1
|
Chen Q, Yu L, Zhang W, Cheng S, Cong X, Xu F. Molecular and physiological response of chives (Allium schoenoprasum) under different concentrations of selenium application by transcriptomic, metabolomic, and physiological approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109633. [PMID: 39955822 DOI: 10.1016/j.plaphy.2025.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Selenium (Se) is a vital trace element for human health, and its uneven distribution in soil triggers Se deficiencies in some regions. Se biofortification has been demonstrated to mitigate this issue by producing Se-enriched crops. Chives (Allium schoenoprasum cv. 'sijixiaoxiangcong'), a simple-to-cultivate and fast-growing vegetable, offers a promising Se-accumulation ability. However, the physiological and molecular mechanisms underlying Se responses in chives remain unclear. This study applied sodium selenite at various doses to chives via root irrigation, and integrated strategies including multi-omics were employed to unfold the response mechanism. (1) Physiological data reveal that sodium selenite irrigation adversely affects the height, shoot weight, chlorophyll, and soluble sugar content of chives' aerial parts. However, chives exhibit a remarkable ability to accumulate selenium, reaching up to 40.21 mg kg-1 DW under high Se exposure (160 mg L-1); (2) Transcriptomic analysis revealed significant enrichment of the phenylpropanoid biosynthesis and plant hormone signal transduction pathways under Se treatment. Key DEGs, such as MAPKKK17_18, JAZs, and PCL, were identified as Se response candidates. Our findings show that selenomethionine is the primary form of Se accumulation, and DEGs linked to antioxidant defense and phenylpropanoid biosynthesis are crucial for mitigating Se stress; (3) Importantly, plant hormone signaling plays a central role by regulating phenylpropanoid metabolism and enhancing the antioxidant enzyme system, highlighting its significance in chives' Se tolerance. These results clarify the Se response mechanisms in chives and enable Se-enriched chive cultivation.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China; Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China; Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China
| | - WeiWei Zhang
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China; Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China; National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Li Q, Zhou S. Effect of Paenibacillus favisporus CHP14 inoculation on selenium accumulation and tolerance of Pakchoi ( Brassica chinensis L.) under exogenous selenite treatments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-16. [PMID: 39394951 DOI: 10.1080/15226514.2024.2414212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The effects of Paenibacillus favisporus CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg-1 Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (p < 0.05). At ≥ 4.0 mg·kg-1 Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, China
| | - Shoubiao Zhou
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
3
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
4
|
Ge X, Zhang J, He L, Yu N, Pan C, Chen Y. Integration of metabolomics and transcriptomics analyses reveals the mechanism of nano-selenium treated to activate phenylpropanoid metabolism and enhance the antioxidant activity of peach. J Food Sci 2023; 88:4529-4543. [PMID: 37872835 DOI: 10.1111/1750-3841.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.
Collapse
Affiliation(s)
- Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
5
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
The roles of Salvia miltiorrhiza-derived carbon dots involving in maintaining quality by delaying senescence of postharvest flowering Chinese cabbage. Food Chem 2023; 404:134704. [DOI: 10.1016/j.foodchem.2022.134704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
7
|
Liu Y, Liu R, Deng Y, Zheng M, Yu S, Nie Y, Li JQ, Pan C, Zhou Z, Diao J. Insights into the Mechanism of Flavor Loss in Strawberries Induced by Two Fungicides Integrating Transcriptome and Metabolome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3906-3919. [PMID: 36788782 DOI: 10.1021/acs.jafc.2c08157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Consumers have been complaining about the deterioration of the flavor of strawberries. The use of pesticides could have potential impacts on fruit flavor but the mechanisms are unclear. Here, we spayed boscalid and difenoconazole on the small green fruit of strawberries to investigate their effect on fruit flavor quality and the mechanism. The results indicated that both fungicides decreased the contents of soluble sugar and nutrients but increased acids in mature fruits, changed the levels of volatiles, and caused oxidative damage, which ultimately reduced the flavor quality of strawberries, and the negative effect of boscalid was greater. Combined with transcriptome and metabolome, boscalid altered the genes in sugar-acid metabolism (SUT, SPS, and INV), volatiles (FaQR, FaOMT, FaLOX, and FaAAT), and amino acid synthesis pathways and metabolites. This study elaborated on the effects of fungicides on the flavor quality of strawberries from physiological-biochemical and molecular levels and laid the foundation for improving the strawberry flavor quality.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Meiling Zheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
8
|
Yao L, Liang D, Xia H, Pang Y, Xiao Q, Huang Y, Zhang W, Pu C, Wang J, Lv X. Biostimulants promote the accumulation of carbohydrates and biosynthesis of anthocyanins in 'Yinhongli' plum. FRONTIERS IN PLANT SCIENCE 2023; 13:1074965. [PMID: 36684717 PMCID: PMC9854126 DOI: 10.3389/fpls.2022.1074965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
Biostimulants play an important role in promoting crop growth and development and improving fruit yield, but their influence on fruit quality in horticulture plants is still unclear. In this study, four types of biostimulants, Ainuo (AN), Aigefu (AG), Weiguo (WG), and Guanwu Shuang (GS) were applied to the fruit surface of 'Yinhongli' plum at 60 and 75 days after anthesis to investigate their effect on carbohydrates and biosynthesis of anthocyanins, and also analyze the relationship between sugar and anthocyanin accumulation during fruit color change to ripening. Results showed that all biostimulant treatments significantly improved fruit appearance quality, and increased single fruit weight and TSS/TA. Cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, are the most important anthocyanins in the red skin of the 'Yinhongli' plum, and no anthocyanin was detected in the green skin. In addition, WG and GS treatments significantly increased the expression of structural genes involved in anthocyanin biosynthesis compared with the control, especially chalcone synthase (CHS) and flavonoid 3-O-glucosyltransferase (UFGT) at 95-105 d after anthesis, leading to anthocyanin accumulation 10 days earlier than the control. Correlation analysis showed that there was a significant correlation between total sugar and anthocyanin content during fruit coloring and ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Wang
- *Correspondence: Jin Wang, ; Xiulan Lv,
| | - Xiulan Lv
- *Correspondence: Jin Wang, ; Xiulan Lv,
| |
Collapse
|
9
|
Peng J, Du J, Wuqiang M, Chen T, Shui X, Liao H, Lin X, Zhou K. Transcriptomics-based analysis of the causes of sugar receding in Feizixiao litchi ( Litchi chinensis Sonn.) pulp. FRONTIERS IN PLANT SCIENCE 2022; 13:1083753. [PMID: 36618655 PMCID: PMC9814114 DOI: 10.3389/fpls.2022.1083753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
To investigate the causes of the "sugar receding" in 'Feizixiao' litchi (Litchi chinensis Sonn.) pulp, the main sugar contents and sucrose metabolism enzyme activities were measured in pulp obtained in 2020 and 2021. Pulp RNA obtained in 2020 was extracted at 35, 63, and 69 days after anthesis (DAA) for transcriptome sequencing analysis. The differential expression of genes was verified by real-time PCR for both years. The results showed that after 63 DAA, the contents of soluble sugars and sucrose decreased, and the contents of fructose and glucose increased in both years. The dynamic changes in sucrose metabolism enzyme activities were similar in both years. After 63 DAA, except for acid invertase (AI) in 2021, the activities of other enzymes decreased significantly, and the net activity of sucrose metabolism enzymes showed a strong sucrose cleavage activity. There were 18061, 19575, and 985 differentially expressed genes in 35 d vs. 63 d, 35 d vs. 69 d, and 63 d vs. 69 d, respectively. Ninety-one sugar metabolism genes were screened out, including sucrose synthase (SS), sucrose phosphate synthase (SPS), AI, neutral invertase (NI), hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), phosphofructokinase (PFK), and pyruvate kinase (PK) genes. In 63 d vs. 69 d, seventy-five percent of sucrose metabolism genes were downregulated, seventy-seven percent of genes in glycolysis (EMP) were upregulated and the PFK genes were significantly upregulated. There was a significant linear correlation between the expression of 15 genes detected by real-time PCR and the transcriptome sequencing results (r2020 = 0.9139, r2021 = 0.8912). These results suggest that the upregulated expression of PFK genes at maturity may enhance PFK activity and promote the degradation of soluble sugar in pulp through the EMP pathway, resulting in decreased soluble sugar and sucrose contents and "sugar receding" in pulp. Moreover, the downregulated expression of sucrose metabolism genes in pulp decreased the activities of these enzymes, but the net activity of these enzymes resulted in cleaved sucrose and replenished levels of reducing sugars, resulting in a stable reducing sugar content.
Collapse
Affiliation(s)
- Junjie Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingjia Du
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Ma Wuqiang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Tiantian Chen
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Xian Shui
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| | - Haizhi Liao
- College of Horticulture, Hainan University, Haikou, China
| | - Xiaokai Lin
- College of Horticulture, Hainan University, Haikou, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
10
|
Chen Q, Yu L, Chao W, Xiang J, Yang X, Ye J, Liao X, Zhou X, Rao S, Cheng S, Cong X, Xiao B, Xu F. Comparative physiological and transcriptome analysis reveals the potential mechanism of selenium accumulation and tolerance to selenate toxicity of Broussonetia papyrifera. TREE PHYSIOLOGY 2022; 42:2578-2595. [PMID: 35899437 DOI: 10.1093/treephys/tpac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Broussonetia papyrifera is an important fodder tree that is widely distributed in China. Enhancing the selenium (Se) content in B. papyrifera may help to improve the nutritional value of the feed. In this study, sodium selenite and selenate were foliar applied to investigate the mechanisms of Se tolerance and accumulation in B. papyrifera. The results showed that both Se forms significantly increased the total Se content, and the proportion of organic Se was significantly higher in the sodium selenite treatment than in the control. In addition, the soluble sugar, phenolic acid and flavonoid contents and antioxidant enzyme activities were increased by exogenous Se. The de novo RNA sequencing results showed that 644 and 1804 differentially expressed genes were identified in the selenite and selenate comparison groups, respectively. Pathway enrichment analysis demonstrated that 24 of the 108 pathways were significantly enriched, of which sulfur assimilation genes in the sodium selenite-treated groups were upregulated, whereas Se conjugation and transporter genes, such as SBP1, PCS, GSTs, ABCs and GPX, were significantly induced under selenate treatment. The hub genes identified by weighted-gene co-expression network analysis further confirmed that sulfur assimilation, conjugation and transporter genes might play a vital role in Se assimilation and tolerance. From this, a model of Se metabolism in B. papyrifera was proposed based on the above physiological and RNA sequencing data. This study is the first study to report that B. papyrifera has a strong ability to accumulate and tolerate exogenous Se, thereby providing a foundation for further characterization of the accumulation and tolerance mechanism of B. papyrifera. Our findings can provide technical support for producing Se-enriched fodder.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Juan Xiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shen Rao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Xin Cong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, 445000, China
| | - Bo Xiao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
11
|
Tan C, Zhang L, Duan X, Chai X, Huang R, Kang Y, Yang X. Effects of exogenous sucrose and selenium on plant growth, quality, and sugar metabolism of pea sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2855-2863. [PMID: 34741307 PMCID: PMC9299082 DOI: 10.1002/jsfa.11626] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pea sprouts are considered a healthy food. Sucrose is a key nutritional factor affecting taste and flavor. Meanwhile, selenium (Se) is an essential micronutrient that plays multiple roles in wide variety of physiological processes and improves crop quality and nutritional value. Nonetheless, the effects of the combination of sucrose and Se treatment on growth, quality, and sugar metabolism of pea sprouts have not been explored. RESULTS The results revealed that sucrose at 10 mg L-1 obviously increased fresh weight, vitamin C, soluble protein, soluble sugar, fructose, glucose, and sucrose contents. Se treatments also improved nutritional quality, but higher Se (2.5 mg L-1 ) significantly inhibited the growth of seedlings. Interestingly, the combined application of sucrose (10 mg L-1 ) and Se (1.25 mg L-1 ) could effectively promote vitamin C, sucrose, and fructose contents, especially the Se content, compared with Se application alone. Additionally, there were significant differences in the regulation of sugar metabolism between Se alone and combined application of sucrose and Se. Acid invertase and neutral invertase play a pivotal role in the accumulation of soluble sugar under Se treatments alone, and acid invertase might be the key enzyme to limit sugar accumulation under combined application of sucrose and Se. CONCLUSION The moderate combined application of sucrose (10 mg L-1 ) and Se (1.25 mg L-1 ) more effectively regulated sugar metabolism and improved nutritional quality than Se application alone did. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuntao Tan
- College of HorticultureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Maoming Agriculture & Forestry Technical CollegeGaozhouChina
| | - Liang Zhang
- College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Xirong Chai
- College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yunyan Kang
- College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Xian Yang
- College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
12
|
Exogenous Selenium Treatment Promotes Glucosinolate and Glucoraphanin Accumulation in Broccoli by Activating Their Biosynthesis and Transport Pathways. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplementation using selenium (Se) on plants is an effective and widely used approach. It can not only be converted to more Se rich compounds but promote the accumulation of glucosinolates (GSLs) with anti-carcinogenic properties. However, the molecular mechanism of Se in regulating GSLs synthesis remains unclear. In the present study, we analyzed the effects of Se treatment (50 μM sodium selenite) on GSLs, glucoraphanin (4MSOB), and sulforaphane compounds in broccoli tissues. The transcript levels of genes involved in sulfur absorption and transport, GSLs biosynthesis, translocation, and degradation pathways were also evaluated. The study showed that Se treatment remarkably promoted the accumulation of total sulfur and total Se contents and increased Trp-derived GSLs levels in roots by 2 times. The 4MSOB concentration and sulforaphane content in fresh leaves was increased by 67% and 30% after Se treatment, respectively. For genes expressions, some genes involved in sulfate uptake and transporters, GSLs biosynthesis, and transporters were induced strongly upon Se exposure. Results revealed that exogenous Se treatment promotes the overaccumulation of GSLs and 4MSOB content in broccoli by activating the transcript levels of genes involved in sulfur absorption, GSLs biosynthesis, and translocation pathways.
Collapse
|
13
|
Qiu J, Liu C, Li Y, Xie B, Zhu Z. Effects of postharvest treatment with pullulan, calcium chloride and chitosan on quality and sugar metabolism of
Annona squamosa
during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jing‐Yi Qiu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin P.R. China
- Key Laboratory of Food Quality and Health of Tianjin Tianjin University of Science and Technology Tianjin P.R. China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin P.R. China
| | - Chun‐Yu Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin P.R. China
- Key Laboratory of Food Quality and Health of Tianjin Tianjin University of Science and Technology Tianjin P.R. China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin P.R. China
| | - Ya‐Qi Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin P.R. China
- Key Laboratory of Food Quality and Health of Tianjin Tianjin University of Science and Technology Tianjin P.R. China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin P.R. China
| | - Bei‐Yu Xie
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin P.R. China
| | - Zhen‐Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin P.R. China
- Key Laboratory of Food Quality and Health of Tianjin Tianjin University of Science and Technology Tianjin P.R. China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin P.R. China
| |
Collapse
|
14
|
Ebadi SK, Simon G, Ahmed HM. Quality testing of new Hungarian apple cultivars in normal atmosphere storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gergely Simon
- Fruit Growing Department Faculty of Horticulture Science Szent Istvan University Budapest Hungary
| | - Hiwa M. Ahmed
- Sulaimani Polytechnic University Kurdistan Region Slemani Iraq
- Department of Horticulture University of Raparin Kurdistan Region Ranya Iraq
| |
Collapse
|
15
|
Cao L, Zhu J, Li N. Selenium-agarose hybrid hydrogel as a recyclable natural substrate for selenium-enriched cultivation of mung bean sprouts. Int J Biol Macromol 2022; 194:17-23. [PMID: 34822824 DOI: 10.1016/j.ijbiomac.2021.11.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 01/16/2023]
Abstract
Selenium (Se) is an essential trace element for human beings and animals. Traditional plant Se enrichment technology suffers from selenium pollution. Herein, environmentally friendly Se-agarose (Se-Agar) hybrid hydrogels are prepared by simply mixing agar with different Se species including selenocarrageenan (SeCA), selenite and Se yeast under heating and stirring for 0.5 h without any other reagent. Such Se-Agar hybrid hydrogels with excellent biocompatibility were used as natural substrates for the cultivation of Se-enriched mung bean sprouts. Compared with Se yeast, SeCA and selenite show a better Se enrichment effect on mung bean sprouts. Furthermore, the growth indices including plant weight and plant height of mung bean sprouts were investigated with different concentrations and sources of Se. Notably, the Se-Agar hybrid hydrogels could be easily regenerated and reused for multiple cycles. The results indicated that Se-Agar hybrid hydrogels as recyclable natural substrates offer a simple, sustainable and affordable strategy for plant Se enrichment.
Collapse
Affiliation(s)
- Lu Cao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Liao X, Rao S, Yu T, Zhu Z, Yang X, Xue H, Gou Y, Cheng S, Xu F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage ( Brassica oleracea var. capitata L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1907042. [PMID: 33818289 PMCID: PMC8143226 DOI: 10.1080/15592324.2021.1907042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The application of Se yeast as a Se source to cultivate Se-rich cabbage has a significant effect on cabbage growth and quality indices. Results showed that total plant weight, head weight, and head size in cabbage were notably increased by 48.4%, 88.3%, and 25.4% under 16 mg/kg Se yeast treatment, respectively. Compare with the control, a high proportion of 3874% of Se accumulation in cabbage head was also detected in 16 mg/kg Se yeast treatment. Selenocystine (SeCys2) and Methyl-selenocysteine (MeSeCys) were the main Se speciations in the cabbage head. Application of 8 mg/kg Se yeast improved cabbage quality and antioxidant system indices, including free amino acid, soluble sugar, ascorbic acid, phenolic acid, glucosinolates, and SOD activity, which had 81.6%, 46.5%, 34.9%, 12.3%, 44.8%, 25.2% higher than that of the control, respectively. In summary, considering 8 mg/kg Se yeast as the appropriate level of Se enrichment during cabbage cultivation. These findings enhanced our understanding of the effects of Se yeast on the growth and quality of cabbage and provided new insights into Se-enrichment vegetable cultivation.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000, China
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|