1
|
Deng J, Ma N, Jia Y, Dong L, Zhang Y, Ren Y, Shi X, Lu Y, Wang S. Advancing Butter Cookie Quality: Low-Oxygen Baking as a Dual Approach for Sensory Enhancement and Acrylamide Mitigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40249853 DOI: 10.1021/acs.jafc.4c11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
This study investigated the impact of oxygen concentrations during baking on flavor, sensory perception, and acrylamide content in butter cookies. Cookies were baked at 190 and 210 °C under three oxygen levels (5, 10, and 21%). Key quality parameters, including moisture content, texture, color, flavor volatiles, and acrylamide content, were measured, and sensory evaluation was conducted using 55 judges. Principal component analysis was implemented to elucidate relationships among physicochemical properties, aroma profiles, and safety metrics. Results demonstrated that baking under low oxygen concentrations significantly reduced acrylamide formation, exemplified by a reduction from 95.8 to 58.5 μg/kg at 190 °C and 116.6 to 53.1 μg/kg at 210 °C, respectively. Notably, baking at 190 °C with 5% oxygen was identified as the optimal condition, balancing sensory quality and safety by minimizing the formation of harmful substances. These findings provide a promising strategy for improving the safety and quality of baked goods through controlled oxygen levels during processing.
Collapse
Affiliation(s)
- Jin Deng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Nan Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuze Jia
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Lu Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Ren
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Xiaolu Shi
- Midea Group Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd., Foshan 528000, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
3
|
Marwani E, Syamsudin TS, Awaliyah S, Maulani RR, Hidayat A, Husyari UD, Widiyanto S. Volatile Metabolite Profiles of Robusta Green Bean Coffee From Different Geographical Origins in West Java and Their Correlation With Temperature, Rainfall, and Altitudes Using SPME GC-MS-Based Metabolomics. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6908059. [PMID: 39494365 PMCID: PMC11531365 DOI: 10.1155/2024/6908059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
The chemical composition, including volatile metabolites of green coffee beans, is influenced by geographic origin. The aim of this study was to reveal the volatile metabolite profile of a single variety of Robusta green bean coffee from five major plantation regions in West Java and to correlate these profiles with temperature, rainfall, and altitude. By using solid phase micro extractions and gas chromatography-mass spectrometry, 143 different volatile compounds were detected, with aromatic hydrocarbon, alcohols, monoterpene, pyrazines, sesquiterpenes, carboxylic acids, and terpene the most dominant. Principal component analysis (PCA) indicated 64.3% variability, showing that the metabolite profile of Robusta green coffee from the Bogor region was distinctly different from those in Ciamis, Kuningan, Sumedang, and Tasikmalaya, which were more similar to each other. Metabolites such as benzaldehyde, isovaleric acid, toluene, diisobutyl succinate, 1-heptene, 4-dodecene, caffeine, acetic acid, and methyl benzoate were identified as key discriminants, with a VIP score greater than 1.5. Temperature increases were linked to higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid, while other discriminant metabolites declined. Increased rainfall was associated with higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, but lower levels of the other discriminants. Altitude had a positive correlation with methyl benzoate and 1-heptene, and a negative correlation with isovaleric acid and 4-dodecene, with weaker correlations for other compounds. In summary, Robusta green coffee beans from different regions of West Java can be distinguished by their volatile metabolites. Bogor green coffee beans had higher levels of benzaldehyde, 1-heptene, caffeine, and methyl benzoate, Kuningan beans had more diisobutyl succinate and 4-dodecene, Ciamis beans had higher levels of isovaleric acid, diisobutyl succinate, and 4-dodecene, while Sumedang and Tasikmalaya beans were similar, with higher levels of isovaleric acid, diisobutyl succinate, 4-dodecene, toluene, and acetic acid. This difference is related to the climatic factors of temperature and rainfall, as well as the altitude at which Robusta coffee is grown.
Collapse
Affiliation(s)
- Erly Marwani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Suci Awaliyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Asep Hidayat
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ujang Dinar Husyari
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Srinanan Widiyanto
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
4
|
Zhang T, He L, Zhang M, Jiang H. Physicochemical characterization and sensory enhancement of cold plasma treated black whole wheat flour. Sci Rep 2024; 14:24366. [PMID: 39420055 PMCID: PMC11487061 DOI: 10.1038/s41598-024-71978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
This study examined the effects of cold plasma (CP) treatment on the physicochemical properties and sensory quality of black whole wheat flour (BWWF). Various factors including nutrient composition, color, amino acids, aroma, particle size, microstructure, antioxidant activity, and water migration were analyzed before and after CP treatment. The findings revealed that CP treatment had a minimal impact on the baseline nutrient composition of BWWF, but significantly improved its free amino acid profile, enhancing its nutritional value. The treated BWWF had an improved surface color, appeared brighter and yellower, and gave off a pleasant mellow aroma, while removing unpleasant flavor. The total phenolic content of BWWF increased while the flavonoid and anthocyanin content decreased after the treatment. CP-treated BWWF underwent aggregation cross-linking in the microstructure, and the content of bound water decreased, but the stability increased. In conclusion, CP treatment had great potential to improve the physicochemical properties and sensory quality of BWWF.
Collapse
Affiliation(s)
- Teng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ling He
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Meng Zhang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Yu Y, Liu H, Gong W, Chen Y, An X, Zhang H, Liang Y, Wang J. Change in volatile profiles of wheat flour during maturation. Food Res Int 2024; 194:114936. [PMID: 39232547 DOI: 10.1016/j.foodres.2024.114936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The volatile profiles of wheat flour during maturation were examined through headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with electronic nose (E-nose) and electronic tongue (E-tongue) analyses. The wheat flour underwent maturation under three distinct conditions for predetermined durations. While GC/MS coupled with E-tongue exhibited discernment capability among wheat flour samples subjected to varying maturation conditions, E-nose analysis solely relying on principal component analysis failed to achieve discrimination. 83 volatile compounds were identified in wheat flour, with the highest abundance observed in samples matured for 50 d at 25 °C. Notably, trans-2-Nonenal, decanal, and nonanal were the main contributors to the characteristic flavor profile of wheat flour. Integration of HS-SPME-GC/MS with E-tongue indicated superior flavor development and practical viability in wheat flour matured for 50 d at 25 °C. This study furnishes a theoretical groundwork for enhancing the flavor profiles of wheat flour and its derivative products.
Collapse
Affiliation(s)
- Yingtao Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Gong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xin An
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huihui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Wang JL, Sun MJ, Pei ZM, Zheng Z, Luo SZ, Zhao YY, Zhong XY. Modulation of fried spring roll wrapper quality upon treatment of batter with maltogenic amylase, transglutaminase and bromelain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6461-6469. [PMID: 38501369 DOI: 10.1002/jsfa.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Fried foods are favored for their unique crispiness, golden color and flavor, but they also face great challenge because of their high oil content, high calories and the existence of compounds such as acrylamide and polycyclic aromatic hydrocarbons. Long-term consumption of fried foods may adversely affect health. Therefore, it is necessary to explore fried foods with lower oil contents and a high quality to meet the demand. RESULTS A method of enzyme treatment was explored to investigate the effects of maltogenic amylase (MA), transglutaminase (TG) and bromelain (BRO) on the physicochemical properties of the batter and the quality of fried spring roll wrapper (FSRW). The results showed that the MA-, TG- or BRO-treated batters had a significant shear-thinning behavior, especially with an increase in viscosity upon increasing TG contents. FSRW enhanced its fracturability from 419.19 g (Control) to 616.50 g (MA-6 U g-1), 623.49 g (TG-0.75 U g-1) and 644.96 g (BRO-10 U g-1). Meanwhile, in comparison with BRO and MA, TG-0.5 U g-1 endowed batter with the highest density and thermal stability. MA-15 U g-1 and TG-0.5 U g-1 displayed FSRW with uniform and dense pores, and significantly reduced its oil content by 18.05% and 25.02%, respectively. Moreover, compared to MA and TG, BRO-50 U g-1 improved the flavor of FSRW. CONCLUSION MA, TG or BRO played a key role in affecting the physicochemical properties of the batter and the quality of FSRW. TG-0.5 U g-1 remarkly reduced the oil content of FSRW with a great potential in practical application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Lin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meng-Jin Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zheng-Meng Pei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shui-Zhong Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Yan-Yan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xi-Yang Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
7
|
Muroki MW, Waswa LM, Fungo R, Kabwama A, Eric N, Nepomuscene N, Ndabashinze B, Mahungu SM. Sensory properties of selected biofortified common bean ( Phaseolus vulgaris) varieties grown in Burundi. Food Sci Nutr 2024; 12:3199-3213. [PMID: 38726439 PMCID: PMC11077167 DOI: 10.1002/fsn3.3988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
The dry common bean is an important grain legume used for human consumption worldwide. In Eastern Africa, Burundi has a significantly high per capita consumption of the crop. There has been significant research on the underlying agronomic traits of dry biofortified common beans, such as disease resistance. However, there is limited systematic information describing the sensory properties of these bean varieties, particularly in Burundi. This study evaluated the sensory properties of eight cooked dry biofortified common bean varieties using a panel of fifty-four (fourteen plus forty) persons for descriptive sensory evaluation and consumer acceptability tests. Kinure, a traditional non-biofortified common bean variety, was the control. Based on differences in the attributes of the bean varieties, two-dimensional principal component analysis (PCA) explained 58.94% of the variation. The attributes of astringency, consistency, color, juiciness, beany aroma, stickiness, and bean size contributed mostly to the differentiation of the bean varieties. A 95% PCA prediction ellipse displayed stronger congruity in the descriptive attributes of NUV130, NUV91, RWV1129, RWV1272, and RWR2245. In contrast, a deviation in the descriptive attributes of MAC44, MAC70, and RWR2154 was discerned. Regarding consumer acceptability tests, the varieties RWR2245 and MAC44 garnered significantly higher (p < .05) sensory scores on color, aroma, taste, texture, and overall acceptability. Therefore, the physical traits of cooked biofortified common bean varieties are a major contributor to varietal disparities in consumer acceptance studies. These parameters can greatly impact the adoption of dry biofortified common beans and could be of concern to common bean breeders.
Collapse
Affiliation(s)
- Mary W. Muroki
- Department of Dairy, Food Science and TechnologyEgerton UniversityNakuruKenya
| | | | - Robert Fungo
- Alliance of Bioversity International and International Centre for Tropical Agriculture (CIAT)NairobiKenya
- School of Food Technology, Nutrition, and Bio‐EngineeringMakerere UniversityKampalaUganda
| | - Andrew Kabwama
- Alliance of Bioversity International and International Centre for Tropical Agriculture (CIAT)KampalaUganda
| | - Nduwarugira Eric
- Institut des Science Agronomiques du Burundi (ISABU)BujumburaBurundi
| | | | | | - Symon M. Mahungu
- Department of Dairy, Food Science and TechnologyEgerton UniversityNakuruKenya
| |
Collapse
|
8
|
Shi J, Li Z, Jia L, Ma Y, Huang Y, He P, Ran T, Liu W, Zhang W, Cheng Q, Zhang Z, Lei Z. Castration alters the ileum microbiota of Holstein bulls and promotes beef flavor compounds. BMC Genomics 2024; 25:426. [PMID: 38684965 PMCID: PMC11059720 DOI: 10.1186/s12864-024-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND In the beef industry, bull calves are usually castrated to improve flavor and meat quality; however, this can reduce their growth and slaughter performance. The gut microbiota is known to exert a significant influence on growth and slaughter performance. However, there is a paucity of research investigating the impact of castration on gut microbiota composition and its subsequent effects on slaughter performance and meat flavor. RESULT The objective of this study was to examine the processes via which castration hinders slaughter productivity and enhances meat quality. Bull and castrated calves were maintained under the same management conditions, and at slaughter, meat quality was assessed, and ileum and epithelial tissue samples were obtained. The research employed metagenomic sequencing and non-targeted metabolomics techniques to investigate the makeup of the microbiota and identify differential metabolites. The findings of this study revealed the Carcass weight and eye muscle area /carcass weight in the bull group were significantly higher than those in the steer group. There were no significant differences in the length, width, and crypt depth of the ileum villi between the two groups. A total of 53 flavor compounds were identified in the two groups of beef, of which 16 were significantly higher in the steer group than in the bull group, and 5 were significantly higher in the bull group than in the steer group. In addition, bacteria, Eukaryota, and virus species were significantly separated between the two groups. The lipid metabolism pathways of α-linolenic acid, linoleic acid, and unsaturated fatty acids were significantly enriched in the Steers group. Compared with the steer group, the organic system pathway is significantly enriched in the bull group. The study also found that five metabolites (LPC (0:0/20:3), LPC (20:3/0:0), LPE (0:0/22:5), LPE (22:5/0:0), D-Mannosamine), and three species (s_Cloning_vector_Hsp70_LexA-HP1, s_Bacteroides_Coprophilus_CAG: 333, and s_Clostridium_nexile-CAG: 348) interfere with each other and collectively have a positive impact on the flavor compounds of beef. CONCLUSIONS These findings provide a basic understanding that under the same management conditions, castration does indeed reduce the slaughter performance of bulls and improve the flavor of beef. Microorganisms and metabolites contribute to these changes through interactions.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zemin Li
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Cheng
- Gansu Xukang Food Co., Ltd, Pingliang, 744300, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd, Zhangye, 734500, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Luo H, Ou J, Huang J. Reactive Carbonyl Species Scavenger: Epigallocatechin-3-Gallate. Foods 2024; 13:992. [PMID: 38611299 PMCID: PMC11012208 DOI: 10.3390/foods13070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a prominent polyphenol found abundantly in tea, has garnered significant attention for its potential in preventing and ameliorating a wide range of diseases. Its remarkable antioxidant properties and ability to capture reactive carbonyl species make it a key player among tea's polyphenolic components. This paper delves into the synthesis and origins of both EGCG and reactive carbonyl species (RCS), emphasizing the toxicity of RCS in various food sources and their formation during food processing. Understanding EGCG's capability to capture and metabolize RCS is crucial for harnessing its health benefits. Thus, this paper explores the underlying mechanisms of EGCG for RCS inhibition and its role in capturing these compounds to generate EGCG-RCS adducts. And the absorption and metabolism of EGCG-RCS adducts is also discussed.
Collapse
Affiliation(s)
- Haiying Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (H.L.); (J.O.)
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (H.L.); (J.O.)
| | - Junqing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Yang X, Zhang W, Lan Y, Zhang J, Zheng W, Wu J, Zhang C, Dang B. An investigation into the effects of various processing methods on the characteristic compounds of highland barley using a widely targeted metabolomics approach. Food Res Int 2024; 180:114061. [PMID: 38395553 DOI: 10.1016/j.foodres.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
This study explored the influence of diverse processing methods (cooking (CO), extrusion puffing (EX), and steam explosion puffing (SE), stir-frying (SF) and fermentation (FE)) on highland barley (Qingke) chemical composition using UHPLC-MS/MS based widely targeted metabolomics. Overall, 827 metabolites were identified and categorized into 16 classes, encompassing secondary metabolites, amino acids, nucleotides, lipids, etc. There 43, 85, 131, 51 and 98 differential metabolites were respectively selected from five comparative groups (raw materials (RM) vs CO/EX/SE/SF/FE), mainly involved in amino acids, nucleotides, flavonoids, and alkaloids. Compared to other treated groups, FE group possessed the higher content of crude protein (15.12 g/100 g DW), and the relative levels of free amino acids (1.32 %), key polyphenols and arachidonic acid (0.01 %). EX group had the higher content of anthocyanins (4.22 mg/100 g DW), and the relative levels of free amino acids (2.02 %) and key polyphenols. SE group showed the higher relative levels of phenolic acids (0.14 %), flavonoids (0.20 %) and alkaloids (1.17 %), but the lowest free amino acids (0.75 %). Different processing methods all decreased Qingke's antioxidant capacity, with the iron reduction capacity (988.93 μmol/100 g DW) in SE group was the lowest. On the whole, FE and EX were alleged in improving Qingke's nutritional value. CO and SF were also suitable for Qingke processing since fewer differential metabolites were identified in CO vs RM and SF vs RM groups. Differential metabolites were connected to 14 metabolic pathways, with alanine, aspartate, and glutamate metabolism being central. This study contributed theoretical groundwork for the scientific processing and quality control of Qingke products.
Collapse
Affiliation(s)
- Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jing Wu
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Chengping Zhang
- Qinghai Tianyoude Technology Investment Management Group Co., Ltd., Xining 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China.
| |
Collapse
|
11
|
Wang Y, Zhang H, Cui J, Gao S, Bai S, You L, Ji C, Wang S. Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Res Int 2024; 175:113715. [PMID: 38129035 DOI: 10.1016/j.foodres.2023.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The influence of frying times (0, 2, 4, 6, 8, and 10 min) on the continuous changes in the water distribution and the concentrations of key volatile compounds in chicken breast during the frying process were studied. The fried chicken samples could be distinguished by PCA of E-nose and PLS-DA of GC-MS. A total of 40 volatile compounds were identified by GC-MS, and 28 compounds were verified to be the key compounds after further screening by OAVs. The T22 was increased first and then decreased, while the M22 and M23 in fried chicken were considerably decreased and increased with increasing frying time, respectively. The content of the water and the total peak area of LF-NMR in fried chicken samples during the frying process significantly decreased, and the water was transferred from high to low degrees of freedom. In addition, water content, T21, T22, M22 and L* value were positively correlated with most alcohols and aldehydes, and were negatively correlated with pyrazines, while a*, b*, M23 and all amino acids were positively correlated with pyrazines and were negatively correlated with most alcohols and aldehydes. The results may guide the production processes of fried chicken and help produce high-quality chicken products.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Bai
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chen Ji
- College of Agricultural Sciences, Xichang University, XiChang 615000, China
| | - Songlei Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
13
|
Zhu Y, Xie F, Ren J, Jiang F, Zhao N, Du SK. Structural analysis, nutritional evaluation, and flavor characterization of parched rice made from proso millet. Food Chem X 2023; 19:100784. [PMID: 37780251 PMCID: PMC10534107 DOI: 10.1016/j.fochx.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
This study investigated the structure and quality characteristics of hard and crispy parched rice obtained from raw proso millet through steaming, roasting, and milling. Results showed that thermal treatment disrupted the structure of samples and transformed the crystal from A-type in raw proso to V-type in parched rice. Rheological and thermodynamic analyses revealed that thermal treatment reduced the stability of parched rice. Gelatinization tests demonstrated that the parched rice was easier to gelatinize and had a lower viscosity. The digestibility of hard parched rice and crispy parched rice improved, with rapidly digestible starch content increasing by 73.62% and 76.95%, respectively, compared with that of raw proso millet. Headspace solid-phase microextraction/gas chromatography-mass spectrometry results further indicated that thermal treatment enhanced the flavor substances of parched rice. These findings demonstrated the unique properties of parched rice and supported its production and processing as a whole grain.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Fei Xie
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jing Ren
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Fan Jiang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Shuang-kui Du
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing, Yangling, Shaanxi 712100, China
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Li H, Guan H, Zhang X, Xing S, Liu W, Kim IC, Gong H. The Impact of Different Cooking Methods on the Flavor Profile of Fermented Chinese Spicy Cabbage. Molecules 2023; 28:6539. [PMID: 37764317 PMCID: PMC10535354 DOI: 10.3390/molecules28186539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a common traditional fermented vegetable mainly made of Chinese cabbage. In addition to eating raw, boiling and stir-frying are the most common cooking methods for CSC. To identify the impacts of boiling or stir-frying on the quality of CSC, the physicochemical properties, flavor compounds, and sensory properties of CSC were analyzed. A total of 47 volatile flavor compounds (VFCs) were detected by gas chromatography-mass spectrometry. Sulfide was determined as the main flavor compound of CSC, mainly contributed by cabbage, garlic, and onion odors. The content of sulfide decreased significantly after cooking. Nonanal, geranyl acetate, and linalool were newly generated after boiling with odor activity value (OAV) > 1, and contributed fatty, sweet, fruity, and floral odors to BL-CSC. 1-Octen-3-one, 1-octen-3-ol, octanal, nonanal, and (E)-2-nonenal were newly generated after stir-frying with OAV > 1, and contributed mushroom, fatty, and green odors to SF-CSC. Diallyl trisulfide, nonanal, (E)-β-ionone, β-sesquiphellandrene, and (E)-2-decenal were considered as the potential key aroma compounds (KACs) to distinguish the CSCs after different heat treatment. After cooking, the total titratable acidity of CSC increased and the sensory properties changed significantly. This study provides valuable information and guidance on the sensory and flavor changes of thermal processing fermented vegetables.
Collapse
Affiliation(s)
- Huamin Li
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| | - Hui Guan
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Xiru Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Shaohua Xing
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Wenli Liu
- School of Food Engineering, Ludong University, Yantai 264025, China
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - In-Cheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam 534729, Republic of Korea
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Ludong University, Yantai 264025, China
- Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, China
| |
Collapse
|
15
|
Gasiński A, Kawa-Rygielska J. Malting-A method for modifying volatile composition of black, brown and green lentil seeds. PLoS One 2023; 18:e0290616. [PMID: 37656753 PMCID: PMC10473530 DOI: 10.1371/journal.pone.0290616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2023] [Indexed: 09/03/2023] Open
Abstract
Technique of malting legume seeds is not currently widespread among scientists as well as industrial maltsters. However, this method of seed modification is successfully used by humankind for millennia to improve technological parameters, as well as change taste and aroma of various food products. Three lentil cultivars (black, brown and green) were malted (steeped, germinated for three various time periods and then kilned) to produce nine lentil malts. Malting had significant influence on the volatile composition of lentil seeds. Total concentration of volatiles in the green lentils increased and decreased in the case of black and brown lentils after malting procedure. However, most importantly, in every lentil cultivar the contribution of various groups of compounds (such as aldehydes, alcohols, terpenes or ketones) to the overall volatilome was changed due to the malting procedure.
Collapse
Affiliation(s)
- Alan Gasiński
- Faculty of Biotechnology and Food Science, Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Science, Wrocław, Poland
| | - Joanna Kawa-Rygielska
- Faculty of Biotechnology and Food Science, Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Science, Wrocław, Poland
| |
Collapse
|
16
|
Qiao Y, Chen Q, Gou M, Liu Z, Purcaro G, Jin X, Wu X, Lyu J, Bi J. Elucidation of baking induced changes in key odorants of Red Jujube (Ziziphus jujuba Mill. cv.‘Junzao’). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Zhang W, Yang X, Zhang J, Lan Y, Dang B. Study on the Changes in Volatile Flavor Compounds in Whole Highland Barley Flour during Accelerated Storage after Different Processing Methods. Foods 2023; 12:foods12112137. [PMID: 37297381 DOI: 10.3390/foods12112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The effect of heat processing on the flavor characteristics of highland barley flour (HBF) in storage was revealed by analyzing differences in volatile compounds associated with flavor deterioration in HBF using GC-MS identification and relative odor activity values (ROAVs). Hydrocarbons were the most abundant in untreated and extrusion puffed HBFs, while heterocycles were found to be the most abundant in explosion puffed, baked, and fried HBFs. The major contributors to the deterioration of flavor in different HBFs were hexanal, hexanoic acid, 2-pentylfuran, 1-pentanol, pentanal, 1-octen-3-ol, octanal, 2-butyl-2-octanal, and (E,E)-2,4-decadienal. Amino acid and fatty acid metabolism was ascribed to the main formation pathways of these compounds. Baking slowed down the flavor deterioration in HBF, while extrusion puffing accelerated the flavor deterioration in HBF. The screened key compounds could predict the quality of HBF. This study provides a theoretical basis for the regulation of the flavor quality of barley and its products.
Collapse
Affiliation(s)
- Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Yongli Lan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| |
Collapse
|
18
|
Zhang X, Guan H, Zhao Q, Gong H, Wang D, Wang P, Li H, Liu W. Effect of thermal treatment on the flavor quality of Chinese spicy cabbage. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Effect of Cooking Method and Doneness Degree on Volatile Compounds and Taste Substance of Pingliang Red Beef. Foods 2023; 12:foods12030446. [PMID: 36765976 PMCID: PMC9914270 DOI: 10.3390/foods12030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
This study used gas chromatography-ion mobility spectrometry (GC-IMS) and high-performance liquid chromatography (HPLC) methods to examine the impact of cooking methods and doneness on volatile aroma compounds and non-volatile substances (fatty acids, nucleotides, and amino acids) in Pingliang red beef. The flavor substances' topographic fingerprints were established, and 45 compounds were traced to 71 distinct signal peaks. Pingliang red beef's fruity flavor was enhanced thanks to the increased concentration of hexanal, styrene, and 2-butanone that resulted from instant boiling. The levels of 3-methylbutanal, which contributes to the characteristic caramel-chocolate-cheese aroma, peaked at 90 min of boiling and 40 min of roasting. The FFA content was reduced by 28.34% and 27.42%, respectively, after the beef was roasted for 40 min and instantly boiled for 10 s (p > 0.05). The most distinctive feature after 30 min of boiling was the umami, as the highest levels of glutamate (Glu) (p < 0.05) and the highest equivalent umami concentration (EUC) values were obtained through this cooking method. Additionally, adenosine-5'-monophosphate (AMP) and inosine-5'-monophosphate (IMP) decreased with increasing doneness compared to higher doneness, indicating that lower doneness was favorable in enhancing the umami of the beef. In summary, different cooking methods and doneness levels can affect the flavor and taste of Pingliang red beef, but it is not suitable for high-doneness cooking.
Collapse
|
20
|
Zhang Z, Liang Y, Zou L, Xu Y, Li M, Xing B, Zhu M, Hu Y, Ren G, Zhang L, Qin P. Individual or mixing extrusion of Tartary buckwheat and adzuki bean: Effect on quality properties and starch digestibility of instant powder. Front Nutr 2023; 10:1113327. [PMID: 37025611 PMCID: PMC10070833 DOI: 10.3389/fnut.2023.1113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Tartary buckwheat and adzuki bean, which are classified as coarse grain, has attracted increasing attention as potential functional ingredient or food source because of their high levels of bioactive components and various health benefits. Methods This work investigated the effect of two different extrusion modes including individual extrusion and mixing extrusion on the phytochemical compositions, physicochemical properties and in vitro starch digestibility of instant powder which consists mainly of Tartary buckwheat and adzuki bean flour. Results Compared to mixing extrusion, instant powder obtained with individual extrusion retained higher levels of protein, resistant starch, polyphenols, flavonoids and lower gelatinization degree and estimated glycemic index. The α-glucosidase inhibitory activity (35.45%) of the instant powder obtained with individual extrusion was stronger than that obtained with mixing extrusion (26.58%). Lower levels of digestibility (39.65%) and slower digestion rate coefficient (0.25 min-1) were observed in the instant powder obtained with individual extrusion than in mixing extrusion (50.40%, 0.40 min-1) by logarithm-of-slope analysis. Moreover, two extrusion modes had no significant impact on the sensory quality of instant powder. Correlation analysis showed that the flavonoids were significantly correlated with physicochemical properties and starch digestibility of the instant powder. Discussion These findings suggest that the instant powder obtained with individual extrusion could be used as an ideal functional food resource with anti-diabetic potential.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yunan Xu
- Seed Administration Station of Shijiazhuang, Shijiazhuang, China
| | - Mengzhuo Li
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Xing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manli Zhu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guixing Ren
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Guixing Ren,
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan, China
- Lizhen Zhang,
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Peiyou Qin,
| |
Collapse
|
21
|
Understanding the Effects of Self-Induced Anaerobic Fermentation on Coffee Beans Quality: Microbiological, Metabolic, and Sensory Studies. Foods 2022; 12:foods12010037. [PMID: 36613253 PMCID: PMC9818356 DOI: 10.3390/foods12010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, an investigation of the microbial community structure and chemical changes in different layers of a static coffee beans fermentation tank (named self-induced anaerobic fermentation-SIAF) was conducted at different times (24, 48, and 72 h). The microbial taxonomic composition comprised a high prevalence of Enterobacteriaceae and Nectriaceae and low prevalence of lactic acid bacteria and yeast, which greatly differs from the traditional process performed in open tanks. No major variation in bacterial and fungal diversity was observed between the bottom, middle, and top layers of the fermentation tank. On the other hand, the metabolism of these microorganisms varied significantly, showing a higher consumption of pulp sugar and production of metabolites in the bottom and middle layers compared to the top part of the fermentation tank. Extended processes (48 and 72 h) allowed a higher production of key-metabolites during fermentation (e.g., 3-octanol, ethyl acetate, and amyl acetate), accumulation in roasted coffee beans (acetic acid, pyrazine, methyl, 2-propanone, 1-hydroxy), and diversification of sensory profiles of coffee beverages compared to 24 h of fermentation process. In summary, this study demonstrated that SIAF harbored radically different dominant microbial groups compared to traditional coffee processing, and diversification of fermentation time could be an important tool to provide coffee beverages with novel and desirable flavor profiles.
Collapse
|
22
|
Yan Y, Lu J, Nie Y, Li C, Chen S, Xu Y. Characterization of volatile thiols in Chinese liquor (Baijiu) by ultraperformance liquid chromatography-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Front Nutr 2022; 9:1022600. [PMID: 36263305 PMCID: PMC9574356 DOI: 10.3389/fnut.2022.1022600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Volatile thiols give a unique flavor to foods and they have been extensively studied due to their effects on sensory properties. The analytical assay of volatile thiols in food is hindered by the complexity of the matrix, and by both their high reactivity and their typically low concentrations. A new ultraperformance liquid chromatography (UPLC) strategy has been developed for the identification and quantification of volatile thiols in Chinese liquor (Baijiu). 4,4’-Dithiodipyridine reacted rapidly with eight known thiols to form derivatives, which provided a diagnostic fragment ion (m/z 143.5) for tandem mass spectrometry (MS/MS). To screen for new thiols, Baijiu samples were analyzed by means of UPLC–MS/MS screening for compounds exhibiting the diagnostic fragment ion (m/z X→143.5). New peaks with precursor ions of m/z 244, 200 and 214 were detected. Using UPLC with quadrupole-time-of-flight mass spectrometry (UPLC–Q-TOF–MS) and authentic standards, ethyl 2-mercaptoacetate, 1-butanethiol, and 1-pentanethiol were identified in Baijiu for the first time. Commercial Baijiu samples were analyzed with the new method and the distribution of 11 thiols was revealed in different Baijiu aroma-types. The aroma contribution of these thiols was evaluated by their odoractivity values (OAVs), with the result that 7 of 11 volatile thiols had OAVs > 1. In particular, methanethiol, 2-furfurylthiol, and 2-methyl-3-furanthiol had relatively high OAVs, indicating that they contribute significantly to the aroma profile of Baijiu.
Collapse
Affiliation(s)
- Yan Yan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai, China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China,*Correspondence: Shuang Chen,
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Ma Y, Huang H, Zhang Y, Li F, Gan B, Yu Q, Xie J, Chen Y. Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Res Int 2022; 159:111595. [DOI: 10.1016/j.foodres.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
24
|
Modification of physicochemical, functional properties, and digestibility of macronutrients in common bean (Phaseolus vulgaris L.) flours by different thermally treated whole seeds. Food Chem 2022; 382:132570. [PMID: 35245760 DOI: 10.1016/j.foodchem.2022.132570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The utilization of beans (Phaseolus vulgaris L.) is hindered by unpleasant flavors, low macronutrients digestibility, and long cooking time. The pre-thermally treated beans can overcome these limitations. Therefore, the effect of thermal methods (moist-heat and dry-heat) and bean market classes (black, navy, kidney, and pinto) on functional properties and digestibility of bean flours were compared to raw counterparts. Within bean class, moist-heated samples showed increased water-holding capacities of 2.54-2.87 g H2O/g sample and starch/protein digestibility whereas dry-heated samples showed enhanced flavor profile and increased oil-holding capacities of 1.04-1.14 g oil/g sample. Among bean classes, moist-heated kidney bean flour showed the highest water-holding capacity of 2.87 g H2O/g sample and starch/protein digestibility while dry-heated pinto bean flour had the highest oil-holding capacity of 1.14 g oil/g sample. The current result may provide a basis for the development of pre-thermally treated legume flours and facilitate their applications.
Collapse
|
25
|
Oh H, Jo Y, Kim MK. Descriptive Analysis of Seven Leguminous Plants in Korea. Prev Nutr Food Sci 2022; 27:241-247. [PMID: 35919569 PMCID: PMC9309066 DOI: 10.3746/pnf.2022.27.2.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 11/15/2022] Open
Abstract
Legumes are dicotyledonous plants, and they represent the third-largest plant family seeds distributed glo-bally. This study aimed to develop a lexicon for seven well-known legumes: kidney bean, mung bean, chickpea, green kernel black bean, black bean, soybean, and red bean. A sensory lexicon describing the aroma characteristics of legumes was developed, and the intensity of each aroma attribute was evaluated using a 15-point universal scale in SpectrumTM. Nine aroma terms were developed: boiled egg yolk, bean sprout, chicken breast, boiled chestnut, soymilk, green bean, raw peanut shell, soil odor, and mango. The lexicon identified nine descriptions for the sensory characteristics of legumes. Kidney bean, mung bean, and red bean had high green bean, bean sprout, and soil odor aromas, whereas soybean, green kernel black bean, black bean, and chickpea had strong boiled egg yolk, boiled chestnut, and chicken breast aromas. These results can aid food product developers with flavor optimization in product formulation.
Collapse
Affiliation(s)
- Hyeona Oh
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonbuk 54896, Korea
| | - Yongwoo Jo
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonbuk 54896, Korea
| | - Mina K. Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonbuk 54896, Korea
- K-Food Research Center, Jeonbuk National University, Jeonbuk 54896, Korea
| |
Collapse
|
26
|
Bi S, Lao F, Pan X, Shen Q, Liu Y, Wu J. Flavor formation and regulation of peas (Pisum sativum L.) seed milk via enzyme activity inhibition and off-flavor compounds control release. Food Chem 2022; 380:132203. [PMID: 35101790 DOI: 10.1016/j.foodchem.2022.132203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/04/2022]
Abstract
Ascorbic acid, quercetin, epigallocatechin-3-gallate and reduced glutathione as well as high hydrostatic pressure were used to regulate the flavor of milk prepared from pea seeds. Activities of lipoxygenase (LOX) pathway enzymes and fatty acid contents of pea milk were determined. The hexanal content was positively correlated with the activity of LOX-2, but was negatively correlated with the contents of linoleic acid and α-linolenic acid. The intensity of the sensory attribute "fatty" was reduced when epigallocatechin-3-gallate or high hydrostatic pressure were combined with quercetin. Decreases in hexanal, pentanol, and 2-pentylfuran contents may have caused the change in sensory properties of pea milk. Pea protein, sodium sulfate and/or propylene glycol were used to regulate interactions between pea protein and flavor compounds. The hexanal content was reduced by commercial pea protein. Sodium sulfate and propylene glycol individually reduced the hexanal content and together reduced the hexanol content.
Collapse
Affiliation(s)
- Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
27
|
Yao Y, He W, Cai X, Bekhit AEA, Xu B. Sensory, physicochemical and rheological properties of plant‐based milk alternatives made from soybean, peanut, adlay, adzuki bean, oat and buckwheat. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yueying Yao
- Food Science and Technology Program BNU‐HKBU United International College Zhuhai Guangdong 519087 China
- Department of Food Science and Technology National University of Singapore Singapore Singapore
| | - Wenmeng He
- Food Science and Technology Program BNU‐HKBU United International College Zhuhai Guangdong 519087 China
| | - Xifan Cai
- Food Science and Technology Program BNU‐HKBU United International College Zhuhai Guangdong 519087 China
| | | | - Baojun Xu
- Food Science and Technology Program BNU‐HKBU United International College Zhuhai Guangdong 519087 China
| |
Collapse
|
28
|
Desta KT, Yoon H, Shin MJ, Lee S, Wang XH, Choi YM, Yi JY. Variability of Anthocyanin Concentrations, Total Metabolite Contents and Antioxidant Activities in Adzuki Bean Cultivars. Antioxidants (Basel) 2022; 11:1134. [PMID: 35740028 PMCID: PMC9220110 DOI: 10.3390/antiox11061134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, adzuki bean cultivars including Arari, Chilbopat, Geomguseul, and Hongeon were recently cultivated, and the concentrations of seven individual anthocyanins were determined in their seed coats for the first time. Moreover, the variations of total saponin content (TSC), total phenolic content (TPC), 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) between defatted and undefatted extracts of whole seeds, seed coats, and dehulled seeds of each were analyzed. The anthocyanins were detected only in the black seed-coated cultivars and delphinidin-3-O-glucoside was dominant in both Geomguseul (12.46 mg/g) and Chilbopat (10.88 mg/g) followed by delphinidin-3-O-galactoside. TSC and TPC were in the ranges of 16.20−944.78 mg DE/g and 0.80−57.35 mg GAE/g, respectively, and each decreased in the order of seed coats > whole seeds > dehulled seeds regardless of extract type. The antioxidant activities also showed similar patterns of variation. Geomguseul seed coats outweighed the remaining cultivars in terms of TPC and FRAP activity (p < 0.05). Generally, significant variations of metabolite contents and antioxidant activities were observed between cultivars and across their seed parts (p < 0.05). Thence, black seed-coated adzuki beans could be excellent sources of anthocyanins and antioxidants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (K.T.D.); (H.Y.); (M.-J.S.); (S.L.); (X.-H.W.)
| | - Jung-Yoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (K.T.D.); (H.Y.); (M.-J.S.); (S.L.); (X.-H.W.)
| |
Collapse
|
29
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
30
|
Wang J, Li A, Hu J, Zhang B, Liu J, Zhang Y, Wang S. Effect of Frying Process on Nutritional Property, Physicochemical Quality, and in vitro Digestibility of Commercial Instant Noodles. Front Nutr 2022; 9:823432. [PMID: 35252303 PMCID: PMC8891372 DOI: 10.3389/fnut.2022.823432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 01/05/2023] Open
Abstract
The effects of frying process on the nutritional property, physicochemical quality, and in vitro digestibility of instant noodle products are investigated in this study. Scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FT-IR) were also used to explore the changes in the microstructure and protein transformation. Noodles, after the frying process, showed a lower proportion of carbohydrate, protein, fiber, and also total starch and digestible starch, but higher content of fat and resistant starch in the proximate analysis. The frying process was also considered to improve the texture, surface color, and sensory properties of instant noodle products, accompanied by better cooking quality, including shorter cooking time and lower cooking loss during the rehydration. The honeycomb-like, porous, and less uniformed structure, and also the higher levels of β-sheets and β-turns, and the lower proportion of α-helixes of protein structure from fried instant noodle was also observed. The in vitro digestibility of starch and protein were downregulated in the fried group (81.96% and 81.31, respectively, on average) compared with the non-fried group (97.58% and 88.78, respectively, on average). Thus, the frying process lowered the glycemic index and regulated protein secondary structure by inhibiting continuous digesting enzyme activity, generating starch-lipid complexes, and changing the levels of protein transformation. In conclusion, our findings will provide an innovative evaluation of the frying process on instant noodles and even other various starch-based prepared food products.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jiaqiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Bolek S. Effects of roasting on bioavailability and bioactivities of Vigna angularis and potential of coffee-like beverage. J Food Sci 2022; 87:911-918. [PMID: 35088412 DOI: 10.1111/1750-3841.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
Containing similar aroma and flavor profile of coffee after roasting, Vigna angularis have potential to be a caffeine-free coffee-like beverage. Microwave roasting process was conducted in a microwave oven at 600 W for 7, 14, and 21 min at 2-min intervals, and fluidized bed roasting process was conducted in a fluidized bed roaster at 200°C for 9, 18, and 27 min. In order to compare the roasted beans, color, fat, ash, crude protein, crude fiber, antioxidant activity, and total phenolic content measurements were performed. In addition, effects of roasting methods on protein bioavailability and antinutritional factors were investigated. Sensory test was conducted to compare the coffee and coffee-like beverages. Fluidized-bed roasted beans had higher scores than microwave roasted beans in terms of sensory acceptability (p ≤ 0.05). Roasting process increased the total phenolic contents up to 25.32 (mg GAE/g) and the protein bioavailability up to 89.82 ± 0.11%. The results of this study revealed that roasting can be used as a tool to increase nutritive value, bioavailability, antioxidant activity, and potential of coffee-like beverage of V. angularis. PRACTICAL APPLICATION: Since Vigna angularis beans contain similar aroma and flavor profile of the coffee after roasting, they have a potential to be a caffeine-free coffee alternative. Although coffee is very popular in demand, most of the coffee drinkers think that caffeine is very harmful. Having similar sensory scores as coffee beverages in certain roasting degrees, V. angularis beverages could be a delicious caffeine-free alternative.
Collapse
Affiliation(s)
- Sibel Bolek
- Department of Food Technology, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
32
|
Sharanagat VS, Nema PK, Singh L, Kumar A. Formation of acrylamide in microwave‐roasted sorghum and associated dietary risk. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Lochan Singh
- Contract Research Organization NIFTEM Kundli 131028 India
| | - Ankur Kumar
- Department of Basic and Applied Sciences NIFTEM Kundli 131028 India
| |
Collapse
|
33
|
Wang X, Chen L, Ren C, Bai Y, Zhang Y, Zhang D, Li X. Characterization of dry aged lamb eating quality at different aging conditions and cooking methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xu Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Li Chen
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Chi Ren
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Yuqiang Bai
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Yejun Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing P.R. China
| |
Collapse
|
34
|
Wang S, Liu H, Xie T, Zhang N, Sun J, Chen H, Sun B. Study on volatile aroma compounds in donkey broths of different stewing time. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Haoyue Liu
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Tian Xie
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry School of Light Industry Beijing Technology and Business University Beijing China
| |
Collapse
|
35
|
Zeng S, Li M, Li G, Lv W, Liao X, Wang L. Innovative applications, limitations and prospects of energy-carrying infrared radiation, microwave and radio frequency in agricultural products processing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Characterization of Key Odorants in Scallion Pancake and Investigation on Their Changes during Storage. Molecules 2021; 26:molecules26247647. [PMID: 34946729 PMCID: PMC8704002 DOI: 10.3390/molecules26247647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
To characterize key odorants in scallion pancake (SP), volatiles were extracted by solvent extraction-solvent assisted flavor evaporation. A total of 51 odor-active compounds were identified by gas chromatography-olfactometry (GC-O) and chromatography–mass spectrometry (GC-MS). (Z/E)-3,6-Diethyl-1,2,4,5-tetrathiane was detected for the first time in scallion food. Application of aroma extract dilution analysis to extracts showed maltol, methyl propyl disulfide, dipropyl disulfide and 2-pentylfuran had the highest flavor dilution (FD) factor of 4096. Twenty-three odorants with FD factors ≥ 8 were quantitated, and their odor active values (OAVs) were calculated. Ten compounds with OAVs ≥ 1 were determined as the key odorants; a recombinate model prepared from the key odorants, including (E,E)-2,4-decadienal, dimethyl trisulfide, methyl propyl disulfide, hexanal, dipropyl trisulfide, maltol, acetoin, 2-methylnaphthalene, 2-pentylfuran and 2(5H)-furanone, successfully simulated the overall aroma profile of SP. The changes in odorants during storage were investigated further. With increasing concentrations and OAVs during storage, hexanal became an off-flavor compound.
Collapse
|
37
|
Ghnimi H, Ennouri M, Chèné C, Karoui R. A review combining emerging techniques with classical ones for the determination of biscuit quality: advantages and drawbacks. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34875937 DOI: 10.1080/10408398.2021.2012124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The production of biscuit and biscuit-like products has faced many challenges due to changes in consumer behavior and eating habits. Today's consumer is looking for safe products not only with fresh-like and pleasant taste, but also with long shelf life and health benefits. Therefore, the potentiality of the use of healthier fat and the incorporation of natural antioxidant in the formulation of biscuit has interested, recently, the attention of researchers. The determination of the biscuit quality could be performed by several techniques (e.g., physical, chemical, sensory, calorimetry and chromatography). These classical analyses are unfortunately destructive, expensive, polluting and above all very heavy, to implement when many samples must be prepared to be analyzed. Therefore, there is a need to find fast analytical techniques for the determination of the quality of cereal products like biscuits. Emerging techniques such as near infrared (NIR), mid infrared (MIR) and front face fluorescence spectroscopy (FFFS), coupled with chemometric tools have many potential advantages and are introduced, recently, as promising techniques for the assessment of the biscuit quality.
Collapse
Affiliation(s)
- Hayet Ghnimi
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France.,Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.,National Engineering School of Sfax, University of Sfax, LR11ES45, Sfax, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, LR16IO01, Sfax, Tunisia
| | - Christine Chèné
- Tilloy Les Mofflaines, Adrianor, Tilloy-lès-Mofflaines, France
| | - Romdhane Karoui
- INRAE, Junia, Université d'Artois, University of Lille, Université du Littoral Côte d'Opale, Université de Picardie Jules Verne, Université de Liège, Lens, France
| |
Collapse
|
38
|
Schmelter L, Rohm H, Struck S. Gluten-free bakery products: Cookies made from different Vicia faba bean varieties. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Bai-Ngew S, Therdthai N, Zhou W. Microwave vacuum-dried durian flour and its application in biscuits. Heliyon 2021; 7:e08292. [PMID: 34778582 PMCID: PMC8577084 DOI: 10.1016/j.heliyon.2021.e08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 11/01/2022] Open
Abstract
Durian is one of most popular fruits due to its nutritional values and unique flavor. Durian products have been continuously developed to meet market needs. In this study, durian (Durio zibethinus Murr.) cv. 'Monthong' was subjected to microwave vacuum-drying at 1,200 W to produce durian flour for use in biscuits that are normally made from wheat flour. The microwave treatment induced starch gelatinization to a significant extent. As a result, compared to the wheat flour, the durian flour had lower viscosity, pasting temperature, gelatinization temperatures, and enthalpy of gelatinization but higher water absorption capacity. Dough properties including development time, dough stability, time to breakdown and the phase angle tangent of the durian dough were less than those of the wheat dough. The elastic modulus (G') and viscous modulus (G″) of the durian dough were higher than for the wheat dough. All the tested durian doughs had higher G' values than G″, indicating a viscoelastic structure. Substitution of wheat flour with durian flour should not exceed 50% to obtain reasonable dough properties and baking quality of durian biscuits.
Collapse
Affiliation(s)
- S Bai-Ngew
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.,Division of Product Development Technology, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - N Therdthai
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - W Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2 117542, Singapore
| |
Collapse
|
40
|
Casciano F, Nissen L, Gianotti A. Effect of formulations and fermentation processes on volatile organic compounds and prebiotic potential of gluten-free bread fortified by spirulina ( Arthrospira platensis). Food Funct 2021; 12:10226-10238. [PMID: 34542123 DOI: 10.1039/d1fo01239h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gluten free (GF) foods, designed and marketed for the needs of people who are unable to metabolize gluten, in recent years have aroused growing interest that has led to the conquest of important market segments, with a strongly growing trend. Given the low protein content of standard GF flours, it is particularly important to fortify GF foods, and to study the effect that this process exerts on functional and sensorial characteristics. In this work, fortification of GF bakery goods was done with the addition of Arthrospira platensis (spirulina) flour. Two different dough formulations (with and without fortification) were fermented by four different processes, including spontaneous, single strains and sourdough starters. The baked products were then subjected to "consumer's tests". During the process, fermentation performances, prebiotic activity, and the VOC (Volatile Organic Compound) profiles were analyzed and compared through robust multivariate statistics. The results obtained evidenced that fortification led to a product with more abundant (medium organic acids) and exclusive bioactives (thymol, borneol, and nicotinic acid), which were correlated to the prebiotic activity of spirulina breads. This work, for the first time indicates that spirulina can be used to fortify GF bakery, improving also its functional potential.
Collapse
Affiliation(s)
- Flavia Casciano
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Campus of Food Science, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy
| | - Lorenzo Nissen
- CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.
| | - Andrea Gianotti
- DiSTAL - Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Campus of Food Science, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.,CIRI - Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, FC, Italy.
| |
Collapse
|
41
|
Li S, Zhao W, Liu S, Li P, Zhang A, Zhang J, Wang Y, Liu Y, Liu J. Characterization of nutritional properties and aroma compounds in different colored kernel varieties of foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Ma W, Johnson ET. Natural flavour (E,E)-2,4-heptadienal as a potential fumigant for control of Aspergillus flavus in stored peanut seeds: Finding new antifungal agents based on preservative sorbic acid. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Zhang Q, Ma Z, Meng Q, Li D, Ding Z. Key aroma compounds and metabolic profiling of Debaryomyces hansenii L1-1-fermented Flos Sophorae. J Food Biochem 2021; 45:e13711. [PMID: 33772810 DOI: 10.1111/jfbc.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
The extract from Debaryomyces hansenii L1-1-fermented Flos Sophorae has a unique aroma and could be used as a natural spice. The influence of yeast growth and culture medium pH on organoleptic properties of fermented substrates, as well as on the content of volatile aromatic compounds, total sugars, polysaccharides, reducing sugars, total proteins, and amino acids, were analyzed. Metabolic pathways were annotated to compare and contrast key aromatic compounds and metabolic profiles of water and ethanol extracts of D. hansenii L1-1-fermented Flos Sophorae. We found that cells grew most rapidly, pH values changed significantly, and the largest consumption of sugars and amino acids occurred within 48 hr, producing bouquet-like, fruity, and sweet odors, as well as the highest content of volatile aromatic compounds in the extracts. The main aroma metabolites were 2-phenylethanol, linalool, and α-terpineol. The sensory quality of the ethanol extracts was superior to that of the water extracts. Five aromatic compounds, isoamyl alcohol, 2-methylbutan-1-ol, isobutyric acid, 2,3-hexanedione, and 1-hexanol, were positively correlated with the water extract group and negatively correlated with the ethanol extract group, whereas 13 aromatic compounds, styrene, acetophenone, 2-octen-1-ol, linalool, naphthalene, α-terpineol, dihydrocarveol, (-)-myrtenol, methyl anthranilate, eugenol, γ-nonanolactone, jasmone, and β-ionone, showed the converse trend. Although 2-phenylethanol displayed the highest concentration in the extracts, it did not significantly contribute to the separation of ethanol and water extracts. In Flos Sophorae medium, D. hansenii mainly produces 2-phenylethanol from phenylalanine by the Ehrlich reaction, whereas it produces linalool and α-terpineol by the terpenoid backbone and monoterpenoid biosynthetic pathways; the variable contents of proline, arginine, and glutamate could respond to the arginine and proline metabolic pathways. PRACTICAL APPLICATIONS: Flos Sophorae, a collection of buds of Sophora japonica L., is a traditional Chinese medicinal and edible plant for its good aroma, taste, and nutritional value. Debaryomyces hansenii is a common, aroma-producing yeast. D. hansenii L1-1-fermented Flos Sophorae had a unique, bouquet-like aroma, slightly softer than the typical Flos Sophorae-like aroma. This study enriches our understanding of predominant aroma components and determines their contribution to the profiles of Flos Sophorae ferments obtained using D. hansenii L1-1. Researchers and manufacturers specializing in spices making can use these data to improve the aromatic profiles of natural spices produced by microorganisms, thereby obtaining unique aromas.
Collapse
Affiliation(s)
- Qianying Zhang
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, People's Republic of China
| | - Zhongbao Ma
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Qi Meng
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Dongliang Li
- Technical Research Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, People's Republic of China
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|