1
|
Jang YJ, Kim HD, Ye YJ, Kong M, Lim WS, Lee MH. Effects of ultrasound-induced structural modifications on the emulsifying properties of Tenebrio molitor proteins. ULTRASONICS SONOCHEMISTRY 2025; 117:107354. [PMID: 40233461 PMCID: PMC12022699 DOI: 10.1016/j.ultsonch.2025.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Ultrasonication has emerged as a promising technique for modifying physicochemical properties of proteins, enhancing their functionality in food applications. This study evaluated the effects of ultrasonic treatment on the structural and functional properties of mealworm-derived proteins (MPs) and their potential as emulsifiers. Dynamic light scattering revealed a significant reduction in MP particle size from 3464.3 nm (untreated) to 115.5 nm (30 min sonication), along with increased zeta potential, indicating improved colloidal stability. Sonication enhanced oil-holding capacity and solubility, suggesting improved interfacial adsorption and emulsification. Circular dichroism and FT-IR spectroscopy confirmed structural modifications, including increased α-helix content and enhanced hydrogen bonding interactions. Free sulfhydryl content and surface hydrophobicity analyses indicated ultrasound-induced unfolding, exposing functional groups that contribute to emulsifying properties. Sonicated MPs demonstrated superior emulsion stability under varying temperature, pH, and ionic conditions. Furthermore, digestibility analysis showed improved gastric digestion (72.7 % to 82.8 %) and enhanced lipid digestion in the small intestine (36.2 % to 47.9 %), suggesting greater bioavailability. These physicochemical modifications highlight the feasibility of using sonicated MP as natural emulsifiers with enhanced functionality. This study underscores their potential in food formulations, particularly for nutritionally fortified emulsions, contributing to sustainable and functional food ingredient development.
Collapse
Affiliation(s)
- Yun Jae Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyeong Do Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yu Ji Ye
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Woo Su Lim
- SejongBioPharm, Daegot-ro, Gimpo-si, Gyeonggi-do, 10028, Republic of Korea
| | - Min Hyeock Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Lara-Parra AI, Hernández-Hernández AA, Jaguey-Hernández Y, Jiménez-Osorio AS, Castañeda-Ovando A, Aguilar-Arteaga K, Añorve-Morga J. Exploring alternative sources of protein in food: Trends in nutrient and functional features. Food Res Int 2025; 208:116224. [PMID: 40263795 DOI: 10.1016/j.foodres.2025.116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Proteins are essential biomolecules that perform critical roles in various biological processes, such as building and repairing tissues, transporting substances, signaling hormones, and providing protection. Traditional methods of meeting human protein needs, primarily through animal farming, have significant negative impacts on the environment. In many low-income countries, protein requirements often go unmet due to the high costs associated with animal farming. Additionally, the rise in food allergies has become a serious health concern, highlighting the need for alternative protein sources that cater to individuals sensitive to traditional proteins. As the world's population is projected to reach around nine billion by 2050, there are growing concerns that conventional protein sources may not be sufficient to meet the increasing demand. This situation has led to heightened interest in alternative protein sources that can fulfill nutritional needs without the drawbacks associated with traditional meat consumption. This systematic review aims to explore non-traditional dietary protein sources, focusing on their nutritional and some techno-functional characteristics reported. These sources may include a variety of options such as animals (both vertebrates and invertebrates), plants (like leaves, seeds, and legumes), algae, fungi, and by-products from the food industry.
Collapse
Affiliation(s)
- A I Lara-Parra
- Universidad Autónoma del Estado de Hidalgo, Chemistry Department, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - A A Hernández-Hernández
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Francisco I. Madero 42660, Hidalgo, Mexico
| | - Y Jaguey-Hernández
- Universidad Autónoma del Estado de Hidalgo, Institute of Health Sciences, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - A S Jiménez-Osorio
- Universidad Autónoma del Estado de Hidalgo, Institute of Health Sciences, San Agustín Tlaxiaca 42160, Hidalgo, Mexico
| | - A Castañeda-Ovando
- Universidad Autónoma del Estado de Hidalgo, Chemistry Department, Mineral de la Reforma 42184, Hidalgo, Mexico.
| | - K Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Agroindustry Engineering Department, Francisco I. Madero 42660, Hidalgo, Mexico
| | - J Añorve-Morga
- Universidad Autónoma del Estado de Hidalgo, Chemistry Department, Mineral de la Reforma 42184, Hidalgo, Mexico
| |
Collapse
|
3
|
Sun X, He Z, Yang L, Li H. Effect of cooking treatment on protein digestibility, peptide profile and potential bioactive peptides of beef tripe during in vitro gastrointestinal digestion. Food Chem 2025; 470:142720. [PMID: 39742595 DOI: 10.1016/j.foodchem.2024.142720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 01/03/2025]
Abstract
The purpose of this study was to understand the effects of cooking treatment on the protein hydrolysis of beef tripe and the release of potentially bioactive peptides using an in vitro gastrointestinal model. The results showed that digestion promoted the hydrolysis of proteins and release of free amino acids in beef tripe, but cooking treatment significantly reduced them. The sample of the cooked beef tripe after gastrointestinal digestion had the highest antioxidant activity. Peptidomic and in silico analyses of gastrointestinal digesta were performed to identify bioactive antioxidant peptide sequences. A total of 14 peptides were identified, which were confirmed with structural characteristics to exhibit antioxidation effects as well as a range of other biological functions, such as angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. These findings indicate that beef tripe and its digestive products have health-promoting potential, which can be utilized in functional food as ingredients.
Collapse
Affiliation(s)
- Xuelian Sun
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Li Yang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
4
|
Jeong SKC, Jo K, Lee S, Jeon H, Choi YS, Jung S. Classification of frozen-thawed pork loins based on the freezing conditions and thawing losses using the hyperspectral imaging system. Meat Sci 2025; 221:109716. [PMID: 39608344 DOI: 10.1016/j.meatsci.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/13/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
This study investigated the suitability of a hyperspectral imaging (HSI) system for the classification of frozen-thawed pork loins according to their quality properties. The pork loin slices were frozen at -20, -50, and -70 °C for 1, 2, and 3 months (the 9 freezing conditions). After thawing pork loins at 2 °C, the hyperspectral image was obtained. The photomicrographs of the loins showed that the extracellular spaces were the biggest in the loins frozen at -20 °C for 3 months. The denaturation of myofibrillar proteins measured by the intrinsic tryptophan intensity and surface hydrophobicity was higher in the loins frozen at -20 °C than that of loins frozen at -50 and -70 °C for 2 and 3 months (P < 0.05). The highest and lowest thawing loss was observed in loins frozen at -20 °C for 3 months (9.1 %) and at -70 °C for 1 month (3.6 %), respectively. The classification by the HSI system for 10-class (the 9 freezing conditions and the 1 fresh loin) showed that the highest correct classification (CC%) rates were 83.20 % and 81.82 % in the calibration and prediction sets, respectively, when partial least squares discriminant analysis (PLS-DA) with pre-processing by baseline offset and second derivative was used. In addition, 93.36 % and 91.92 % of CC in the calibration and prediction sets, respectively, were found in the classification of 4-class (the 3 thawing losses and the 1 fresh loin) with the PLS-DA and read-once-write-many-columnar. This study demonstrates that the HSI system can be used to present information on the quality of frozen-thawed pork loin.
Collapse
Affiliation(s)
- Seul-Ki-Chan Jeong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Lou Y, Fang X, Yang ZC, Fei JL, Feng YR, Qin Z, Liu HM, Ma YX, Wang XD. Effect of vacuum frying on the structure and bioactivity of proanthocyanidins in Chinese quince (Chaenomeles sinensis Koehne) fruit. Food Chem 2025; 466:142127. [PMID: 39591776 DOI: 10.1016/j.foodchem.2024.142127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The consumption of Chinese quince is hindered by the lack of suitable processing method. Vacuum-frying technology, as an efficient processing method, can help address this issue. However, the effect of vacuum frying on the structure and activity of bioactive components in Chinese quince, such as proanthocyanidins, is currently unknown. In this study, Chinese quince was vacuum fried at 70 °C-100 °C. Proanthocyanidins were extracted, characterized, and analyzed for their bioactivity. Results revealed that increasing the vacuum-frying temperature decreased the total proanthocyanidin content. Vacuum frying reduced samples' degrees of polymerization. Proanthocyanidin extracts vacuum fried at 70 °C exhibited the greatest antioxidant capacity. Proanthocyanidin extracts vacuum fried at 80 °C demonstrated pronounced hypoglycemic potential. These results show that vacuum frying can reduce the degree of polymerization of Chinese quince proanthocyanidins while enhancing their antioxidant activity and retaining their hypoglycemic capacity. This study offers valuable insights for the development of functional foods using Chinese quince.
Collapse
Affiliation(s)
- Yu Lou
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Fang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zi-Cheng Yang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Jia-Lin Fei
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Ru Feng
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
6
|
Wang R, Liu Y, He Y, Feng C, Xia X. Changes in basic composition and in vitro digestive characteristics of pork induced by frozen storage. Front Nutr 2025; 11:1511698. [PMID: 39845923 PMCID: PMC11752999 DOI: 10.3389/fnut.2024.1511698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Frozen pork can reduce the quality of the meat and alter the digestibility and bioavailability of meat proteins in the human body. In this study, we investigated the changes in the basic composition during frozen storage and their effects on the structural properties of digestion products after protein digestion. Methods The impacts of frozen storage at different temperatures (-8, -18, -25, and -40°C) and for different times (1, 3, 6, 9, and 12 months) on the basic components and in vitro digestive characteristics of pork were evaluated. Results The moisture, crude fat, and protein contents decreased with extended storage and increased temperature, whereas muscle juice loss increased (p < 0.05). During in vitro digestion of samples frozen at -8°C for 12 months, trichloroacetic acid (TCA)-soluble peptides were decreased by 25.46% and 14.37% in the gastric and small intestinal phases, respectively, compared with fresh samples. Confocal laser scanning microscope (CLSM) showed that samples stored at -8°C had the largest particle size after digestion. Disruption of protein structure was confirmed by the decrease in α-helix, β-turn, and fluorescence intensity (all p < 0.05) and the increase in β-sheet, random coil, and maximum fluorescence wavelength of the digestion products of samples frozen at -8°C (all p < 0.05). Discussion Therefore, long-term high-temperature frozen storage brought about a significant decline in basic components of muscle and acceleration of loss of protein structural integrity after digestion.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Caiping Feng
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Cha JY, Han J, Heo J, Yu HH, Kim YJ, Jang HW, Kim MR, Choi YS. Variation of volatile compounds and sensory profile for Protaetia brevitarsis larvae fermented with lactic acid bacteria and yeast. Food Chem 2024; 452:139480. [PMID: 38703738 DOI: 10.1016/j.foodchem.2024.139480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to investigate the correlation between the composition of volatile compounds, consumer acceptance, and drivers of (dis)liking of Protaetia brevitarsis larvae fermented using lactic acid bacteria and yeast. Volatile compounds were analyzed using HS-SPME-Arrow-GC-MS, and a sensory evaluation was conducted with 72 consumers. A total of 113 volatile compounds were detected, and principal component analysis indicated that the samples could be divided into three groups. The calculated relative odor activity values (ROAV) revealed the presence of 27 compounds (ROAV >1). Volatile compounds with high ROAV were predominantly found during yeast fermentation. The sensory evaluation results indicated a strong correlation between low levels of off-odor intensity and high odor liking, emphasizing that odor profile had a more direct association with consumer acceptance than odor intensity. These findings suggest that yeast fermentation using volatile compounds, which positively influences consumer acceptance, is appropriate for Protaetia brevitarsis larvae.
Collapse
Affiliation(s)
- Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - JeongAe Heo
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hwan Hee Yu
- Food Standard Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hae Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Mi-Ran Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
8
|
Ayuso P, Quizhpe J, Yepes F, Miranzo D, Avellaneda A, Nieto G, Ros G. Improving the Nutritional Quality of Protein and Microbiota Effects in Additive- and Allergen-Free Cooked Meat Products. Foods 2024; 13:1792. [PMID: 38928734 PMCID: PMC11202710 DOI: 10.3390/foods13121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The primary objective of the meat industry is to enhance the quality and positive attributes of meat products, driven by an increasing consumer demand for healthier, less processed options. One common approach to achieving this goal is the replacement of additives and allergens with natural ingredients. Nevertheless, the nutritional impact of these changes has not been extensively studied. To address these gaps, two new meat products were developed: cooked turkey breast and cooked ham. The products in question exclude additives and allergens and instead incorporate a blend of natural extracts containing vitamin C, chlorogenic acids, hydroxytyrosol, catechins, epicatechins, vinegar, and inulin fibre. The objective of this study was to evaluate the impact of these reformulations on protein quality and gut microbiota. Protein quality was evaluated using the Digestible Indispensable Amino Acid Score (DIAAS) following in vitro digestion. The microbial composition and short-chain fatty acid (SCFA) production were analysed through in vitro colonic fermentations in both normal-weight and obese participants in order to gauge their effect on gut microbiota. The results demonstrated that the reformulation of cooked turkey breast increased its digestibility by 6.4%, while that of cooked ham exhibited a significant 17.9% improvement. Furthermore, protein quality was found to have improved significantly, by 19.5% for cooked turkey breast and 32.9% for cooked ham. Notwithstanding these alterations in protein digestibility, the microbial composition at the phylum and genus levels remained largely unaltered. Nevertheless, total SCFA production was observed to increase in both groups, with a more pronounced effect observed in the normal-weight group. In conclusion, the substitution of artificial additives with natural ingredients in reformulated cooked meat products has resulted in enhanced digestibility, improved protein quality, and increased production of short-chain fatty acids.
Collapse
Affiliation(s)
- Pablo Ayuso
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Jhazmin Quizhpe
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Fani Yepes
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Domingo Miranzo
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Antonio Avellaneda
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain; (P.A.); (J.Q.); (G.N.)
- Cátedra de Seguridad y Sostenibilidad Alimentaria Grupo Fuertes, Universidad de Murcia, 30003 Murcia, Spain (A.A.)
| |
Collapse
|
9
|
Xu X, Li Z, Tang Q, Chen B, Jin H, Yang Y, Shu D, Cai Z, Sheng L. Exploring xylitol as a low-salt alternative for effective inhibition of gelation in frozen egg yolks. Food Chem 2024; 436:137681. [PMID: 37826897 DOI: 10.1016/j.foodchem.2023.137681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Xylitol and NaCl were studied as alternative inhibitors of gelation in frozen egg yolks, considering the current dietary preference for low salt and low sucrose intake. The effects of different ratios of xylitol and NaCl on gelation were investigated. Compared to the control group, all treatment groups showed decreased egg yolk particle size and turbidity, increased solubility, surface hydrophobicity, λmax, and fluorescence intensity, reduced loss of free water, and enhanced yolk fluidity. The addition of xylitol and NaCl effectively prevented ice crystal growth, minimized protein denaturation caused by water loss, and formed complexes with proteins and water lost during freezing, thereby inhibiting the aggregation of protein molecules and the formation of gels. This study presents a novel and healthier strategy for inhibiting gelation of frozen egg yolk using xylitol and NaCl.
Collapse
Affiliation(s)
- Xiaoli Xu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhe Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinyue Tang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dewei Shu
- Zaozhuang Key Laboratory of Egg Nutrition and Health, Zaozhuang Jensur Bio-pharmaceutical Co., Ltd, Shandong 277000, China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
10
|
Zhang ZQ, Ren XR, Geng J, Chen SC, Wang QL, Liu CQ, Xiao JH, Huang DW. Identification, characterization and hypolipidemic effect of novel peptides in protein hydrolysate from Protaetia brevitarsis larvae. Food Res Int 2024; 176:113813. [PMID: 38163717 DOI: 10.1016/j.foodres.2023.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.
Collapse
Affiliation(s)
- Zong-Qi Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xin-Rui Ren
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Si-Cong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing-Lei Wang
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Chun-Qin Liu
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| | - Da-Wei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
11
|
Rodríguez-Rodríguez M, Sánchez-Muros MJ, Vargas-García MDC, Varga AT, Fabrikov D, Barroso FG. Evaluation of In Vitro Protein Hydrolysis in Seven Insects Approved by the EU for Use as a Protein Alternative in Aquaculture. Animals (Basel) 2023; 14:96. [PMID: 38200825 PMCID: PMC10778058 DOI: 10.3390/ani14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that can meet the needs of fish. Insects, due to their high protein content and good amino acid profiles, could be a successful alternative to fishmeal and soybean meal traditionally used in sectors such as aquaculture. In this work, seven species of insects (Hermetia illucens, Tenebrio molitor, Acheta domestica, Alphitobius diaperinus, Gryllodes sigillatus, Gryllus assimilis, and Musca domestica) approved by the European Union (UE) for use as feed for farmed animals (aquaculture, poultry, and pigs) were studied. Their proximate composition, hydrolysis of organic matter (OMd), hydrolysis of crude protein (CPd), degree of hydrolysis (DH/NH2 and DH/100 g DM), and total hydrolysis (TH) were analyzed. The results showed that Tenebrio molitor had digestibility similar to that of fishmeal, while Acheta domestica and Hermetia illucens provided similar digestibility to that of soybean meal. The acid detergent fiber (ADF) data were negatively correlated with all protein digestibility variables. The differences in the degree of hydrolysis (DH) results and the similarity in total hydrolysis (TH) results could indicate the slowing effects of ADF on protein digestibility. Further in vivo studies are needed.
Collapse
Affiliation(s)
- María Rodríguez-Rodríguez
- Department of Biology and Geology, CECOUAL, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain;
| | - María José Sánchez-Muros
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - María del Carmen Vargas-García
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Agnes Timea Varga
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Dmitri Fabrikov
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Fernando G. Barroso
- Department of Biology and Geology, CECOUAL, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain;
| |
Collapse
|
12
|
Choi JS, Kim GH, Kim HE, Kim MJ, Chin KB. Evaluation of Gelation Properties of Salt-Soluble Proteins Extracted from Protaetia brevitarsis Larvae and Tenebrio molitor Larvae and Application to Pork Myofibrillar Protein Gel System. Food Sci Anim Resour 2023; 43:1031-1043. [PMID: 37969320 PMCID: PMC10636214 DOI: 10.5851/kosfa.2023.e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
The purpose of this study was to investigate the functional properties of salt-soluble proteins obtained from Protaetia brevitarsis (PB) and Tenebrio molitor (TM) larvae, the interaction between these proteins and pork myofibrillar protein (MP) in a gel system. The gel properties of salt-soluble protein extracts showed that the PB had a higher viscosity than the TM protein. However, the TM protein had higher gel strength compared with the PB protein. The gelation characteristics of the pork MP gel systems added with lyophilized insect salt-soluble protein powder showed to decrease slightly viscosity compared with MP alone. Adding the TM or PB protein powder did not affect the pork MP's hydrophobicity and sulfhydryl group levels. Furthermore, the protein bands of the MP did not change with the type or amount of insect salt-soluble protein. The cooking yields of the pork MP gels containing PB or TM protein powder were higher than those without insect protein. Regardless of the type of insect salt-soluble protein added, the pork MP's gel strength decreased. Furthermore, as the level of insect powder increased, the surface protein structure became rough and porous. The results demonstrated that proteins extracted from PB and TM larvae interfered with the gelation of pork MP in a gel system.
Collapse
Affiliation(s)
- Ji Seon Choi
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Geon Ho Kim
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Ha Eun Kim
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Min Jae Kim
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|
13
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Level Optimization of Beet Powder and Caramel Color for Beef Color Simulation in Meat Analogs before and after Cooking. Food Sci Anim Resour 2023; 43:889-900. [PMID: 37701740 PMCID: PMC10493565 DOI: 10.5851/kosfa.2023.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In this study, concentration levels of beet powder (BP) and caramel color (CC) were optimized to simulate beef color in meat analogs before and after cooking. The central composite design of response surface methodology (RSM) was used to set the levels of BP and CC, and the CIE L*, CIE a*, and CIE b* were selected as the responses for RSM. After optimization, myoglobin-free beef patties were prepared with three optimized levels of BP and CC. When raw, all the patties had the same color as natural beef; however, CIE L*, CIE a*, and CIE b* were statistically different from those of beef after cooking (p<0.05). Moreover, the use of BP and CC induced "browning" after the cooking process, with no excessive yellow color. Therefore, based on the overall desirability in the color optimization using RSM, the combination of BP (1.32%) and CC (1.08%) with the highest overall desirability can be used to simulate the color change of beef in meat analogs.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Jeong HG, Kim J, Lee S, Jo K, Yong HI, Choi YS, Jung S. Differences in pork myosin solubility and structure with various chloride salts and their property of pork gel. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1065-1080. [PMID: 37969338 PMCID: PMC10640935 DOI: 10.5187/jast.2023.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 11/17/2023]
Abstract
The solubility and structure of myosin and the properties of pork gel with NaCl, KCl, CaCl2, and MgCl2 were investigated. Myofibrillar proteins (MPs) with phosphate were more solubilized with NaCl than with KCl (p < 0.05). CaCl2 and MgCl2 showed lower MP solubilities than those of NaCl and KCl (p < 0.05). The α-helix content of myosin was lower in KCl, CaCl2, and MgCl2 than in NaCl (p < 0.05). The pH of pork batter decreased in the order of KCl, NaCl, MgCl2, and CaCl2 (p < 0.05). The cooking yield of the pork gel manufactured with monovalent salts was higher than that of the pork gel manufactured with divalent salts (p < 0.05). The pork gel manufactured with KCl and MgCl2 showed lower hardness than that of the pork gel manufactured with NaCl. The solubility and structure of myosin were different with the different chloride salts and those led the different quality properties of pork gel. Therefore, the results of this study can be helpful for understanding the quality properties of low-slat meat products manufactured by replacing sodium chloride with different chloride salts.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jake Kim
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
15
|
Lee JH, Kim TK, Kim YJ, Kang MC, Song KM, Kim BK, Choi YS. Structural, physicochemical, and immune-enhancing properties of edible insect protein isolates from Protaetia brevitarsis larvae. Food Chem X 2023; 18:100722. [PMID: 37397222 PMCID: PMC10314139 DOI: 10.1016/j.fochx.2023.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Edible insects are promising future food resources globally. Herein, the structural, physicochemical, and bio-functional properties of edible insect protein isolates (EPIs) extracted from Protaetia brevitarsis larvae were investigated. The results showed that EPIs have a high total essential amino acid content; moreover, β-sheet is the major secondary protein structure. The EPI protein solution was highly soluble and electrically stable and did not aggregate easily. In addition, EPIs exhibited immune-enhancing properties; EPI treatment of macrophages induced the activation of macrophages and consequently promoted the production of pro-inflammatory mediators (NO, TNF-α, and IL-1β). Moreover, macrophage activation of EPIs was confirmed to occur through the MAPK and NF-κB pathways. In conclusion, our results suggest that the isolated P. brevitarsis protein can be fully utilized as a functional food material and alternative protein source in the future food industry.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
16
|
Lee JH, Kim TK, Park SY, Kang MC, Cha JY, Lim MC, Choi YS. Effects of Blanching Methods on Nutritional Properties and Physicochemical Characteristics of Hot-Air Dried Edible Insect Larvae. Food Sci Anim Resour 2023; 43:428-440. [PMID: 37181217 PMCID: PMC10172815 DOI: 10.5851/kosfa.2023.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Global meat consumption is increasing worldwide, however, supply remains lacking. Several alternative protein sources, such as cultured meat, plant-based protein production, and edible insects, have been proposed to overcome this shortage. Interestingly, edible insects are characterized by superior digestive and absorptive qualities that make them the ideal replacement for traditional protein production. This study aims to further the processing ability of insect protein by investigating the effects of various pre-treatment methods, such as blanching (HB), roasting (HR), and superheated steam (HS), on the nutritional properties and physicochemical characteristics of proteins extracted from Hermetia illucens larvae. The drying rate, pH value, color analysis, amino and fatty acid profile, as well as bulk density, shear force, and rehydration ratios of the above pre-treatment methods, were explored. HS was found to have the highest drying rate and pH value analysis showed that HB and HS samples have significantly higher values compared to the other modalities. Raw edible insects had the highest value in the sum of essential amino acid (EAA) and EAA index when compared to EAAs. HB and HS showed significantly lower bulk density results, and HS showed the highest shear force and the highest value in rehydration ratio, regardless of immersion time. Therefore, taking the above results together, it was found that blanching and superheated steam blanching pre-treatment were the most effective methods to improve the processing properties of H. illucens after hot-air drying.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Sun-Young Park
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Min-Cheol Lim
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
17
|
Lee S, Jo K, Jeong HG, Choi YS, Jung S. Changes in beef protein digestibility in an in vitro infant digestion model with prefreezing temperatures and aging periods. Heliyon 2023; 9:e15611. [PMID: 37153398 PMCID: PMC10160746 DOI: 10.1016/j.heliyon.2023.e15611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The protein digestibility of beef at three prefreezing temperatures (freezing at -20 °C, F20; freezing at -50 °C, F50; and freezing at -70 °C, F70) and aging periods (4, 14, and 28 days) was investigated using an in vitro infant digestion model. The increased cathepsin B activity in the frozen-then-aged treatments (P < 0.05) resulted in a higher content of 10% trichloroacetic acid-soluble α-amino groups than in the aged-only group on days 14 and 28 (P < 0.05). F50 had the most α-amino groups in the digesta and digested proteins under 3 kDa on day 28 (P < 0.05), with the disappearance of actin band in the digesta electrophoretogram. The secondary and tertiary structures of myofibrillar proteins revealed that F50 underwent irreversible denaturation (P < 0.05), especially in the myosin fraction, while F20 and F70 showed protein renaturation during aging (P < 0.05). In general, prefreezing at -50 °C then aging can improve the in vitro protein digestibility of beef through freezing-induced structural changes.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
- Corresponding author.
| |
Collapse
|
18
|
Lee S, Jo K, Jeong HG, Jeong SKC, Park JI, Yong HI, Choi YS, Jung S. Higher Protein Digestibility of Chicken Thigh than Breast Muscle in an In Vitro Elderly Digestion Model. Food Sci Anim Resour 2023; 43:305-318. [PMID: 36909852 PMCID: PMC9998189 DOI: 10.5851/kosfa.2022.e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated the protein digestibility of chicken breast and thigh in an in vitro digestion model to determine the better protein sources for the elderly in terms of bioavailability. For this purpose, the biochemical traits of raw muscles and the structural properties of myofibrillar proteins were monitored. The thigh had higher pH, 10% trichloroacetic acid-soluble α-amino groups, and protein carbonyl content than the breast (p<0.05). In the proximate composition, the thigh had higher crude fat and lower crude protein content than the breast (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of myofibrillar proteins showed noticeable differences in the band intensities of tropomyosin α-chain and myosin light chain-3 between the thigh and breast. The intrinsic tryptophan fluorescence intensity of myosin was lower in the thigh than in the breast (p<0.05). Moreover, circular dichroism spectroscopy of myosin revealed that the thigh had higher α-helical and lower β-sheet structures than the breast (p<0.05). The cooked muscles were then chopped and digested in the elderly digestion model. The thigh had more α-amino groups than the breast after both gastric and gastrointestinal digestion (p<0.05). SDS-PAGE analysis of the gastric digesta showed that more bands remained in the digesta of the breast than that of the thigh. The content of proteins less than 3 kDa in the gastrointestinal digesta was also higher in the thigh than in the breast (p<0.05). These results reveal that chicken thigh with higher in vitro protein digestibility is a more appropriate protein source for the elderly than chicken breast.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jung In Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
19
|
Physicochemical properties, texture, and in vitro protein digestibility in high-moisture extrudate with different oil/water ratio. Food Res Int 2023; 163:112286. [PMID: 36596192 DOI: 10.1016/j.foodres.2022.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Oil addition is challenging during high-moisture extrusion due to the negative fiber formation effects. A previous study found that oil-in-water (O/W) emulsions could significantly increase the oil content in high-moisture extrudates, but the molecular mechanism remained unclear. This study aimed to determine O/W emulsion influence on protein physicochemical properties in SPI extrudates during high-moisture extrusion. O/W emulsions were mixed with soy protein isolates (SPI) to prepare extrudates with oil/water ratios of 0/65, 4/61, and 8/57 (w/w). SDS-PAGE and ATR-FTIR analysis showed that higher oil/water ratios enhanced protein aggregation and promoted alteration from β-sheet to random coil in SPI extrudates, which could be correlated to the reduction of protein solubility. The color was altered to lighter and yellow, and hardness, chewiness, and fiber degree decreased with increased oil/water ratios in SPI extrudates. In addition, in vitro digestion analyses showed that higher oil content contributed to improved protein digestibility.
Collapse
|
20
|
Lee JH, Kim TK, Yong HI, Cha JY, Song KM, Lee HG, Je JG, Kang MC, Choi YS. Peptides inhibiting angiotensin-I-converting enzyme: Isolation from flavourzyme hydrolysate of Protaetia brevitarsis larva protein and identification. Food Chem 2023; 399:133897. [DOI: 10.1016/j.foodchem.2022.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
|
21
|
Tavares PPLG, dos Santos Lima M, Pessôa LC, de Andrade Bulos RB, de Oliveira TTB, da Silva Cruz LF, de Jesus Assis D, da Boa Morte ES, Di Mambro Ribeiro CV, de Souza CO. Innovation in Alternative Food Sources: A Review of a Technological State-of-the-Art of Insects in Food Products. Foods 2022; 11:3792. [PMID: 36496600 PMCID: PMC9737383 DOI: 10.3390/foods11233792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Insects present great potential for the food industry due to their easier rearing conditions and high nutritional value, in comparison with traditional livestock. However, there is a lack of evaluation of the technological status of food products developed with edible insects. Therefore, this study aims to analyze the emergent technological and scientific applications of edible insects in the food industry through a prospective study of patent documents and research articles. Espacenet was used as a research tool, applying the terms Insect, Pupa, Larva, or Nymph and the codes A23L33 and A23V2002. A total of 1139 documents were found-341 were related to the study. Orbit® was used to evaluate technological domains and clusters of concepts. Scopus database research was performed to assess the prevalence of insect research, with the term "edible and insect*". The main insects used were silkworms, bees, beetles, mealworms, crickets, and cicadas. Protein isolates were the predominant technology, as they function as an ingredient in food products or supplements. A diverse application possibility for insects was found due to their nutritional composition. The insect market is expected to increase significantly in the next years, representing an opportunity to develop novel high-quality/sustainable products.
Collapse
Affiliation(s)
| | - Matheus dos Santos Lima
- Undergraduate Program in Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| | - Luiggi Cavalcanti Pessôa
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
- Environment Department, Senai Cimatec University Center, Salvador 41650-010, Bahia, Brazil
| | | | | | - Larissa Farias da Silva Cruz
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| | - Denilson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
- School of Exact and Technological Sciences, Salvador University, Salvador 41820-021, Bahia, Brazil
| | - Elba Santos da Boa Morte
- Graduate Program in Food, Nutrition and Health (PPGANS), School of Nutrition, Federal University of Bahia, Salvador 40110-907, Bahia, Brazil
| | - Cláudio Vaz Di Mambro Ribeiro
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
- School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science (PGALI), Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil
| |
Collapse
|
22
|
Li H, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. Ultrasound pretreatment for improving the quality and protein digestibility of stir-frying chicken gizzards. Food Res Int 2022; 161:111782. [DOI: 10.1016/j.foodres.2022.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/04/2022]
|
23
|
Lee S, Jo K, Jeong HG, Choi YS, Kyoung H, Jung S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit Rev Food Sci Nutr 2022; 64:1385-1402. [PMID: 36052640 DOI: 10.1080/10408398.2022.2116557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freezing is commonly used to extend the shelf life of meat and meat products but may impact the overall quality of those products by inducing structural changes in myofibrillar proteins (MPs) through denaturation, chemical modification, and encouraging protein aggregation. This review covers the effect of freezing on the denaturation of MPs in terms of the effects of ice crystallization on solute concentrations, cold denaturation, and protein oxidation. Freezing-induced denaturation of MPs begins with ice crystallization in extracellular spaces and changes in solute concentrations in the unfrozen water fraction. At typical temperatures for freezing meat (lower than -18 °C), cold denaturation of proteins occurs, accompanied by an alteration in their secondary and tertiary structure. Moreover, the disruption of muscle cells triggers the release of cellular enzymes, accelerating protein degradation and oxidation. To minimize severe deterioration during the freezing and frozen storage of meat, there is a vital need to use an appropriate freezing temperature below the glass transition temperature and to avoid temperature fluctuations during storage to prevent recrystallization. Such an understanding of MP denaturation can be applied to determine the optimum freezing conditions for meat products with highly retained sensory, nutritional, and functional qualities.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
24
|
Bas A, El SN. Nutritional evaluation of biscuits enriched with cricket flour (Acheta domesticus). Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Physicochemical characteristics and aroma patterns of oils prepared from edible insects. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Lee S, Choi YS, Jo K, Jeong HG, Yong HI, Kim TK, Jung S. Processing Characteristics of Freeze-Dried Pork Powder for Meat Emulsion Gel. Food Sci Anim Resour 2021; 41:997-1011. [PMID: 34796326 PMCID: PMC8564324 DOI: 10.5851/kosfa.2021.e51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 11/06/2022] Open
Abstract
The processing characteristics of freeze-dried pork powder as raw meat for comminuted meat products were compared with those of freeze-thawed pork. The tertiary structural properties, oxidation, and solubility of proteins in the freeze-dried pork powder were investigated. In addition, the properties of the emulsion gels manufactured with freeze-dried pork powder (GFD) and freeze-thawed pork (GFT) at 1.5% and 2.0% NaCl were evaluated. The surface hydrophobicity and intrinsic tryptophan fluorescence intensity of myofibrillar proteins between the freeze-dried pork powder and freeze-thawed pork were similar. However, freeze-dried pork powder had higher carbonyl compounds and lower solubility of sarcoplasmic and myofibrillar proteins than freeze-thawed pork (p<0.05). GFD had higher cooking loss than GFT in 2.0% NaCl, and lower hardness and a* value of GFD were observed regardless of NaCl level (p<0.05). Moreover, GFD had higher malondialdehyde content than GFT at the two NaCl concentrations (p<0.05). Therefore, our study demonstrated that freeze-dried pork powder has lower functional properties than freeze-thawed pork as raw meat for comminuted meat products.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
28
|
Wang R, Ma Y, Zhang L, Zhang Z, Chi Y, Chi Y. Changes in egg yolk gelation behaviour and mechanisms during freezing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Lee JH, Cha JY, Kim TK, Choi YS, Jang HW. Effects of a defatting process on the thermal stabilities and volatile compound profiles of proteins isolated from Protaetia brevitarsis larvae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, Kim BK, Choi YS. Biological activity and processing technologies of edible insects: a review. Food Sci Biotechnol 2021; 30:1003-1023. [PMID: 34471556 DOI: 10.1007/s10068-021-00942-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
The burgeoning global population growth has raised concerns regarding the expected increase in the demand for food, which could be partially tackled by identifying novel food sources. To this end, edible insects have recently attracted research interest. Several technologies for utilizing edible insect-derived proteins have been introduced; however, research into their functional utilization is insufficient. Herein, we reviewed the relevant literature on the importance of insects as food sources, extraction of edible insects, the nutritional value of insects, biological activities of components, and their applications in food industries. We summarized the studies primarily focused on the functional utilization of edible insects, suggesting that for successful incorporation and growth of edible insects in food and pharmaceutical industries, strategies to improve the extraction methods are required to explore the biological activity of edible insects. Furthermore, the awareness of edible insects with a focus on their allergens warrants consideration.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365 Korea
| |
Collapse
|
31
|
Lee S, Jo K, Jeong HG, Choi YS, Yong HI, Jung S. Understanding protein digestion in infants and the elderly: Current in vitro digestion models. Crit Rev Food Sci Nutr 2021; 63:975-992. [PMID: 34346822 DOI: 10.1080/10408398.2021.1957765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The last decades have witnessed a surge of interest in the fate of dietary proteins during gastrointestinal (GI) digestion. Although several in vitro digestion models are available as alternatives to clinical experiments, most of them focus on the digestive conditions of healthy young adults. This study investigates the static/dynamic models used to simulate digestion in infants and the elderly and considers the related in vivo conditions. The in vitro digestive protocols targeting these two groups are summarized, and the challenges associated with the further development of in vitro digestion models are discussed. Static models rely on several factors (e.g., enzyme concentration, pH, reaction time, and rotation speed) to differentiate digestive conditions depending on age. Dynamic models can more accurately simulate the complex digestion process and allow the inclusion of further parameters (sequential secretion of digestive fluids, gradual changes in pH, peristaltic mixing, GI emptying, and the inoculation of luminal microbiota). In the case of infants, age or growth stage clarification and the differentiation of digestive protocols between full-term and preterm infants are required, whereas protocols dealing with various health statuses are required in the case of the elderly, as this group is prone to oral cavity and GI function deterioration.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Jeong HG, Jung DY, Jo K, Lee S, Choi YS, Yong HI, Jung S. Alternative of Phosphate by Freeze- or Oven-Dried Winter Mushroom Powder in Beef Patty. Food Sci Anim Resour 2021; 41:542-553. [PMID: 34017960 PMCID: PMC8112311 DOI: 10.5851/kosfa.2021.e18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/06/2022] Open
Abstract
This study investigated freeze- or oven-dried winter mushroom powder (FDP or ODP, respectively) as an alternative to phosphate in beef patties. The beef patties were prepared with four treatments: no addition of phosphate and winter mushroom (control), addition of 0.3% sodium pyrophosphate (BP), addition of 1% FDP (BFW), and addition of 1% ODP (BOW). The pH of FDP and ODP was 6.73, and 7.00, respectively. FDP and ODP contained phenolic compound at a level of 3.50 and 5.45 g gallic acid equivalent/kg, respectively. The cooking loss of beef patties was the highest in the control and lowest in BP (p<0.05). BFW had lower cooking loss than the control (p<0.05), and BOW showed similar cooking loss as that of the control (p>0.05). Inhibition of lipid oxidation was found in BP and BOW as compared with control (p<0.05). BFW was similar to the control in terms of the degree of lipid oxidation (p>0.05). BOW showed lower L* and higher a* values than those of the control, BP and BFW (p<0.05). Texture properties such as hardness, springiness, cohesiveness, gumminess, and chewiness were the highest in BP (p<0.05). A slight increase in hardness and springiness was observed in BOW compared to those of the control (p<0.05). The results showed that FDP and ODP did not exhibit all the properties of phosphate in beef patties. Therefore, FDP and ODP can be used for partial substitution of phosphate in beef patties.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Doo Yeon Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
33
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
34
|
Xie Y, Zhu M, Liu H, Fan Z, Zhang Y, Qin X, Liu X. Effects of β-glucan and various thermal processing methods on the in vitro digestion of hulless barley starch. Food Chem 2021; 360:129952. [PMID: 34000632 DOI: 10.1016/j.foodchem.2021.129952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023]
Abstract
This study explored the effects of β-glucan and various processing methods on the digestion of hulless barley starch in vitro. The whole hulless barley showed significantly lower starch digestibility compared to that hydrolyzed by β-glucanase, indicating that β-glucan had inhibitory effects on starch digestion. However, β-glucan slightly accelerated the hydrolysis of extracted starch. Microscope observations of grains and flours revealed that the inhibitory effects of β-glucan benefited from the integral cellular structure of hulless barley. Besides, the hulless barley processed through flaking-roasting and stir-frying exhibited significantly lower starch digestibility (41.5% and 38.9%, respectively) and considerable intact cells and starch granules. The hulless barley processed by steam flash-explosion showed moderate starch digestibility (48.2%), which may be attributed to the encapsulation of starch-protein-β-glucan complexes. This elucidated the possible mechanism of β-glucan limiting the hydrolysis of hulless barley starch and provided useful direction to produce hulless barley products with desirable starch digestibility.
Collapse
Affiliation(s)
- Yong Xie
- School of Food Science, Southwest University, Chongqing 400715, China; School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Miao Zhu
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Haibo Liu
- School of Food Science, Southwest University, Chongqing 400715, China
| | - Zhiping Fan
- Centre for Food and Drug Testing of Yibin City, Yibin 644000, China
| | - Yilin Zhang
- School of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- School of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- School of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Kim TK, Yong HI, Jung S, Sung JM, Jang HW, Choi YS. Physicochemical and textural properties of emulsions prepared from the larvae of the edible insects Tenebrio molitor, Allomyrina dichotoma, and Protaetia brevitarsis seulensis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:417-425. [PMID: 33987615 PMCID: PMC8071746 DOI: 10.5187/jast.2021.e25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022]
Abstract
The use of edible insects to replace meat protein is important to ensure future
global food security. However, processed foods using edible insects require
development to enhance consumer perception. Here, we examined the
physicochemical characteristics and rheological properties of emulsions prepared
from different edible insect larvae. Three edible insect species
(Tenebrio molitor, Allomyrina dichotoma and
Protaetia brevitarsis seulensis) were used to prepare
larval emulsions that were formulated with 65% of insect larvae, 20% of pork
back fat, and 15% ice. The A. dichotoma emulsion had the
highest pH and lightness, redness, and yellowness values, while the T.
molitor emulsion had the lowest pH and lightness, redness, and
yellowness values. The T. molitor emulsion had the highest
hardness, gumminess, chewiness, and apparent viscosity values but the lowest
springiness and cohesiveness values. According to the sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, T.
molitor had the thickest bands, followed by P. brevitarsis
seulensis . The differential scanning calorimetry distributions for
the T. molitor and A. dichotoma emulsions
showed one peak, while that of the P. brevitarsis seulensis
emulsion had two peaks. The collective results suggest that T.
molitor was the most suitable candidate (of the three tested
species) for use as a meat replacement in terms of its physicochemical and
rheological properties. It is important that such properties of insect-based
emulsions are maintained using various technologies.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jung-Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Hae Won Jang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
36
|
Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem 2021; 356:129707. [PMID: 33873143 DOI: 10.1016/j.foodchem.2021.129707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Meat is a valuable protein source with a balanced composition of essential amino acids and various nutrients. This review aims to identify methods to improve digestion of meat proteins, as well as evaluate the digestive characteristics of infants and the elderly. Immature digestive conditions in infants, including a high gastric pH and low protease concentration, can hinder protein digestion, thus resulting in inhibited growth and development. Likewise, gastrointestinal (GI) tract aging and chronic health problems, including tooth loss and atrophic gastritis, can lead to reduction in protein digestion and absorption in the elderly compared with those in young adults. Moderate heating and several non-thermal technologies, such as aging, enzymatic hydrolysis, ultrasound, high-pressure processing, and pulsed electric field can alter protein structure and improve protein digestion in individuals with low digestive capacity.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|