ability, and phosphomolybdenum (PMD) assays. Extracts were also tested for inhibitory effects on cholinesterase, amylase, glucosidase, and tyrosinase enzymes. RA application positively impacted antioxidant and enzyme inhibitory activities, holding valuable implications in shaping the health-promoting properties of L. sativum. CONCLUSION The untargeted metabolomics analysis showed a significant tissue-dependent modulation of bioactive compounds, determining no synergistic effect between applying phenolic compounds in combination. Specifically, the sole application of RA increased anthocyanins and hydroxyphenyl propanoic acid content on leaves, which was strictly related to enhancing the biological activities. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Melike Balcı
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gökhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
12
|
Nid Ahmed M, Abourat K, Gagour J, Sakar EH, Majourhat K, Koubachi J, Gharby S. Valorization of saffron ( Crocus sativus L.) stigma as a potential natural antioxidant for soybean ( Glycine max L.) oil stabilization. Heliyon 2024; 10:e25875. [PMID: 38370196 PMCID: PMC10869852 DOI: 10.1016/j.heliyon.2024.e25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Synthetic antioxidants are known for their efficiency to improve vegetable oil oxidative stability. But owing to their harmful effects on human health, edible oil industry is seeking for safe and healthy natural antioxidants. The present work was setup with the aim of improving soybean oil (SO) oxidative stability by using saffron (Crocus sativus L.) stigmas collected in Morocco. Saffron stigmas were used as a natural antioxidant at various concentrations (0.2, 0.3, and 0.6%) in soybean oil compared to tocobiol (0.3%) as a synthetic antioxidant (the positive control). Performances of such natural and synthetic antioxidants were evaluated by measuring oil basic quality indices under accelerated storage at 60 °C for 12 weeks. Such indices consisted of free fatty acids (FFA), peroxide value (PV), anisidine value (p-AV), total oxidation value (TOTOX), UV extinction coefficients (K232 and K270), fatty acids composition (FA), and iodine value (IV). The obtained data show that there were significant (p < 0.05) increases in FFA, PV, p-AV, K232, K270, and TOTOX but no much variations were observed for FA and IV especially in saffron stigmas fortified oils across storage times. However, in the case of oils fortified with saffron stigmas at different doses, such an increase was of a lesser magnitude (for FFA, PV, p-AV, K270, and TOTOX) as compared to tocobiol. These outcomes were confirmed by principal component analysis with strong positive correlations (p < 0.001) among FFA, PV, p-AV, K232, K270, and TOTOX. The most important, for which determination coefficient R2 > 0.9, were modeled through simple regressions. In conclusion, saffron stigmas with the different doses performed better than the positive control (tocobiol) regardless of the storage time. It could be concluded that saffron stigmas are a promising natural antioxidant, alternative to synthetic antioxidants, to enhance the oxidative stability of edible oils.
Collapse
Affiliation(s)
- Moussa Nid Ahmed
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Karima Abourat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Jamila Gagour
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology and Health, FS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Khalid Majourhat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
- Geo-Bio-Environmental Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Jamal Koubachi
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| |
Collapse
|
13
|
Azhar MK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S, Hassan MI. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023; 15:4297. [PMID: 37836581 PMCID: PMC10574478 DOI: 10.3390/nu15194297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Md. Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Saleha Anwar
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| |
Collapse
|
14
|
Yung YL, Lakshmanan S, Chu CM, Kumaresan S, Tham HJ. Simultaneous mitigation of 3-monochloropropane 1,2 diol ester and glycidyl ester in edible oils: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1164-1182. [PMID: 37549246 DOI: 10.1080/19440049.2023.2235608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/09/2023]
Abstract
The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.
Collapse
Affiliation(s)
- Yen Li Yung
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Research & Development Department, IOI Edible Oils Sdn. Bhd, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Shyam Lakshmanan
- Research & Development Department, IOI Edible Oils Sdn. Bhd, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Chi Ming Chu
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Sivakumar Kumaresan
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Heng Jin Tham
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
15
|
Xu M, Meng P, Wang H, Liu J, Guo T, Zhu Z, Bi Y. Synthesis, Characterization and Evaluation of a Novel Tetraphenolic Compound as a Potential Antioxidant. Antioxidants (Basel) 2023; 12:1473. [PMID: 37508011 PMCID: PMC10376215 DOI: 10.3390/antiox12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
A novel antioxidant containing four hydroxyl groups, namely 2,2'-(2-methylpropane-1,3-diyl)bis(hydroquinone) (MPBHQ), was synthesized using hydroquinone and methylallyl alcohol as the raw materials, phosphoric acid as the catalyst, and toluene as the solvent system. The structure of MPBHQ was characterized by mass spectrometry, nuclear magnetic resonance, ultraviolet spectroscopy, and infrared spectroscopy. The results showed that MPBHQ has a good radical scavenging effect, as measured by the ORAC assay, DPPH radical scavenging assay, ABST radical scavenging assay, and Rancimat test. In fatty acid methyl ester and lard without exogenous antioxidants, MPBHQ showed better antioxidant performance than butylated hydroxytoluene (BHT), hydroquinone (HQ), tert-butyl hydroquinone (TBHQ), and propyl gallate (PG), meeting the need for a new antioxidant with better properties to ensure the oxidative stability of lipids and biodiesel.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Pengcheng Meng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hongyan Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Tao Guo
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenjie Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
16
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
17
|
Chen J, Zhang L, Zhao P, Ma G, Li Q, Yu X. Synthesized alkyl ferulates with different chain lengths inhibited the formation of lipid oxidation products in soybean oil during deep frying. Food Chem 2023; 410:135458. [PMID: 36641917 DOI: 10.1016/j.foodchem.2023.135458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The hydrophilic nature of ferulic acid limits its applications under lipophilic conditions. This study set out to evaluate the antioxidant efficacy of alkyl ferulates with different chain lengths in soybean oil under frying conditions. Ferulic acid was esterified with four unbranched fatty alcohols (C4:0-C16:0), and tert-butylhydroquinone (TBHQ) served as a standard for comparison. The antioxidant effect of alkyl ferulates increased with the alkyl chain length. The addition of antioxidants could inhibit increases in the levels of p-anisidine, total polar compounds, conjugated dienes, conjugated trienes, oxidized triglyceride monomers, triglyceride dimers, triglyceride oligomers, and glycerol core aldehydes efficiently, and the inhibitory effects of hexadecyl ferulate was the strongest. Moreover, hexadecyl ferulate and TBHQ exhibited better inhibitory effects on the generation of n-alkanals, (E)-2-alkenals, and 4-oxo-alkanals determined by 1H nuclear magnetic resonance than others. Hence, the long-chain alkyl ferulates meet the industrial demands for ideal antioxidants with strong antioxidant capacity at high temperatures.
Collapse
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Peng Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Gaiqin Ma
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Iglesias-Carres L, Racine KC, Chadwick S, Nunn C, Kalambur SB, Neilson AP, Ferruzzi MG. Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
20
|
Li Y, Li Y, Zhao N, Shi D, Yi S, Li J. Insights into the interaction mechanism of acid phosphatase from Lateolabrax japonicus livers and rosmarinic acid using multispectroscopy and molecular docking. Food Chem 2023; 418:135945. [PMID: 36989640 DOI: 10.1016/j.foodchem.2023.135945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
Acid phosphatase (ACP) is a key enzyme that hydrolyzes inosinic acid. The mechanisms underlying the interaction between rosmarinic acid (RA) and ACP and the inhibition of the enzyme were investigated using inhibition kinetics, UV-visible and fluorescence spectroscopy, circular dichroism, and molecular docking. The results showed that RA was a reversible inhibitor of ACP and that the inhibition mechanism was uncompetitive. The ACP fluorescence was quenched by RA, and the quenching mode was static. The interaction of ACP with RA was driven by H bonds and van der Waals forces. The addition of RA increased the α-helix content and decreased the β-sheet, β-turn, and random coil contents in ACP, thereby altering the secondary structure of the enzyme. This study enriched our understanding of inhibitory and interaction mechanisms involving ACP and RA.
Collapse
|
21
|
Moufakkir C, Kharbach Y, Tanghort M, Dassouli A, Remmal A. Preserving Soybean Oil for the Frying of Breaded Butterfly Shrimp Using Natural Rosemary Antioxidant. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:5984636. [PMID: 37007843 PMCID: PMC10065861 DOI: 10.1155/2023/5984636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 04/04/2023]
Abstract
Fried foods and frying oil are subjects that warrant the attention of researchers because of their high consumption. Indeed, frying conditions make these oils very sensitive to lipid oxidation which deteriorates the quality and nutritional properties of the food. In this study, we examined the effect of rosemary extract (ROE), known for its high antioxidant activity, in soybean oil used to fry breaded butterfly shrimp, by measuring the induction period with OXIPRES, total polar material (TPM), peroxide index (PI), and free fatty acids (FFA). This evaluation was performed in comparison with control oils without antioxidants. The results showed a significant difference between the oils according to the analyzed parameters, especially in the final hours of frying. The treatment of the oil with rosemary extract effectively delayed its oxidation, having lower levels in all the oxidation markers that were analyzed. It was also found that rosemary extract is able to reduce oil consumption by fried foods. Therefore, ROE ensures soybean oil a high stability against oxidation and a longer shelf life, making it a good natural alternative to synthetic antioxidants.
Collapse
Affiliation(s)
- Chaimae Moufakkir
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Yassine Kharbach
- Laboratory of Applied Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez M-30050, Morocco
| | - Mariam Tanghort
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Abdelilah Dassouli
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| | - Adnane Remmal
- Biotechnology Laboratory, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30050, Morocco
| |
Collapse
|
22
|
Abdo EM, Shaltout OES, Mansour HM. Natural antioxidants from agro-wastes enhanced the oxidative stability of soybean oil during deep-frying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Manzoor S, Masoodi F, Rashid R. Influence of food type, oil type and frying frequency on the formation of trans-fatty acids during repetitive deep-frying. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Manzoor S, Masoodi F, Rashid R, Ahmad M, Kousar MU. Quality assessment and degradative changes of deep-fried oils in street fried food chain of Kashmir, India. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Lignocellulosic Biomasses from Agricultural Wastes Improved the Quality and Physicochemical Properties of Frying Oils. Foods 2022; 11:foods11193149. [PMID: 36230225 PMCID: PMC9564338 DOI: 10.3390/foods11193149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, the effects of using natural lignocellulosic-based adsorbents from sugarcane bagasse (SC), cornstalk piths (CP), and corn cob (CC) on the physicochemical properties and quality of fried oils were studied. The properties of lignocellulosic biomasses were examined using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the changes in the physicochemical properties of fresh, fried oils (for 4, 8, 12, 16 and 20 h) and adsorbents-treated oils were examined. The XRD results revealed that SC and CP biomasses have more amorphous regions than CC biomass, which had the highest crystallinity percentage. The results also showed that lignocellulosic biomasses enhanced the quality of the used oils. SC was the most effective biomass to enhance the properties of the used sunflower oil. For instance, the acid value of oil samples fried for 20 h reduced from 0.63 ± 0.02 to 0.51 ± 0.02 mg KOH/g oil after SC biomass treatment. For the peroxide value, the SC biomass treatment reduced it from 9.45 ± 0.56 (fried oil for 20 h) to 6.91 ± 0.12 meq O2/kg. Similarly, SC biomass adsorbent reduced the p-Anisidine Value (p-AV) of the used oil (20 h) from 98.45 ± 6.31 to 77.92 ± 3.65. Moreover, SC adsorbents slightly improved the lightness of the used oils (20 h). In conclusion, natural lignocellulosic biomasses, particularly SC, could be utilized as natural adsorbents to improve the oil quality. The results obtained from this study could help in developing sustainable methods to regenerate used oils using natural and cheap adsorbents.
Collapse
|
26
|
Manzoor S, Masoodi F, Rashid R, Ganaie TA. Quality changes of edible oils during vacuum and atmospheric frying of potato chips. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Efficacy of exogenous natural antioxidants in stability of polyunsaturated oils under frying temperature. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mansour HMM, El-Sohaimy SA, Zeitoun AM, Abdo EM. Effect of Natural Antioxidants from Fruit Leaves on the Oxidative Stability of Soybean Oil during Accelerated Storage. Antioxidants (Basel) 2022; 11:antiox11091691. [PMID: 36139765 PMCID: PMC9495815 DOI: 10.3390/antiox11091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plant by-products are safe, sustainable, and abundant natural antioxidant sources. Here we investigated the antioxidant activity of a mixture of lyophilized pomegranate, guava, and grape (PGG) leaves water extract (1:1:1) and examined its ability to retard the rancidity of soybean oil during accelerated storage at 65 °C for 30 days. To achieve this, we evaluated the oxidative stability of soybean oil enriched with PGG extract at 200, 400, and 800 ppm. We also compared the effect of PGG extract with butylated hydroxytoluene (BHT) (400/100 ppm) with that of only BHT (200 ppm). We observed that 8.19 and 1.78 µg/mL of the extract could scavenge 50% of DPPH• and ABTS•, respectively, indicating its enhanced antioxidant activity. Enriching soyabean oil with the extract at 800 ppm improved its oxidative stability by reducing the acid value to 1.71 mg/g and the total oxidation to 99.87 compared to 2.27 mg/g and 150.32 in the raw oil, respectively. Moreover, PGG-800 ppm inhibited oxidation by 46.07%. Similarly, PGG-400 ppm reinforced BHT (100 ppm) to provide oxidative stability as BHT (p > 0.05), with TOTOX values of 87.93 and 79.23, respectively. PGG-800 ppm and PGG/BHT mix potently inhibited the transformation of polyunsaturated fatty acids into saturated ones. Therefore, the PGG extract might be an efficient substitute for BHT (partially or totally) during industrial processes.
Collapse
Affiliation(s)
- Hanem M. M. Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
| | - Sobhy Ahmed El-Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt or
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Service, South Ural State University (SUSU), 454080 Chelyabinsk, Russia
| | - Ahmed M. Zeitoun
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
| | - Eman M. Abdo
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt
- Correspondence:
| |
Collapse
|
29
|
Rashid R, Masoodi F, Wani SM, Manzoor S, Gull A. Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem 2022; 385:132608. [DOI: 10.1016/j.foodchem.2022.132608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
30
|
Sakaino M, Sano T, Kato S, Shimizu N, Ito J, Rahmania H, Imagi J, Nakagawa K. Carboxylic acids derived from triacylglycerols that contribute to the increase in acid value during the thermal oxidation of oils. Sci Rep 2022; 12:12460. [PMID: 35864283 PMCID: PMC9304340 DOI: 10.1038/s41598-022-15627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Acid value (AV), is a widely used indicator of oil degradation that, by definition, measures the free fatty acids formed via the hydrolysis of triacyclglycerols. However, based on observations made in previous studies, we hypothesized that the oxidation of triacylglycerols leads to the formation of carboxylic acids with a glycerol backbone which are also calculated as AV. In this study, we aimed to identify such carboxylic acids and prove the above hypothesis. Heating a canola oil at 180 °C for 6 h without the addition of water resulted in an increase in AV from 0.054 to 0.241. However, the contribution of free fatty acids to this increase in AV was minimal; free fatty acid-derived AV before and after heating was 0.020 and 0.023, respectively. Then, via mass spectrometric analyses, we identified two 8-carboxy-octanoyl (azelaoyl) -triacylglycerols (i.e., dioleoyl-azelaoyl-glycerol and oleoyl-linoleoyl-azelaoyl-glycerol) in the heated oil. Azelaoyl-triacylglycerols-derived AV before and after heating the oil was 0.008 and 0.109, respectively, demonstrating that azelaoyl-triacylglycerols contribute to AV. Such an increase in AV by azelaoyl-triacylglycerols was also observed in an oil used to deep-fry potatoes (i.e., an oil with a relatively high water content). These results suggest that AV is also an indicator of the thermal oxidation of triacylglycerols.
Collapse
Affiliation(s)
- Masayoshi Sakaino
- Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, 230-0053, Japan.,Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Takashi Sano
- Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, 230-0053, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Halida Rahmania
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Jun Imagi
- Food Design Center, J-OIL MILLS, INC., Yokohama, Kanagawa, 230-0053, Japan.,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan. .,J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
31
|
Chen J, Zhang L, Li Q, Gao Y, Yu X. Utilization of Diaphragma juglandis extract as a natural antioxidant for improving the oxidative stability of soybean oil during deep frying. Food Chem X 2022; 14:100359. [PMID: 35712534 PMCID: PMC9194583 DOI: 10.1016/j.fochx.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid oxidation significantly shortens the life of frying oils, and this challenge can be addressed by using antioxidants. This work aimed to investigate the effect of Diaphragma juglandis extract (DJE) on the oxidative stability of soybean oil during deep frying. Tert-butylhydroquinone (TBHQ) and tea polyphenol (TP) were applied as positive controls. A total of 31 polyphenols were determined in DJE, and catechin, quercitrin, taxifolin, quercetin 3-β-d-glucoside, epicatechin, gallic acid, and 3,4-dihydroxybenzoic acid were the main components. The antioxidants effectively delayed the degradation of triglycerides and inhibited the increase in the contents of p-anisidine, oxidized triglyceride monomers, triglyceride dimers, and triglyceride oligomers, with DJE exhibiting better performance. Moreover, DJE showed better inhibitory effect on the formation of (E)-2-alkenals, (E,E)-2,4-alkadienals, 4-oxo-alkanals, primary alcohols, and secondary alcohols detected by 1H nuclear magnetic resonance than TBHQ and TP. Therefore, DJE has great potential as an excellent antioxidant in large-scale industrial applications.
Collapse
Key Words
- AV, acid value
- DJE, Diaphragma juglandis extract
- Deep frying
- Diaphragma juglandis
- HPSEC, high-performance size exclusion chromatography
- K232, conjugated dienes
- K268, conjugated trienes
- OxTGs, oxidized triglyceride monomers
- Oxidative stability
- PV, peroxide value
- Phenolic extract
- TAG, triglyceride
- TBHQ, tert-butylhydroquinone
- TGDs, triglyceride dimers
- TGOs, triglyceride oligomers
- TGPs, oxidized triglyceride polymers
- TP, tea polyphenol
- TPC, total polar compounds
- p-AnV, p-anisidine value
Collapse
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yuan Gao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
32
|
Chen J, Zhang L, Zhao P, Wang J, Li Q, Yu X. Comparison of non‐volatile degradation products formed from different vegetable oils during deep frying of French fries. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Chen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Lingyan Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Peng Zhao
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Jiayun Wang
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi China
| | - Qi Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering Northwest A&F University Yangling 712100 Shaanxi China
| |
Collapse
|
33
|
Manzoor S, Masoodi F, Rashid R, Dar MM. Effect of apple pomace-based antioxidants on the stability of mustard oil during deep frying of French fries. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Effects of the BHA and basil essential oil on nutritional, chemical, and sensory characteristics of sunflower oil and sardine (Sardina pilchardus) fillets during repeated deep-frying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Xu L, Mei X, Wu G, Karrar E, Jin Q, Wang X. Inhibitory effect of antioxidants on key off-odors in French fries and oils and prolong the optimum frying stage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Does adding thyme and rosemary essential oils to sunflower oil during shallow-frying increase the lipid quality of Atlantic bonito? Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Improving oxidative stability of soyabean oil by apple pomace extract during deep frying of french fries. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Improving the Oxidation Stability and Shelf-Life of Peanut Oil by Addition of Rosemary Extract Combined with Vitamin C and Ascorbyl Palmitate. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7229412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rosemary extracts are natural antioxidants, which can be considered an alternative for synthetic antioxidants in the food industry. The aim of the present study was to evaluate the oxidation stability and shelf-life of rosemary extracts combined with vitamin C (VC) and ascorbyl palmitate (AP) in peanut oil stored at 65°C. Peanut oil with tertbutyl hydroquinone (TBHQ) and without additives served as positive and negative controls, respectively. The peroxide value (POV), thiobarbituric acid reactant (TBARs), conjugated diene (CD), and conjugated triene (CT) values of the peanut oil samples were evaluated during accelerated storage every 48 h. Among them, 0.23 g/kg rosemary extracts combined with 0.13 g/kg VC and 0.07 mg/kg AP exhibited the best oxidative stability. Additionally, the oxidation kinetics model predicated that the rosemary extracts combined with VC and AP could effectively prolong the shelf-life of peanut oil. In accelerated storage, the rosemary extracts combined with VC and AP not only inhibited peanut oil oxidation like chemical antioxidants, but also were safer than chemical antioxidants. Therefore, the rosemary extracts combined with VC and AP were an effective alternative to chemical antioxidants, which could improve the oxidation stability and shelf-life of peanut oil.
Collapse
|
39
|
Xu X, Chao M, Guo X, Kuang H, Liu L, Xu L, Xu C. Rapid and sensitive detection of tert-butylhydroquinone in soybean oil using a gold-based paper sensor. Analyst 2022; 147:1906-1914. [PMID: 35352722 DOI: 10.1039/d2an00265e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
tert-Butylhydroquinone (TBHQ) residues in foods pose a threat to human health. Therefore, it is necessary to develop a rapid method for TBHQ detection. In this study, a sensitive monoclonal antibody 5C3 (IgG2a subclass) against TBHQ was produced. It possessed a half maximal inhibitory concentration of 7.43 ng mL-1. A gold nanoparticle-based immunochromatographic assay (ICA) was established for the rapid and sensitive screening of TBHQ in soybean oil. Qualitative analysis results were obtained within 10 min and observed with the naked eye. The visual limit of detection (LOD) was 50 ng g-1 and the cut-off value was 1000 ng g-1. A hand-held strip reader was used for quantitative analysis, in which the calculated LOD was defined as 18.68 ng g-1. The average recoveries of TBHQ ranged from 89.55% ± 2.70% to 100.66% ± 3.02% for soybean oil, with a coefficient of variation of 2.89%-7.05%. Therefore, our developed ICA is a useful tool for the rapid and on-site detection of TBHQ in real food samples.
Collapse
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mengjia Chao
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
40
|
Sun H, Li F, Li Y, Guo L, Wang B, Huang M, Huang H, Liu J, Zhang C, Feng Z, Sun J. Effect of High-Voltage Electrostatic Field Heating on the Oxidative Stability of Duck Oils Containing Diacylglycerol. Foods 2022; 11:foods11091322. [PMID: 35564044 PMCID: PMC9105880 DOI: 10.3390/foods11091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
High-voltage electrostatic field (HVEF) as an emerging green technology is just at the beginning of its use in meat products and by-products processing. In this study, we employed duck oil to produce duck-oil-based diacylglycerol (DAG), termed DDAG. Three different DDAG volume concentrations (0, 20%, and 100%) of hybrid duck oils, named 0%DDAG, 20%DDAG, and 100%DDAG, respectively, were used to investigate their thermal oxidation stability in high-voltage electrostatic field heating and ordinary heating at 180 ± 1 ℃. The results show that the content of saturated fatty acids and trans fatty acids of the three kinds of duck oils increased (p < 0.05), while that of polyunsaturated fatty acids decreased (p < 0.05) from 0 h to 8 h. After heating for 8 h, the low-field nuclear magnetic resonance showed that the transverse relaxation time (T21) of the three oils decreased (p < 0.05), while the peak area ratio (S21) was increased significantly (p < 0.05). The above results indicate that more oxidation products were generated with heating time. The peroxide value, the content of saturated fatty acids, and the S21 increased with more DAG in the duck oil, which suggested that the oxidation stability was likely negatively correlated with the DAG content. Moreover, the peroxide value, the content of saturated fatty acids and trans fatty acids, and the S21 of the three concentrations of duck oils were higher (p < 0.05) under ordinary heating than HVEF heating. It was concluded that HVEF could restrain the speed of the thermal oxidation reaction occurring in the duck oil heating and be applied in heating conditions.
Collapse
Affiliation(s)
- Hailei Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Fangfang Li
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Yan Li
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Liping Guo
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Baowei Wang
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing 211226, China;
| | - He Huang
- Shandong Newhope Liuhe Group Co., Ltd., Qingdao 266000, China; (H.H.); (J.L.)
| | - Jiqing Liu
- Shandong Newhope Liuhe Group Co., Ltd., Qingdao 266000, China; (H.H.); (J.L.)
| | | | - Zhansheng Feng
- Yingyuan Co., Ltd., Jining 272000, China; (C.Z.); (Z.F.)
| | - Jingxin Sun
- College of Food Science & Engineering, Shandong Research Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, China; (H.S.); (F.L.); (Y.L.); (L.G.); (B.W.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
41
|
Alves M, Coutinho E, Klein A, Santos M, Facco J, Rosa M, Fuzinatto M, Martelli S, Fiorucci A, Cardoso C, Simionatto E. Oxidative stability of soybean and corn oils enriched with Pluchea quitoc hydroalcoholic extract. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.1122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Soybean and corn oils are among the most popular vegetable oils, and are ingredients which are widely used in cooking and in the food industry. These oils contain many unsaturated fatty acids such as oleic, linoleic and linolenic acids, which makes them easily oxidized by oxygen. Extensive efforts are being made to prevent or minimize vegetable oil oxidation through the development of antioxidants. Phenolic antioxidants which are present in some extracts can be used as food additives to prevent lipid oxidation. In this study chromatographic analyses (HPLC and GC) of the Pluchea quitoc hydroalcoholic extract were performed. The content of phenolic compounds by the Folin-Ciocalteau method and the antioxidant properties against radicals 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) were also evaluated. The effect of samples prepared with soybean and corn oils enriched with Pluchea quitoc hydroalcoholic extract was determined and compared with samples of these oils which were free of antioxidants and with samples containing the synthetic antioxidant BHT. The results showed potential for application of the extract. A high content of phenolic compounds (314 milligrams of gallic acid equivalents (GAE)/g of extract) and good IC50 values were detected for the inhibition of the radicals DPPH and ABTS (13.2 µg·mL-1 and 5.6 µg·mL-1). In the evaluation of the oxidative stability of the oils enriched with this extract, it was found that at 1% concentration it was possible to obtain values of induction period (IP) close to the samples with added BHT.
Collapse
|
42
|
Dash KK, Sharma M, Tiwari A. Heat and mass transfer modeling and quality changes during deep fat frying: A comprehensive review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET) Malda West Bengal India
| | - Maanas Sharma
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| | - Ajita Tiwari
- Department of Agricultural Engineering Assam University Silchar Assam India
| |
Collapse
|
43
|
Jahanfar S, Gahavami M, Khosravi-Darani K, Jahadi M, Mozafari M. Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon 2021; 7:e08632. [PMID: 35005281 PMCID: PMC8715198 DOI: 10.1016/j.heliyon.2021.e08632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
A major obstacle in the utilization of phenolic antioxidant compounds is their sensitivity and as a result stability issue. The current study aimed to encapsulate polyphenolic compounds, extracted from Rosemary, in liposomes prepared by the Mozafari method without the utilization of toxic solvents or detergents. The extract was prepared and converted into a powder by freeze-drying. The process conditions were optimized using response surface analysis, and the optimal parameters were as follows: phosphatidylcholine (PC), 2.5% (25 mg/mL); extract, 0.7% (7 mg/mL); process temperature, 70 °C and process time, 60 min. The entrapment efficiency in optimal sample was 54.59%. Also, optimal glycerosomes formulation were finally physicochemical characterized (permeability, zeta potential, and size distribution). The mean size of empty and containing rosemary extract glycerosome were 265.4 nm and 583.5 nm, respectively, and the Z-potential of optimal glycerosome was -65.1 mV. Total phenolic content was obtained 151.38 mg gallic acid/g extract, in optimal liposomal formulation, which was measured by Folin-Ciocalteu's phenol reagent. Also, the antioxidant activity of rosemary extract by DPPH for the free and optimal liposomal formulation was determined to be 84.57% and 92.5% respectively. It can be concluded that the liposomal rosemary extract formulation prepared in this study, employing a safe, scalable, and green technology, has great promise in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Shima Jahanfar
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Gahavami
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
- Corresponding author.
| | - Mahshid Jahadi
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168, Victoria, Australia
| |
Collapse
|
44
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI. Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Li Q, Yang D, Tammina SK, Yang Y. Construction of AuNPs/Cu,I-CD-based colorimetric sensor: Catalytic oxidation of TBHQ and the catalytic inhibition of HCHO. Food Chem 2021; 373:131438. [PMID: 34741967 DOI: 10.1016/j.foodchem.2021.131438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Various research groups have been paying huge attention to tune the metal states in metal-carbon hybrid materials. Herein, a mixed-valence copper-iodine co-doped carbon dots (Cu,I-CDs, Cu2+/Cu+/Cu0) were prepared through a one-step hydrothermal method, which displayed an intrinsic reduction performance under given conditions. Moreover, AuNPs/Cu,I-CDs composite was fabricated using Cu,I-CDs as reductant and stabilizer. Among them, the AuNPs/Cu,I-CDs composite exhibited the highest oxidase- and peroxidase-like activities, which was used for the colorimetric detection of tert-butyl hydroquinone (TBHQ), with the detection limits of 23.45 μg/kg. Interestingly, the catalytic oxidation of TBHQ to oxidized TBHQ (TQ) could be inhibited by formaldehyde (HCHO). Therefore, a colorimetric sensor for HCHO was developed with the detection limit 0.335 mg/L. The catalytic mechanism for TBHQ was investigated by employing scavengers of different reactive species, indicating the significant roles of •O2- in the catalytic process. Therefore, it is believed that the as-prepared AuNPs/Cu,I-CDs nanozyme has promising potential applications in the fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Sai Kumar Tammina
- School of Physics, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
46
|
The detection of glycidyl ester in edible palm-based cooking oil using FTIR-chemometrics and 1H NMR analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Characteristics of French Fries and Potato Chips in Aspect of Acrylamide Content—Methods of Reducing the Toxic Compound Content in Ready Potato Snacks. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reduction of toxic acrylamide content in potato snacks, i.e., French fries and potato chips, is necessary due to the adverse effects of this compound on the human body. Therefore, in the presented review paper, a detailed characterization of French fries and chips in terms of AA content and their organoleptic quality is included. Detailed information was also collected on the raw material and technological factors that affect the formation of acrylamide content, including methods and techniques affecting the reduction of the amount of this compound in potato snacks. The obligation to control the level of acrylamide in various food products (including fried potato snacks with a higher content of this compound), introduced in 2018, has mobilized manufacturers to seek solutions, while scientists conduct further intensive research on the possibility of reducing the level of AA or even eliminating its presence from products. Therefore, it is necessary to conduct such activities, especially, because potato French fries and potato chips are willingly consumed by younger and younger consumers.
Collapse
|
48
|
Meenu M, Decker EA, Xu B. Application of vibrational spectroscopic techniques for determination of thermal degradation of frying oils and fats: a review. Crit Rev Food Sci Nutr 2021; 62:5744-5765. [PMID: 33645344 DOI: 10.1080/10408398.2021.1891520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Deep fried foods are popular among consumers due to their unique taste and texture. During the process of deep-frying, oil is subjected to a high temperature that results into the generation of harmful compounds. The repeated usage of frying oil is a common exercise and associated with various health hazards. Thus, determination of frying oil quality is a critical practice to follow. The chemical methods employed to determine the quality of frying oil are destructive and require large amount of harmful chemical, thus researchers are exploring the application of various vibrational spectroscopic techniques for this purpose. The first part of this review provides a detailed insight into fundamental theoretical aspects of two main vibrational spectroscopic techniques (infrared and Raman spectroscopy) and chemical alteration in frying oils under thermal stress. While in the following parts, the application of near-infrared (NIR) and Fourier transform infrared (FTIR) and Raman spectroscopy for evaluating the quality of various frying oils and fats under thermal stress has been discussed. It is anticipated that this review paper can serve as a reference source for impending research in this field.
Collapse
Affiliation(s)
- Maninder Meenu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|