1
|
Li M, Liu H, He B, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y. Ultrasensitive label-free electrochemical aptasensor for Pb 2+ detection exploiting Exo III amplification and AgPt/GO nanocomposite-enhanced transduction. Talanta 2024; 276:126260. [PMID: 38759364 DOI: 10.1016/j.talanta.2024.126260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Lead ion pollution has become a serious public health concern worldwide. Therefore, sensitive detection of Pb2+ is critical to control lead pollution, assess risks, and safeguard the health of vulnerable populations. This study reports a highly sensitive labelling-free electrochemical aptasensor for Pb2+ detection. The aptasensor employs silver-platinum nanoparticles/graphene oxide (AgPt/GO) and Exonuclease III (Exo III) for signal amplification. GO provides high surface area and conductivity for immobilizing AgPt NPs, facilitating the immobilization of aptamer (Apt) probes on the electrode surface. Exo III enzymatically cleaves DNA strands on the electrode surface, releasing DNA segments to amplify the signal further. The synergistic amplification by AgPt/GO and ExoIII enables an extremely wide linear detection range of 0.05 pM-5 nM for Pb2+, with a low detection limit of 0.019 pM. Additionally, the G-quadruplex structure ensures excellent selectivity for Pb2+ detection, resulting in high reproducibility and stability of the aptasensor. The aptasensor was successfully applied to detect spiked Pb2+ in tap water samples, achieving recovery rates ranging from 96 to 108.4 %. By integrating nanomaterials, aptamers and enzymatic amplification, the aptasensor facilitates highly sensitive and selective detection of Pb2+, demonstrating potential for practical applications in environmental monitoring.
Collapse
Affiliation(s)
- Mengyang Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Hui Liu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
2
|
Xu Y, Jia X, Yang S, Cao M, He B, Ren W, Suo Z. Simultaneous Determination of Aflatoxin B1 and Ochratoxin A in Cereals by a Novel Electrochemical Aptasensor Using Metal-Organic Framework as Signal Carrier. Foods 2024; 13:2177. [PMID: 39063260 PMCID: PMC11276064 DOI: 10.3390/foods13142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.
Collapse
Affiliation(s)
- Yiwei Xu
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Xupeng Jia
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Sennan Yang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Mengrui Cao
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Baoshan He
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Wenjie Ren
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Zhiguang Suo
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| |
Collapse
|
3
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Jin X, Nodehi M, Baghayeri M, Xu Y, Hua Z, Lei Y, Shao M, Makvandi P. Development of an impedimetric sensor for susceptible detection of melatonin at picomolar concentrations in diverse pharmaceutical and human specimens. ENVIRONMENTAL RESEARCH 2023; 238:117080. [PMID: 37683787 DOI: 10.1016/j.envres.2023.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Our investigation aimed to create and manufacture an electrochemical impedance sensor with the purpose of improving the detection efficiency of melatonin (ME). To achieve this objective, we employed gold nanoparticles coated on polydopamine formed in glassy carbon electrodes (AuNPs/PDA/GCE) as a means to enhance the sensor's capabilities. A novel approach employing the signal-off strategy and electrochemical impedance spectroscopy (EIS) technique was utilized to determine ME. When the AuNPs/PDA/GCE electrode was immersed in a buffered solution containing ME, and the oxidation current of AuNPs was recorded, it was observed that the oxidation current of AuNPs decreased upon the introduction of ME molecules. The decrease in electrical current can be ascribed to the inhibitory impact of ME molecule adsorption on the electrode surface with applying -0.2 V for 150 s in acetate buffer solution (ABS) (pH, 5) through various mechanisms, which hinders the electron transfer process crucial for AuNPs oxidation. Consequently, by utilizing EIS, various concentrations of ME were quantified spanning from 1 to 18 pM. Moreover, the ME sensor achieved an impressive detection limit of 0.32 pM, indicating its remarkable sensitivity in detecting low concentrations of ME. Importantly, these novel sensors demonstrated exceptional attributes in terms of sensitivity, specificity, stability, and repeatability. The outstanding performance of these sensors, coupled with their desirable attributes, establishes their considerable potential for a wide range of practical applications. These applications encompass various fields such as clinical diagnostics, pharmaceutical analysis, environmental monitoring, and industrial quality control, where accurate and sensitive detection of ME is of utmost importance.
Collapse
Affiliation(s)
- Xuru Jin
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMedical Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhidan Hua
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000 PR China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
5
|
Moreira G, Qian H, Datta SPA, Bliznyuk N, Carpenter J, Dean D, McLamore E, Vanegas D. A capacitive laser-induced graphene based aptasensor for SARS-CoV-2 detection in human saliva. PLoS One 2023; 18:e0290256. [PMID: 37590297 PMCID: PMC10434860 DOI: 10.1371/journal.pone.0290256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
SARS-CoV-2 virus induced CoVID-19 pandemic has accelerated the development of diagnostic tools. Devices integrated with electrochemical biosensors may be an interesting alternative to respond to the high demand for testing, particularly in contexts where access to standard detection technologies is lacking. Aptamers as recognition elements are useful due to their stability, specificity, and sensitivity to binding target molecules. We have developed a non-invasive electrochemical aptamer-based biosensor targeting SARS-CoV-2 in human saliva. The aptamer is expected to detect the Spike protein of SARS-CoV-2 wildtype and its variants. Laser-induced graphene (LIG) electrodes coated with platinum nanoparticles were biofunctionalized with a biotin-tagged aptamer. Electrochemical Impedance Spectroscopy (EIS) for BA.1 sensing was conducted in sodium chloride/sodium bicarbonate solution supplemented with pooled saliva. To estimate sensing performance, the aptasensor was tested with contrived samples of UV-attenuated virions from 10 to 10,000 copies/ml. Selectivity was assessed by exposing the aptasensor to non-targeted viruses (hCoV-OC43, Influenza A, and RSV-A). EIS data outputs were further used to select a suitable response variable and cutoff frequency. Capacitance increases in response to the gradual loading of the attenuated BA.1. The aptasensor was sensitive and specific for BA.1 at a lower viral load (10-100 copies/ml) and was capable of discriminating between negative and positive contrived samples (with strain specificity against other viruses: OC43, Influenza A, and RSV-A). The aptasensor detected SARS-CoV-2 with an estimated LOD of 1790 copies/ml in contrived samples. In human clinical samples, the aptasensor presents an accuracy of 72%, with 75% of positive percent of agreement and 67% of negative percent of agreement. Our results show that the aptasensor is a promising candidate to detect SARS-CoV-2 during early stages of infection when virion concentrations are low, which may be useful for preventing the asymptomatic spread of CoVID-19.
Collapse
Affiliation(s)
- Geisianny Moreira
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, United States of America
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, United States of America
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lancing, Michigan, United States of America
| | - Hanyu Qian
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Shoumen Palit Austin Datta
- Department of Mechanical Engineering, MIT Auto-ID Labs, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesiology, Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Jeremiah Carpenter
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Eric McLamore
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, United States of America
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, United States of America
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lancing, Michigan, United States of America
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, United States of America
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lancing, Michigan, United States of America
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change -BioNovo, Universidad del Valle, Cali, Colombia
| |
Collapse
|
6
|
Electrochemical sensor for detecting streptomycin in milk based on label-free aptamer chain and magnetic adsorption. Food Chem 2023; 403:134399. [DOI: 10.1016/j.foodchem.2022.134399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
|
7
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Chen G, Zhai R, Liu G, Huang X, Zhang K, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A Competitive Assay Based on Dual-Mode Au@Pt-DNA Biosensors for On-Site Sensitive Determination of Carbendazim Fungicide in Agricultural Products. Front Nutr 2022; 9:820150. [PMID: 35198589 PMCID: PMC8860170 DOI: 10.3389/fnut.2022.820150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Carbendazim (CBZ), a systemic, broad-spectrum benzimidazole fungicide, is widely used to control fungal diseases in agricultural products. Its residues might pose risks to human health and the environment. Therefore, it is warranted to establish a rapid and reliable method for its residual quantification. Herein, we proposed a competitive assay that combined aptamer (DNA) specific recognition and bimetallic nanozyme gold@platinum (Au@Pt) catalysis to trace the CBZ residue. The DNA was labeled onto bimetallic nanozyme Au@Pt surface to produce Au@Pt probes (Au@Pt-DNA). The magnetic Fe3O4 was functionalized with a complementary strand of DNA (C-DNA) to form Fe3O4 probes (Fe3O4-C-DNA). Subsequently, the CBZ and the Fe3O4 probes competitively react with Au@Pt probes to form two Au@Pt-DNA biosensors (Au@Pt-ssDNA-CBZ and Au@Pt-dsDNA-Fe3O4). The Au@Pt-ssDNA-CBZ biosensor was designed for qualitative analysis through a naked-eye visualization strategy in the presence of CBZ. Meanwhile, Au@Pt-dsDNA-Fe3O4 biosensor was developed to quantitatively analyze CBZ using a multifunctional microplate reader. A competitive assay based on the dual-mode Au@Pt-DNA biosensors was established for onsite sensitive determination of CBZ. The limit of detection (LOD) and recoveries of the developed assay were 0.038 ng/mg and 71.88-110.11%, with relative standard deviations (RSDs) ranging between 3.15 and 10.91%. The assay demonstrated a good correlation with data acquired from liquid chromatography coupled with mass spectrometry/mass spectrometry analysis. In summary, the proposed competitive assay based on dual-mode Au@Pt-DNA biosensors might have a great potential for onsite sensitive detection of pesticides in agro-products.
Collapse
Affiliation(s)
- Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqi Zhai
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaige Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyun Li
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanguo Zhang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maojun Jin
- Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Liu M, Liu S, Ma Y, Li B. Construction of a fluorescence biosensor for ochratoxin A based on magnetic beads and exonuclease III-assisted DNA cycling signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:734-740. [PMID: 35107449 DOI: 10.1039/d1ay02041b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Specific and sensitive detection of hazardous mycotoxins in agricultural crops is one of the most important goals of food safety. A fluorescence biosensor for sensitive detection of ochratoxin A (OTA) was constructed via magnetic beads and the exonuclease III (Exo III)-assisted trigger DNA circle amplification approach. Exo III-assisted trigger DNA circle amplification can be utilized as an effective strategy for the sensitive detection of OTA. The employment of streptavidin labeled magnetic beads offers a manner for the accumulation and separation of the hairpin signal probe sDNA-FAM in solution. After target specific recognition, the aptamers combined with OTA were released and the remaining block DNA (bDNA) probes captured the signal probes on magnetic bead modified fluorophores. Subsequently, the enzyme digestion reaction leads to the fluorophore free solution. Exo III-assisted DNA circle amplification contributed to the high sensitivity of the presented OTA fluorescence aptasensor. The experimental results demonstrate that the aptasensor is sensitive with the limit of detection as low as 0.28 ng mL-1 for OTA, which was lower than that of the proposed aptasensors reported by the other literature on fluorescence methods. Additionally, the developed aptasensor with the diverse aptamer sequence shows promising potential applications in food monitoring.
Collapse
Affiliation(s)
- Mei Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Shasha Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yue Ma
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
10
|
Divya, Dkhar DS, Kumari R, Mahapatra S, Kumar R, Chandra P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. BIOSENSORS 2022; 12:81. [PMID: 35200341 PMCID: PMC8869721 DOI: 10.3390/bios12020081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
Viral infections are becoming the foremost driver of morbidity, mortality and economic loss all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks, due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis to overcome the challenges associated with traditional methods. Furthermore, the incorporation of aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid, cost-effective, and specific detection devices which are insensitive to changes in the environment. In the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells. The signal generation in the detection process depends on different parameters; one such parameter is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on the labelling, biosensors are classified as label or label-free; both have their significant advantages and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous globally developed aptasensors for the sensing of different types of viruses have been illustrated and explained in tabulated form.
Collapse
Affiliation(s)
| | | | | | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (D.S.D.); (R.K.); (S.M.); (R.K.)
| |
Collapse
|
11
|
Shabalina AV, Sharko DO, Glazyrin YE, Bolshevich EA, Dubinina OV, Kim AM, Veprintsev DV, Lapin IN, Zamay GS, Krat AV, Zamay SS, Svetlichnyi VA, Kichkailo AS, Berezovski MV. Development of Electrochemical Aptasensor for Lung Cancer Diagnostics in Human Blood. SENSORS 2021; 21:s21237851. [PMID: 34883850 PMCID: PMC8659852 DOI: 10.3390/s21237851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer’s defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker’s presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.
Collapse
Affiliation(s)
- Anastasiia V. Shabalina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Darya O. Sharko
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Yury E. Glazyrin
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Elena A. Bolshevich
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Oksana V. Dubinina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anastasiia M. Kim
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Dmitry V. Veprintsev
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
| | - Ivan N. Lapin
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Galina S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Alexey V. Krat
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Krasnoyarsk Regional Clinical Cancer Center Named after A.I. Kryzhanovsky, 660133 Krasnoyarsk, Russia
| | - Sergey S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Valery A. Svetlichnyi
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anna S. Kichkailo
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Correspondence: (A.S.K.); (M.V.B.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, AB K1N 6N5, Canada
- Correspondence: (A.S.K.); (M.V.B.)
| |
Collapse
|
12
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
14
|
Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods 2021; 10:foods10071437. [PMID: 34206168 PMCID: PMC8307942 DOI: 10.3390/foods10071437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.
Collapse
|
15
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
16
|
Contribution of Nanomaterials to the Development of Electrochemical Aptasensors for the Detection of Antimicrobial Residues in Food Products. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of antimicrobial residues in food products of animal origin is of utmost importance. Indeed antimicrobial residues could be present in animal derived food products because of animal treatments for curative purposes or from illegal use. The usual screening methods to detect antimicrobial residues in food are microbiological, immunological or physico-chemical methods. The development of biosensors to propose sensitive, cheap and quick alternatives to classical methods is constantly increasing. Aptasensors are one of the major trends proposed in the literature, in parallel with the development of immunosensors based on antibodies. The characteristics of electrochemical sensors (i.e., low cost, miniaturization, and portable instrumentation) make them very good candidates to develop screening methods for antimicrobial residues in food products. This review will focus on the recent advances in the development of electrochemical aptasensors for the detection of antimicrobial residues in food products. The contribution of nanomaterials to improve the performance characteristics of electrochemical aptasensors (e.g., Sensitivity, easiness, stability) in the last ten years, as well as signal amplification techniques will be highlighted.
Collapse
|
17
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|