1
|
Chatzikonstantinou AV, Bellou MG, Spyrou S, Papanikolaou A, Simos YV, Peschos D, Stamatis H. Enhancement of the biological activity of hydroxytyrosol through its oxidation by laccase from Trametes versicolor. J Biotechnol 2024; 385:30-41. [PMID: 38403132 DOI: 10.1016/j.jbiotec.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The laccase-catalyzed oxidation of hydroxytyrosol (HT) towards the formation of its bioactive oligomer derivatives was investigated. The biocatalytic oligomerization was catalyzed by laccase from Trametes versicolor in aqueous or various water-miscible organic solvents and deep eutectic solvent (DES)-based media. Mass Spectroscopy and Nuclear Magnetic Resonance were used for the characterization of the products. The solvent system used significantly affects the degree of HT oligomerization. The use of 50 % v/v methanol favored the production of the HT dimer, while other organic solvents as well as DESs led to the formation of hydroxytyrosol trimer and other oligomers. In vitro studies showed that the HT dimer exhibits 3- to 4-fold enhanced antibacterial activity against Gram-positive and Gram-negative bacteria compared to the parent compound. Moreover, the ability of HT dimer to inhibit the activity of soybean lipoxygenase and Candida rugosa lipase was 1.5-fold higher than HT, while molecular docking supported these results. Furthermore, HT dimer showed reduced cytotoxicity against HEK293 cells and exhibited a strong ability to inhibit ROS formation. The enhanced bioactivity of HT dimer indicates that this compound could be considered for use in cosmetics, skin-care products, and nutraceuticals.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Myrto G Bellou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Stamatia Spyrou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Angelos Papanikolaou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
2
|
Sakavitsi ME, Breynaert A, Nikou T, Lauwers S, Pieters L, Hermans N, Halabalaki M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022; 12:391. [PMID: 35629895 PMCID: PMC9144922 DOI: 10.3390/metabo12050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/15/2023] Open
Abstract
Hydroxytyrosol (HTyr) and tyrosol (Tyr) are the most well studied phenolic alcohols of olive oil and olive products demonstrating numerous and significant beneficial health effects. However, their activity in the human organism as food bioactives is strongly associated with their bioavailability and metabolism, while manifested through their metabolites. Nevertheless, there are limited studies investigating their biotransformation and mainly catabolism by gut microflora under a holistic interpretation close to the human organism. Thus, in the present study, the GastroIntestinal Dialysis (GIDM)-colon model, a continuous flow in vitro dialysis system mimicking physiological conditions during human gastrointestinal digestion, was used to explore the metabolism of HTyr and Tyr as pure compounds. The GIDM-colon model simulates absorption from the lumen to the mucosa, followed by the colon phase using pooled human fecal suspensions. Samples were collected at different time points and analyzed via LC-Orbitrap MS. An integrated approach combining Multivariate Data Analysis (MVA) and thorough dereplication procedures led to the identification of HTyr and Tyr metabolites in different phases (gastric, small intestine, and colon), yielding also valuable information about metabolites kinetics. To our knowledge, this is the first study reporting full spectrometric data of HTyr and Tyr metabolites along with possible transformation mechanisms in the GI tract.
Collapse
Affiliation(s)
- Maria Eleni Sakavitsi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Stef Lauwers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| |
Collapse
|
3
|
Gkantzou E, Skonta A, Tsakni A, Polydera A, Moschovas D, Spyrou K, Avgeropoulos A, Gournis D, Houhoula D, Stamatis H. 3D printed PLA enzyme microreactors: Characterization and application for the modification of bioactive compounds. J Biotechnol 2022; 350:75-85. [DOI: 10.1016/j.jbiotec.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022]
|
4
|
Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche JA, Marin-Iniesta F, Garcia-Molina F, Garcia-Canovas F, Tudela-Serrano J, Munoz-Munoz J. Enzymatic oxidation of oleuropein and 3-hydroxytyrosol by laccase, peroxidase, and tyrosinase. J Food Biochem 2021; 45:e13803. [PMID: 34219246 DOI: 10.1111/jfbc.13803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
Abstract
The oxidation of oleuropein and 3-hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters Vmax and KM for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position. PRACTICAL APPLICATIONS: One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes.
Collapse
Affiliation(s)
- Jesus Manzano-Nicolas
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Amaury Taboada-Rodriguez
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Antonio Teruel-Puche
- Group of Molecular Interactions in Membranes, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Fulgencio Marin-Iniesta
- Group of research Food Biotechnology-BTA, Department of Food Technology, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco Garcia-Molina
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Tudela-Serrano
- GENZ-Group of research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jose Munoz-Munoz
- Microbial Enzymology Group (MEG), Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|