1
|
Zhang L, Ma Y, Hettinga K, Zhou P. Suckling Rat Pup Model: Do Caprine Milk Lactoferrin and Immunoglobulins Have Different Digestion and Absorption Properties from That of Human and Bovine Species? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3069-3079. [PMID: 39873219 DOI: 10.1021/acs.jafc.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine. For absorption, caprine Igs could be absorbed intact, which was similar to human and bovine Igs, whereas caprine LTF fragments were found in jejunum but not in plasma of rat pups. This is similar to bovine LTF but differed from human LTF as human LTF could be absorbed intact in plasma of rat pups at 20 min. In addition, the absorption rate of peptides and amino acids from caprine milk serum was similar to that of human milk serum, which was higher than that from bovine milk serum. This study aimed to enhance our understanding of the differences in bioavailability of LTF and Igs derived from caprine, human milk, and bovine milk, thereby offering guidance for selecting protein sources for premature infants.
Collapse
Affiliation(s)
- Lina Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kasper Hettinga
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Food Quality & Design Group, Wageningen University, Wageningen 6708WG, The Netherlands
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Wan L, Tu W, Zhang J, Yang J, Wang X, He J, Man C, Zhao Q, Zhao F, Jiang Y. Differences in storage stability of cow's milk-based and goat's milk-based infant formulas. Food Chem X 2025; 26:102275. [PMID: 40034977 PMCID: PMC11872613 DOI: 10.1016/j.fochx.2025.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
Goat's milk-based infant formula (YIF) has the advantages of high nutritional value and hypoallergenicity, and fewer studies have been conducted on YIF. Therefore, this study examined the changes in physicochemical and functional properties of cow's milk-based infant formula (ZIF) and YIF during 6 months of storage at 25 °C, 37 °C, and 50 °C, respectively. The results showed that YIF had higher pH (7.26), wettability, protein oxidation, good wettability, and lower lactose crystallinity and lipid oxidation compared to ZIF. Further analysis revealed that the higher pH significantly accelerated the rate of the Maillard Reaction (MR), resulting in significantly higher browning of YIF than ZIF, and this difference was statistically significant (p < 0.05). This is one of the reasons for the decrease in solubility of YIF. This paper explores the differences in storage stability of ZIF and YIF and provides theoretical guidance for the selection of milk-based ingredients.
Collapse
Affiliation(s)
- Longyu Wan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wen Tu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayue Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Wang
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China
| |
Collapse
|
3
|
Zhang T, Liu Y, Cao J, Jiang L, Lin K, Wang P, Ren F, Yi H. Milk serum peptidomics revealed the age gelation of direct UHT milk. Food Chem 2024; 456:140012. [PMID: 38876066 DOI: 10.1016/j.foodchem.2024.140012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Age gelation is undesirable for direct UHT (dUHT) milk, which is closely related to protein hydrolysis. However, little information is available for the role of serum peptides during the age gelation. In this study, the composition and protein morphology of serum phase were characterized by RP-HPLC, ICP-MS and TEM. The results showed significant increases in soluble proteins, free amino acids, calcium, and phosphorus from casein micelles, indicating protein hydrolysis and peptide release into the serum phase. 23,466 peptides derived from caseins and other proteins were identified in serum phase by peptidomics. The serum peptide profiles of age gelation milk changed dramatically. Peptide fingerprinting revealed that plasmin and cathepsin contributed to the protein hydrolysis during age gelation, with a significant increase in their activity observed. 23 characteristic peptides were ultimately selected as potential indicators for age gelation. These findings provide new insights into the age gelation of UHT milk.
Collapse
Affiliation(s)
- Tai Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Jiayuan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Lu Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
4
|
McCarthy EK, O’Callaghan TF. Bovine lactoferrin and its potential use as a functional ingredient for tackling the global challenge of iron deficiency. Curr Opin Food Sci 2024; 59:101211. [DOI: 10.1016/j.cofs.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Goulding DA, Bonnet N, Horcajada MN, Baruchet M, Bermont F, Hauser J, Macrì S, Pisa E, Nembrini C, Vidal K, O'Brien NM, O'Mahony JA, O'Regan J. The impact of complexation or complex coacervation of lactoferrin and osteopontin on simulated infant gastrointestinal digestion, intestinal inflammation, and in vivo bone development. Food Funct 2024; 15:9928-9940. [PMID: 39259160 DOI: 10.1039/d4fo02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lactoferrin (LF) and osteopontin (OPN) are bioactive milk proteins which can form heteroprotein complexes and complex coacervates. This research studied the effect of LF-OPN complexation and complex coacervation on the simulated infant gastrointestinal digestion of LF with subsequent examination of gut and bone health bioactivities in preclinical models. In an infant digestion model, the proteolytic profile of LF was unaltered by the pre-association of LF and OPN. Gastric proteolysis of LF was increased when the model gastric pH was reduced from 5.3 to 4.0, but less so when complexed with OPN. In a model of intestinal inflammation, undigested (79% inhibition) and gastric digestates (26% inhibition) of LF, but not gastrointestinal digestates, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in intestinal epithelial cells. LF-OPN complexation sustained the inhibitory effect (21-43% of the undigested effect, depending on the type of complex) of LF after gastrointestinal digestion, suggesting that the peptides produced were different. In a neonatal rodent model used to study bone development, coacervating LF and OPN improved bone structures with a significant increase of trabecular proportion (BV/TV increase by 21.7%). This resulted in an 11.3% increase in stiffness of bones. Feeding the LF and OPN proteins in coacervate format also increased the levels of OPN, P1NP and M-CSF in blood, signifying a more pronounced impact on bone development. This research demonstrated that LF-OPN complexation and complex coacervation can delay simulated infant gastrointestinal digestion of LF and protect or improve the bioactivity of the proteins.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| | - Nicolas Bonnet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Marie-Noëlle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Michael Baruchet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Nembrini
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jonathan O'Regan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| |
Collapse
|
6
|
Dyrda-Terniuk T, Pomastowski P. Impact of Ultrafiltration on the Physicochemical Properties of Bovine Lactoferrin: Insights into Molecular Mass, Surface Morphology, and Elemental Composition. J Dairy Sci 2024:S0022-0302(24)01048-8. [PMID: 39098494 DOI: 10.3168/jds.2024-24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
The large-scale isolation of bovine lactoferrin (bLF) typically involves using large amounts of concentrated eluents, which might introduce impurities to the final product. Sometimes, protein pre-concentration is required for the greater accuracy of experimental results. In this research, the supplied bLF sample was subjected to additional ultrafiltration (UF) to eliminate possible small impurities, such as salts and peptides of bLF. Beforehand, the basic characterization of native bLF, including surface-charge properties and the structural sensitivity to the various pH conditions, was performed. The study aimed to evaluate the difference in molecular mass, primary structure, surface morphology, and elemental composition of the protein before and after UF. The research was provided by application of spectroscopic, spectrometric, electrophoretic, and microscopic techniques. The evident changes in the surface morphology of bLF were observed after UF, while the molecular masses of both proteins were comparable. According to MALDI-TOF/MS results, UF had a positive impact on the bLF sample representation, improving the identification parameters, such as sequence coverage and intensity coverage.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Tang J, Boeren S, Wichers HJ, Hettinga KA. Differential effects of heating modes on the immunogenic potential of soy-derived peptides released after in vitro infant digestion. Food Res Int 2024; 186:114348. [PMID: 38729721 DOI: 10.1016/j.foodres.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.
Collapse
Affiliation(s)
- Jiaying Tang
- Food Quality & Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Tang J, Teodorowicz M, Boeren S, Wichers HJ, Hettinga KA. sRAGE-binding and antimicrobial bioactivities of soy and pea protein after heating and in vitro infant digestion. Food Res Int 2024; 183:114224. [PMID: 38760143 DOI: 10.1016/j.foodres.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
During infant formula production, proteins are always heated, potentially affecting their digestibility and the bioactivities of resulting peptides. Although plant proteins are a promising dairy alternative for infant formula, they remain understudied, necessitating further investigations. Therefore, this research aimed to fill this gap by assessing the impact of different heating modes on soy protein (SP) and pea protein (PP), focusing on glycation levels, peptide formation during in vitro infant digestion, and immune protection potential (sRAGE-binding and antimicrobial activities) of the resulting peptides. Consequently, dry heating led to increased glycation and glycated peptide production, particularly with higher glycation in PP than SP. Moreover, PP exhibited an overall stronger sRAGE-binding capacity than SP, regardless of heating and digestion conditions. Regarding antimicrobial activity, both SP and PP-derived peptides displayed reduced effectiveness against Enterobacter cloacae after dry heating. Additionally, Staphylococcus epidermidis was differently inhibited, where PP-derived peptides showed inherent inhibition. The primary determinant of sRAGE-binding and antimicrobial potential in digestion-derived peptides was the protein source. Subsequent bioinformatics analysis predicted 519 and 133 potential antimicrobial peptides in SP and PP, respectively. This study emphasises the importance of protein source for infant formula to ensure infant health.
Collapse
Affiliation(s)
- Jiaying Tang
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Malgorzata Teodorowicz
- Cell Biology & Immunology, Wageningen University & Research, Wageningen, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Miltenburg J, Bastiaan-Net S, Hoppenbrouwers T, Wichers H, Hettinga K. Gastric clot formation and digestion of milk proteins in static in vitro infant gastric digestion models representing different ages. Food Chem 2024; 432:137209. [PMID: 37643515 DOI: 10.1016/j.foodchem.2023.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Gastric digestion conditions change during infancy from newborn towards more adult digestion conditions, which can change gastric digestion kinetics. However, how these changes in gastric digestion conditions during infancy affect milk protein digestion has not been investigated. Therefore, we aimed to investigate milk protein digestion with static in vitro gastric digestion models representing one-, three- and six-month-old infants. With increasing age, gastric clots and soluble proteins were digested more extensively, which may partly be attributed to the looser gastric clot structure. Larger differences with increasing age were found for heated than unheated milk proteins, which might be caused by the presence of denatured whey proteins. Taken together, these findings show that gastric milk protein digestion increases during infancy. These in vitro gastric digestion models could be used to study how milk protein digestion changes with infant age, which may aid in developing infant formulas for different age stages.
Collapse
Affiliation(s)
- Julie Miltenburg
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Tamara Hoppenbrouwers
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Harry Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Yan Z, Liu J, Ren J, Li C, Wang Z, Dai L, Cao S, Zhang R, Liu X. Magnesium ions regulated ovalbumin-lysozyme heteroprotein complex: Aggregation kinetics, thermodynamics and morphologic structure. Int J Biol Macromol 2023; 253:126487. [PMID: 37657312 DOI: 10.1016/j.ijbiomac.2023.126487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study aims to investigate the mechanism of magnesium ions regulated ovalbumin-lysozyme (OVA-LYS) heteroprotein aggregation behavior via aggregation kinetics model, exploring the relationship between differential aggregation behavior and protein molecular structure, intermolecular interactions and thermal stability. Results showed that the aggregation rate (kapp) and maximum absorbance (Amax) of the OVA-LYS heteroprotein complex were located between OVA and LYS. Meanwhile, the thermal denaturation temperature (Td) and denaturation enthalpy (ΔH) were between the values of OVA and LYS as well. Compared with OVA, the thermal stability of the OVA-LYS heteroprotein complex increased owing to the electrostatic interactions between OVA and LYS, resulting in slower aggregation rate and lower aggregation degree. Molecular dynamics simulations revealed the molecular conformational changes during OVA-LYS binary protein binding and the stability of the complex conformation. Moreover, MgCl2 weakened the OVA-LYS interactions through Debye shielding while increasing thermal stability, allowing the two proteins to aggregate into amorphous precipitates rather than spherical coacervates. Overall, this study provides information to further understand the regulation mechanism of proteins differential aggregation behavior by ions.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Luyao Dai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China; College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
12
|
Hettinga K, Pellis L, Rombouts W, Du X, Grigorean G, Lönnerdal B. Effect of pH and protein composition on proteolysis of goat milk proteins by pepsin and pancreatin. Food Res Int 2023; 173:113294. [PMID: 37803606 DOI: 10.1016/j.foodres.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 10/08/2023]
Abstract
The roles of protein composition, pH and enzymes in goat milk protein hydrolysis is still unclear and the proteolysis of low abundant goat milk proteins has received limited attention. The aim of this study was to study the impact of protein composition and proteolytic conditions on goat milk protein hydrolysis in a simplified digestion model. Both whole milk and infant formula were hydrolyzed at pH 2 and 4, using pepsin as well as pepsin combined with pancreatin. Intact proteins were separated from digests using spin filters, followed by bottom-up proteomics of the separated proteins. Results show that under all conditions, caseins are hydrolyzed quickly. Goat casein hydrolysis in infant formula was slightly faster than in goat whole milk, possibly due to less casein coagulation during pepsin hydrolysis at both pH 2 and 4. Several low abundant immunoactive goat milk proteins, especially immunoglobulins, GLYCAM-1 and osteopontin, resisted proteolysis more than high abundant proteins, independent of the pH and enzyme used for hydrolysis. Fast hydrolysis of casein and slow hydrolysis of immunoactive proteins may indicate a good balance between protein utilization and protection of the infant by goat milk proteins.
Collapse
Affiliation(s)
- Kasper Hettinga
- Dairy Science and Technology, Food Quality & Design Group, Wageningen University, 6708WG Wageningen, the Netherlands.
| | | | | | - Xiaogu Du
- University of California, Department of Nutrition, Davis, CA 95616, USA
| | | | - Bo Lönnerdal
- University of California, Department of Nutrition, Davis, CA 95616, USA
| |
Collapse
|
13
|
Determination of native lactoferrin and other whey proteins at different pH conditions after UHT using reverse phase HPLC. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
FU J, YANG L, TAN D, LIU L. Iron transport mechanism of lactoferrin and its application in food processing. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Liu YANG
- Shenyang Agricultural University, China
| | | | - Ling LIU
- Shenyang Agricultural University, China
| |
Collapse
|
15
|
Li W, Liu B, Lin Y, Xue P, Lu Y, Song S, Li Y, Szeto IMY, Ren F, Guo H. The application of lactoferrin in infant formula: The past, present and future. Crit Rev Food Sci Nutr 2022; 64:5748-5767. [PMID: 36533432 DOI: 10.1080/10408398.2022.2157792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.
Collapse
Affiliation(s)
- Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Biao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
| | - Yingying Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Peng Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Sijia Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
16
|
Donovan SM, Abrams SA, Azad MB, Belfort MB, Bode L, Carlson SE, Dallas DC, Hettinga K, Järvinen K, Kim JH, Lebrilla CB, McGuire MK, Sela DA, Neu J. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled "exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework". J Pediatr 2022; 255:30-41.e1. [PMID: 36463938 PMCID: PMC10121942 DOI: 10.1016/j.jpeds.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Steven A Abrams
- Department of Pediatrics Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, Kansas University Medical Center and The University of Kansas, Kansas City, KS
| | - David C Dallas
- Department of Nutrition, Oregon State University, Corvallis, OR
| | - Kasper Hettinga
- Department of Food Sciences and Agrotechnology, Wageningen University, Wageningen, Netherlands
| | - Kirsi Järvinen
- Department of Pediatrics, Golisano Children's Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Jae H Kim
- Perinatal Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Amherst, MA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL.
| |
Collapse
|
17
|
Feng Y, Yuan D, Cao C, Kong B, Sun F, Xia X, Liu Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Mohamad N, Azizan NI, Mokhtar NFK, Mustafa S, Mohd Desa MN, Hashim AM. Future perspectives on aptamer for application in food authentication. Anal Biochem 2022; 656:114861. [PMID: 35985482 DOI: 10.1016/j.ab.2022.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Food fraudulence and food contamination are major concerns, particularly among consumers with specific dietary, cultural, lifestyle, and religious requirements. Current food authentication methods have several drawbacks and limitations, necessitating the development of a simpler, more sensitive, and rapid detection approach for food screening analysis, such as an aptamer-based biosensor system. Although the use of aptamer is growing in various fields, aptamer applications for food authentication are still lacking. In this review, we discuss the limitations of existing food authentication technologies and describe the applications of aptamer in food analyses. We also project several potential targets or marker molecules to be targeted in the SELEX process. Finally, this review highlights the drawbacks of current aptamer technologies and outlines the potential route of aptamer selection and applications for successful food authentication. This review provides an overview of the use of aptamer in food research and its potential application as a molecular reporter for rapid detection in food authentication process. Developing databases to store all biochemical profiles of food and applying machine learning algorithms against the biochemical profiles are urged to accelerate the identification of more reliable biomarker molecules as aptamer targets for food authentication.
Collapse
Affiliation(s)
- Nornazliya Mohamad
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Inani Azizan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Sajib M, Trigo JP, Abdollahi M, Undeland I. Pilot-Scale Ensilaging of Herring Filleting Co-Products and Subsequent Separation of Fish Oil and Protein Hydrolysates. FOOD BIOPROCESS TECH 2022; 15:2267-2281. [PMID: 35875173 PMCID: PMC9295090 DOI: 10.1007/s11947-022-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022]
Abstract
In this study, ensilaging of herring (Clupea harengus) filleting co-products was taken from lab-scale to pilot scale (1500 L) while monitoring the protein degree of hydrolysis (DH) and lipid oxidation. Subsequently, the possibility of recovering fish oil and protein hydrolysates using batch centrifugation at different g-forces/times was investigated. Around 38% DH was recorded after 2-day pilot-scale ensilaging of herring co-products at ambient temperature (i.e., ~ 22 °C), which was similar to the DH found in lab-scale (40% after 2 days; 22 °C). The lipid oxidation marker 2-thiobarbituric acid reactive substances (TBARS) reached 20 µmole TBARS/kg silage after 2-day ensilaging. Centrifugation of the silage at 3000-8500 × g for 2-20 min revealed successful separation into fish oil and protein hydrolysates. Heat-treating the silage (85 °C; 30 min) prior to centrifugation resulted in significantly higher oil and hydrolysates recoveries; the same being true for increased g-force. At 8500 × g, the recovery of oil and hydrolysates were 9.7 and 53.0% w/w, respectively, from heat-treated silage, while recoveries were 4.1 and 48.1% w/w, respectively, from non-heat treated silage. At 4500 × g, being a more scalable approach, corresponding numbers were 8.2 and 47.1% (w/w) as well as 2.0 and 40.2% (w/w). The recovered fish oil contained 8% EPA and 11% DHA of total fatty acids. Free fatty acids (FFA), peroxide value (PV), p-anisidine value (p-AV), and total oxidation (TOTOX) values of oils were in the range of 4-7% (FFA), 3.6-3.7 meq/kg oil (PV), 2.5-4.0 (p-AV), and 9.9-11.1 (TOTOX), respectively, which were within the acceptable limits for human consumption specified by the GOED voluntary monograph. The recovered protein hydrolysates contained peptides in the molecular weight range 0.3-6 kDa (~ 37%) and 11-34 kDa (~ 63%). Also, the remaining solids contained 15-17% (w/w) protein, having 44-45% essential amino acids. Overall, the results suggest that herring co-product silage is a valuable source of fish oil and protein hydrolysates, paving the way for ensilaging based-biorefining of herring co-products into multiple products. Supplementary Information The online version contains supplementary material available at 10.1007/s11947-022-02870-9.
Collapse
Affiliation(s)
- Mursalin Sajib
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - João P. Trigo
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Mehdi Abdollahi
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Ingrid Undeland
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
20
|
Liu J, Jiang H, Zhang M, Yang M, Zhang T, Du Z, Xu M, Liu X. Relationship of co-gelation and co-aggregation on egg white ovalbumin-lysozyme heteroprotein complex: Formation and thermodynamics. Food Chem 2022; 388:133030. [PMID: 35483286 DOI: 10.1016/j.foodchem.2022.133030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/26/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to establish binary protein system on egg white ovalbumin (OVA) -lysozyme (LYS), and investigated the relationship between co-aggregation and co-gelation. We focused on the formation of OVA-LYS complex, the typical thermo-dynamically favored coacervation process, in terms of gelling properties, microstructure and thermodynamics. Benefited from synergistic effects during co-gelation, the thermally induced gels of OVA-LYS complex formed at extremely low protein concentration (18 mg/mL) and showed higher storage modulus with increasing LYS concentration. Moreover, the rising particle size, reduced zeta potential, unordered secondary structure and strengthened protein chain were observed with the addition of LYS. Remarkably, the divalent ions enhanced thermodynamic stability of OVA-LYS complex, although the growth of aggregates units were prevented by ions at room temperature. ITC and molecular docking analyses revealed the binding affinity stoichiometry and combination phase, which were closely related to the decrease of minimum energy resulted from the formation of hydrogen bond.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China; China State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
21
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Man Y, Zhou C, Adhikari B, Wang Y, Xu T, Wang B. High voltage electrohydrodynamic atomization of bovine lactoferrin and its encapsulation behaviors in sodium alginate. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Wang L, Wang C, Zhang X, Fan X, Shao X. Effects of different saccharides on the microstructure and functional properties of protein in goat milk during processing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Linlin Wang
- College of Food Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan China
| | - Cunfang Wang
- College of Food Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan China
| | - Xiaoning Zhang
- College of Food Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan China
| | - Xiaoxue Fan
- College of Food Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan China
| | - Xiaoqing Shao
- College of Food Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan China
| |
Collapse
|
24
|
Zhang L, Zhou R, Zhang J, Zhou P. Heat-induced denaturation and bioactivity changes of whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Li H, Zhao T, Li H, Yu J. Effect of Heat Treatment on the Property, Structure, and Aggregation of Skim Milk Proteins. Front Nutr 2021; 8:714869. [PMID: 34604276 PMCID: PMC8485980 DOI: 10.3389/fnut.2021.714869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
To study the mechanism of heat-induced protein aggregates, skim milk was heated at 55, 65, 75, 85, and 95°C for 30 s. Then, the sulfhydryl content, surface hydrophobicity, and secondary structure of heat-treated skim milk were studied. Treating skim milk at different temperatures induced a decrease in sulfhydryl content (75.9% at 95°C) and an increase in surface hydrophobicity (44% at 95°C) with a disrupted secondary structure containing random coil, β-sheet, and β-turn of skim milk proteins. The change in these properties facilitated aggregate formation through disulfide bonds and hydrophobicity interaction. Microstructural observation also showed a higher degree of aggregation when skim milk was heated at 85 and 95°C. The result of two-dimensional polyacrylamide gel electrophoresis demonstrated that the aggregates consisted of a high proportion of κ-casein, β-lactoglobulin, and other whey proteins.
Collapse
Affiliation(s)
- Hongbo Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tingting Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
27
|
Goulding DA, Vidal K, Bovetto L, O'Regan J, O'Brien NM, O'Mahony JA. The impact of thermal processing on the simulated infant gastrointestinal digestion, bactericidal and anti-inflammatory activity of bovine lactoferrin - An in vitro study. Food Chem 2021; 362:130142. [PMID: 34087706 DOI: 10.1016/j.foodchem.2021.130142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Lactoferrin (LF) is a multifunctional glycoprotein which, when thermally processed, undergoes significant physicochemical changes. The link between such changes and the bioactivity of LF is not well characterised and requires much research. In this work, bovine LF solutions (1%, w/v, protein, pH 7) were thermally processed using high temperature short time conditions (72, 80, 85 or 95 °C with 15 s holding times). Following this, it was shown that LF and heat induced LF aggregates were largely resistant to simulated infant gastric, but not intestinal, digestion. Also, the efficacy of LF bactericidal activity, and inhibition of lipopolysaccharide-induced NF-κB activation were negatively impacted by thermal processing. This study confirmed that the efficacy of LF bio-functionalities was affected by the extent of heat-induced changes in protein structure whereby processing conditions of least severity (i.e. pasteurisation) had the least impact on bioactivity.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Karine Vidal
- Nestlé Research, Nestlé Institute of Health Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Nestlé Research, Nestlé Institute of Material Sciences, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Askeaton, Co. Limerick, Ireland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Zhang W, Liu Y, Li Z, Xu S, Hettinga K, Zhou P. Retaining bioactive proteins and extending shelf life of skim milk by microfiltration combined with Ultraviolet-C treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|