1
|
Botnaru AA, Lupu A, Morariu PC, Pop OL, Nedelcu AH, Morariu BA, Cioancă O, Di Gioia ML, Lupu VV, Avasilcai L, Dragostin OM, Vieriu M, Morariu ID. Balancing Health and Sustainability: Assessing the Benefits of Plant-Based Diets and the Risk of Pesticide Residues. Nutrients 2025; 17:727. [PMID: 40005055 PMCID: PMC11858420 DOI: 10.3390/nu17040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The increased consumption of fruit and vegetables is essential for moving towards a healthier and more sustainable diet. Vegetarian diets are gaining in popularity due to their environmental and health implications; however, there is a need for additional research investigating pesticide residues in these foods. It is increasingly recognized that the global food system must prioritize nutritional quality, health, and environmental impact over quantity. Food contaminants, including pesticides, mycotoxins, and heavy metals, pose a substantial threat to food safety due to their persistent nature and harmful effects. We conducted a literature search utilizing four distinct databases (PubMed, Google Scholar, NIH, ScienceDirect) and several combinations of keywords (pesticides, food, vegetarian diet, toxicity, sustainable, removal). Consequently, we selected recent and relevant studies for the proposed topic. We have incorporated articles that discuss pesticide residues in food items, particularly in plant-based products. This study rigorously analyzes the harmful environmental impacts of pesticides and ultimately provides sustainable solutions for their elimination or reduction, along with environmentally sound alternatives to pesticide use. This study concludes that the transition towards sustainable agriculture and food production is essential for reducing pesticide residues in food, thereby protecting human health, wildlife populations, and the environment. This paper argues for the urgent need to transform global food systems to prioritize health and sustainability.
Collapse
Affiliation(s)
- Alexandra Andreea Botnaru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Paula Cristina Morariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alin Horatiu Nedelcu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Morpho-Functional Science I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Branco Adrian Morariu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
| | - Oana Cioancă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Pharmacognosy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Luisa Di Gioia
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (A.H.N.); (B.A.M.); (V.V.L.)
- Department of Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Avasilcai
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800010 Galati, Romania;
| | - Madalina Vieriu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Analytical Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.B.); (O.C.); (L.A.); (M.V.); (I.D.M.)
- Department of Environmental and Food Chemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
He Z, Li Y, Zhou L, Li R, Zhang Y, Wang Z, Wang M. In Silico, In Vitro, and In Vivo Studies Indicate the Endocrine-Disrupting Effects of Cyproconazole Stereoisomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24228-24236. [PMID: 39465957 DOI: 10.1021/acs.jafc.4c04927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The widespread use of chiral triazole fungicide cyproconazole (CPZ) in agricultural fields has led to frequent detection of CPZ in the environment. The restriction of CPZ in the EU raised wide concerns regarding its potential endocrine-disrupting effects (EDEs). The present study was conducted to evaluate EDEs of CPZ stereoisomers in vitro, in silico, and in vivo. The reporter gene assay indicated that all CPZ stereoisomers were agonists to the human estrogenic receptor α. (2S,3S)-(+)- and (2R,3S)-(-)-CPZ exhibited stronger binding capacities to ERα compared with (2R,3R)-(-)- and (2S,3R)-(+)-CPZ. Our computational studies showed consistent results with reporter gene assay, elucidating the stereoselective binding mode of CPZ to estrogen receptor. In zebrafish embryos, the 96h-lethality of CPZ stereoisomers ordered (2R,3R)-(-)- > (2R,3S)-(-)- > (2S,3S)-(+)- > Rac- > (2S,3R)-(+)-CPZ. Stereoselective developmental toxicity of CPZ was observed while (2R,3S)-(-)-CPZ is the most toxic isomer. The estrogenic hormones were significantly decreased in (2S,3R)-(+)- and (2R,3S)-(-)-CPZ groups and enhanced in (2S,3S)-(+)- and (2R,3R)-(-)-CPZ, along with the gene expression in hypothalamic-pituitary-gonad axis altered. CPZ shows no thyroid hormone activity. These data clarified that CPZ is a new-found endocrine disruptor threatening human health and each stereoisomer of CPZ showed stereoselective EDEs by regulating the nuclear receptor-mediated gene expression.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
3
|
Tian F, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Dissipation behavior and risk assessment of imidacloprid and its metabolites in apple from field to products. CHEMOSPHERE 2024; 359:142309. [PMID: 38735491 DOI: 10.1016/j.chemosphere.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Pesticides play vital roles in controlling pests and boosting crop yields. Imidacloprid is widely used all over the world and may form in agricultural products. The presence of pesticide residues in apples raises serious health concerns. Understanding the residual fate of imidacloprid is critical for food safety and human health. In this study, the dissipation behavior, metabolism, household processing and risk assessment of imidacloprid and its metabolites in apple were investigated from filed to products. Field experiment results suggested that the half-lives of imidacloprid at 5 times the recommended dosage was 1.5 times that of the standard dosage. And the final residues of imidacloprid were less than the established maximum residue limits (MRLs). Clarification and simmering had little effect on the reduction the residues of imidacloprid and its metabolites. The calculated processing factors were lower than 1 for imidacloprid and its metabolites, implying that the residual ratios of imidacloprid and its metabolites in each steps of the food processing were reduced. The risk quotients were <1 for all Chinese people, indicating that acceptable risks associated with dietary exposure to imidacloprid in apple. However, the higher risks were observed in young people than adults, and females faced higher risks than males. Given high residue levels in pomace, imidacloprid and its metabolites should be further studied in commercial byproducts.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China.
| | - Junfeng Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
4
|
Lee H, Cho M, Park M, Kim M, Seo JA, Kim DH, Bae S, Kim MS, Kim JA, Lee JG, Im MH. Effect of rice milling, washing, and cooking on reducing pesticide residues. Food Sci Biotechnol 2024; 33:557-567. [PMID: 38274176 PMCID: PMC10805695 DOI: 10.1007/s10068-023-01345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 01/27/2024] Open
Abstract
The effects of milling, washing, and cooking on etofenprox, flubendiamide, and tebufenozide levels in brown and polished rice were investigated by HPLC using a UV detector. The reduction rates of etofenprox, flubendiamide, and tebufenozide after milling were 68.74-93.16%, 64.49-90.25%, and 69.74-92.58%, respectively, 11.64-41.44%, 31.36-65.37%, and 31.61-73.79%, respectively, after washing brown rice, and 30.85-82.08%, 52.13-83.05%, and 43.04-83.89%, respectively, after washing polished rice. The residue levels of the three pesticides in brown rice decreased after electric and pressure cooking by 56.49 and 54.41%, 75.80 and 73.42%, and 70.01 and 71.27%, respectively, and the corresponding levels in polished rice decreased after electric and pressure cooking by 85.58 and 85.82%, 86.70 and 87.06%, and 89.89 and 89.68%, respectively. In conclusion, various processing methods decrease the residual levels of etofenprox, flubendiamide, and tebufenozide in rice.
Collapse
Affiliation(s)
- Hyesu Lee
- Food Additives and Packaging Division, Ministry of Food and Drug Safety, Cheongju, 28159 Republic of Korea
| | - Mihyun Cho
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Minsoo Park
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Myungheon Kim
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Jung-A. Seo
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Dong Hyun Kim
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Subin Bae
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Myeong Seok Kim
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| | - Jeong Ah Kim
- Residues and Contaminants Standard Division, Ministry of Food and Drug Safety, Cheongju, 28159 Republic of Korea
| | - Joon-Goo Lee
- Department of Food Biotechnology, Dong-A University, Busan, 49315 Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan, 38453 Republic of Korea
| |
Collapse
|
5
|
Medina MB, Maldonado JB, Page LM, Resnik SL, Munitz MS. Pesticides in rice-based products commercialised in Argentina. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023:1-6. [PMID: 37830141 DOI: 10.1080/19393210.2023.2252782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
People with coeliac disease have a limited diet. Therefore, rice-based products are an ideal alternative. Highlighting this import item, an analytical methodology was validated to determine pesticides in rice-based product samples. The precision was satisfactory for all pesticides since the RSD did not exceed 13% in any case. Regarding recovery, the method had values close to 100%. The limit of quantification was established at 10 µg/kg and the expanded uncertainty was less than 20%. After validation, 80 samples of toasts and rice crackers were analysed. All samples were compliant with the national regulations for dichlorvos and tebuconazole. The pesticide that was present in the highest number of samples was pirimiphos - methyl, but all below the maximum residue limit. From all samples analysed, 38 were positive for at least one pesticide and only one contained four pesticides simultaneously: deltamethrin, pirimiphos-methyl, kresoxim-methyl and epoxiconazole.
Collapse
Affiliation(s)
- María Belén Medina
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Julieta Belén Maldonado
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Lucas Matías Page
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Silvia Liliana Resnik
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Argentina
| | - Martín Sebastián Munitz
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| |
Collapse
|
6
|
Zhang M, Pan X, Dong F, Liu N, An X, Wang L, Xu J, Wu X, Zheng Y. Distribution, migration and changes of typical chemical preservatives on orange during storage and processing. Food Chem 2023; 415:135728. [PMID: 36848835 DOI: 10.1016/j.foodchem.2023.135728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
To evaluate the safety of orange treated with preservatives, we analyzed the distribution, migration and changes of the three most common preservatives (prochloraz, imazalil, and thiophanate-methyl) during orange storage and processing. After treatment, preservatives entered orange rapidly within 2 h, and with the greatest levels being in the outer yellow peel, followed by the stem, middle white peel, and finally pulp. The intra-fruit migration ability of the three preservatives correlated inversely with their octanol/water partition coefficients. Residual preservatives and their metabolites in orange pulp were less than 0.84 mg/kg in storage duration. Orange juice and pectin processing could effectively remove the residues, with processing factors (PFs) of 0.159-0.446 and 0.014-0.059. For tangerine peel, however, the process increased the levels of residual preservatives with PFs of 2.964-6.004. Therefore, concern is warranted with regard to the risk of dietary exposure to tangerine peel and essential oil.
Collapse
Affiliation(s)
- Mengna Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Alqahtani D, Alnabati K, Al-Mutairi MA, Alajmi R, Alsaleem T, Almanna S, Alowaifeer AM. The effect of various washing methods on pesticide residues, toxic and essential elements removal in rice. J Food Sci 2023. [PMID: 37191667 DOI: 10.1111/1750-3841.16591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
This study examined the effects of various treatments on removing pesticide residues and toxic elements in rice. In parallel, nutritional elements, magnesium (Mg), potassium (K), and phosphorous (P), were measured to investigate the effect of these washing treatments on the nutritional value of rice. A naturally contaminated rice sample containing five widespread used pesticides (azoxystrobin, buprofezin, carbendazim, and propiconazole) and toxic elements, arsenic (As), cadmium (Cd), and essential elements, was washed using several washing agents, including boiling water, 5% sodium bicarbonate (baking soda), 5% acetic acid (vinegar), 5% citric acid, and 5% sodium chloride (salt). The washing method was chosen based on its availability and widespread usage; soaking for 10 min was assumed to be reasonable. Our results showed that using 5% acetic acid significantly reduced azoxystrobin by 63%, buprofezin by 70%, carbendazim by 75%, and propiconazole by 61%. However, As and Cd were significantly reduced in sodium chloride by 57% and 32%, respectively. Furthermore, a significant reduction in essential nutrient elements was found in Mg (42%), K (37%), and P (23%) when rice was treated with 5% citric acid. Overall, washing agents reduced analytes in the following manners pesticides, toxic elements, and essential elements when using acetic acid, sodium chloride, and citric acid separately.
Collapse
Affiliation(s)
- Dalal Alqahtani
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Khulood Alnabati
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohammed A Al-Mutairi
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Rakan Alajmi
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Taghreed Alsaleem
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Sara Almanna
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah M Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food & Drug Authority (SFDA), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Chang X, Yang M, Li H, Wu J, Zhang J, Yin C, Ma W, Chen H, Zhou F, Lin Y. Cloning of the promoter of rice brown planthopper feeding-inducible gene OsTPS31 and identification of related cis-regulatory elements. PEST MANAGEMENT SCIENCE 2023; 79:1809-1819. [PMID: 36637212 DOI: 10.1002/ps.7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Brown planthopper (BPH; Nilaparvata lugens) is one of the most serious pests of rice in the world. Insect-resistant genetic engineering is a very effective technology to control BPH. The promoters and cis-regulatory elements inducible by plant-feeding insects are critical for genetic engineering of insect-resistant crops. RESULTS In this study, we cloned a promoter Ptps31 and a 7 bp cis-regulatory sequence that up-regulated downstream genes induced by BPH feeding. The promoter of OsTPS31 (Ptps31) unresponsive to physical damage but responsive to BPH feeding was cloned and functionally verified. The results showed that expression of the OsBPH14 gene driven by the promoter region from -510 to -246 bp in rice could significantly improve the resistance to BPH. The promoter region from -376 to -370 bp (TAGTGTC) was identified as a cis-regulatory sequence related to BPH feeding induction of downstream gene expression. CONCLUSION The findings provide a new promoter and a new cis-regulatory sequence tool for the research on and application of rice BPH resistance genes, as well as a new perspective for functional analysis of the OsTPS31 gene. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinlei Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiemin Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Hrynko I, Kaczyński P, Wołejko E, Łozowicka B. Impact of technological processes on tebuconazole reduction in selected cereal species and the primary cereal product, and dietary exposure assessment. Food Chem 2023; 422:136249. [PMID: 37137237 DOI: 10.1016/j.foodchem.2023.136249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Contamination of cereals with tebuconazole (TEB) can affect the dietary risk assessment. This study investigates, for the first time, how mechanical, thermal, physical-chemical, and biochemical processes affect the TEB level in wheat, rye, and barley. The biochemical process of malting was the most effective for tebuconazole reduction (by 86%) in cereals. Thermal processes were also effective, i.e., boiling (70%) and baking (55%). These processes considerably decreased the concentration of tebuconazole, and Procesing Factors (PFs) were from 0.10 to 0.18 (malting), 0.56 to 0.89 (boiling), and 0.44 to 0.45 (baking), respectively. The concentration of TEB was not reduced after the application of mechanical processing. The risk was estimated in dietary exposure assessment on the basis of the highest reported levels of tebuconazole residues bread. At a high level of rye bread consumption, the potential exposure to tebuconazole reached only 3.5% and 2.7% in children and adults, respectively.
Collapse
Affiliation(s)
- Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland
| | - Elżbieta Wołejko
- Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45, 15-351 Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland
| |
Collapse
|
10
|
Li X, Liu C, Liu F, Zhang X, Peng Q, Wu G, Lin J, Zhao Z. Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chem 2023; 403:134386. [DOI: 10.1016/j.foodchem.2022.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
11
|
Reduction in the Residues of Penthiopyrad in Processed Edible Vegetables by Various Soaking Treatments and Health Hazard Evaluation in China. Foods 2023; 12:foods12040892. [PMID: 36832967 PMCID: PMC9957162 DOI: 10.3390/foods12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Tomato and cucumber are two vital edible vegetables that usually appear in people's daily diet. Penthiopyrad is a new type of amide chiral fungicide, which is often used for disease control of vegetables (including tomato and cucumber) due to its wide bactericidal spectrum, low toxicity, good penetration, and strong internal absorption. Extensive application of penthiopyrad may have caused potential pollution in the ecosystem. Different processing methods can remove pesticide residues from vegetables and protect human health. In this study, the penthiopyrad removal efficiency of soaking and peeling from tomatoes and cucumbers was evaluated under different conditions. Among different soaking methods, heated water soaking and water soaking with additives (NaCl, acetic acid, and surfactant) presented a more effective reduction ability than other treatments. Due to the specific physicochemical properties of tomatoes and cucumbers, the ultrasound enhances the removal rate of soaking for tomato samples and inhibits it for cucumber samples. Peeling can remove approximately 90% of penthiopyrad from contaminated tomato and cucumber samples. Enantioselectivity was found only during tomato sauce storage, which may be related to the complex microbial community. Health risk assessment data suggests that tomatoes and cucumbers are safer for consumers after soaking and peeling. The results may provide consumers with some useful information to choose better household processing methods to remove penthiopyrad residues from tomatoes, cucumbers, and other edible vegetables.
Collapse
|
12
|
Yalçın M, Turgut N, Gökbulut C, Mermer S, Sofuoğlu SC, Tari V, Turgut C. Removal of pesticide residues from apple and tomato cuticle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15821-15829. [PMID: 36171324 DOI: 10.1007/s11356-022-23269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues are always an unsolved problem in the world despite all kinds of prevention measures. The present research work is based on a scientific hypothesis, i.e., "The removal of average pesticide residue is inversely proportional to the thickness of cuticle." The effects of boron-containing products and plant-based surfactants were tested for the removal of five pesticides (lambda-cyhalothrin, chlorpyrifos, diflubenzuron, metaflumizone, acetamiprid) on tomatoes and apples. Boron-containing products were able to remove the pesticide residues on average between 58.0 and 72.6% in tomatoes and 33.2-58.8% in an apple. While plant-based surfactants removed residues on average between 58.5 and 66.6% in tomatoes and 41.0-53.2% in an apple. The highest removal rate was 72% with etidot at 1%. The solution of 1% C8-C10 provided 66.6% average removal for tomatoes. Less removal was achieved in apples. For an apple, Log Kow and molecular mass (independent variables) were significant with p < 0.01, and the coefficient of determination (R2) was > 0.87. However, the multiple linear regression analysis for ground colemanite was significant with R2 of 0.96. In tomatoes, neither Log Kow nor molecular mass as significant. The correlation was found between the physical and chemical properties of pesticides, but it is estimated that the thickness of the cuticle is effective in removing pesticides.
Collapse
Affiliation(s)
- Melis Yalçın
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey.
| | - Nalan Turgut
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Cengiz Gökbulut
- Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, Corvallis, OR, 09331, USA
| | - Sait C Sofuoğlu
- Dept. of Environmental Engineering, Izmir Institute of Technology, Gulbahce, Urla, 35430, Izmir, Turkey
| | - Vinaya Tari
- University of Mumbai, Subcentre Ratnagiri, Maharashtra, India
| | - Cafer Turgut
- Department of Plant Protection, Faculty of Agriculture, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| |
Collapse
|
13
|
Towards comprehensive identification of pesticide degradation products following thermal processing below and above 120 °C: A review. Food Chem 2023; 402:134267. [DOI: 10.1016/j.foodchem.2022.134267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
|
14
|
The Effect of Household Food Processing on Pesticide Residues in Oranges ( Citrus sinensis). Foods 2022; 11:foods11233918. [PMID: 36496727 PMCID: PMC9741471 DOI: 10.3390/foods11233918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the effect of various household food-processing methods (washing, peeling, processing into jam and fruit juice, freezing, storage) on pesticide residues (abamectin, buprofezin, ethoxazole, imazalil, and thiophanate-methyl) in oranges was investigated. Residue analyses were performed by quick-easy-cheap-efficient-rugged-safe (QuEChERS) extraction and liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS) analysis. The limit of quantification of the method for each pesticide was 10 µg/kg. Physicochemical properties of the pesticides and the type of the food process had a considerable effect on the fate of pesticide residue. Pesticide residues were mostly dispersed on orange peels and washing with tap water decreased the residue levels by 26-84%. The amount of residue in oranges was reduced by 63-100% during fruit juice processing, while residues were removed by 90-100% after jam processing. Pesticides with a high octanol-water coefficient were absorbed by the wax of the orange peel, therefore they remained on the peel and could not easily be removed by washing. Moreover, pesticides with lower water solubility did not diffuse easily through the fruit juices from the pulp section of the fruit. The processing factor was greater than 1 for the separation of the orange peel and less than 1 for the washing step and jam and fruit juice productions.
Collapse
|
15
|
Subramani T, Ganapathyswamy H, Sampathrajan V, Sundararajan A, Marimuthu M. Effect of processing on selected pesticide residues in cottonseed (
Gossypium
spp.). J Food Saf 2022. [DOI: 10.1111/jfs.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thirukkumar Subramani
- Department of Food Science Amrita School of Agricultural Sciences, Amrita Vishwa vidyapeetham Coimbatore Tamil Nadu India
| | - Hemalatha Ganapathyswamy
- Department of Food Science and Nutrition, Community Science College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Vellaikumar Sampathrajan
- Center of Innovation, Department of Biotechnology, Agricultural College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Amutha Sundararajan
- Department of Food Science and Nutrition, Community Science College and Research Institute Tamil Nadu Agricultural University Madurai Tamil Nadu India
| | - Murugan Marimuthu
- Department of Agricultural Entomology Tamil Nadu Agricultural University Coimbatore Tamil Nadu India
| |
Collapse
|
16
|
Liang Y, Duan J, Gao Q, Zhang Z. Degradation of pesticides in wheat flour during noodle production and storage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1239-1247. [PMID: 35588053 DOI: 10.1080/19440049.2022.2077459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fate of five pesticides comprising triadimefon, imidacloprid, fenitrothion, chlorpyrifos-methyl, and chlorpyrifos in wheat flour during noodle production and accelerated storage was systematically investigated. Pesticide residues were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD) after each processing step and accelerated storage. The results indicated that dough mixing reduced the concentration of five pesticide residues by 23-42%, mainly owing to the increase of moisture content. Dough resting had little effect on the residues of triadimefon, imidacloprid, and fenitrothion, but decreased chlorpyrifos-methyl and chlorpyrifos significantly by 24% and 15%, respectively. The pesticide residues increased by 3% to 69% during the drying step, attributed to the different role played by thermal evaporation or thermal degradation and concentration of the different pesticides. Boiling lowered the pesticide residues significantly by 56% to 74% in both fresh noodles and dried noodles. All the pesticide residues decreased during accelerated storage, especially for fenitrothion, chlorpyrifos-methyl, and chlorpyrifos. The processing factors (PFs) of the five pesticides in the drying step were greater than 1, while the others were all less than 1. The whole process for noodle production was beneficial to reduce the pesticide residues with PFs ranging from 0.15 to 0.35. The PFs of five pesticides in accelerated storage were all below 1.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Jinmiao Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingchao Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Zhiyong Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Duan J, Gao Q, Shi L, Li Y, Zhang Z, Liang Y. Residue changes of five pesticides during the production and storage of rice flour. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:542-550. [PMID: 35061580 DOI: 10.1080/19440049.2021.2020910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The residue changes of five pesticides in samples from different steps of rice flour production and accelerated storage were systematically investigated. Rice flour was produced both by the extrusion process and the drying on roller process. The change of pesticide residues varied in different processing steps and storage time. The water adjusting step had little influence on the pesticide residues. The pesticide residues were decreased significantly in the extruding, soaking, and grinding steps with reduction from 21% to 76%. The drying step increased or decreased the pesticide residues in varying degrees through concentration due to water evaporation and thermal evaporation or thermal degradation. All the pesticide residues decreased during the accelerated storage, especially for methidathion and chlorpyrifos, neither was detected after accelerated stored for 14 days. The processing factors (PFs) for imidacloprid and isocarbophos in the drying step were greater than 1, and the others were all less than 1. The whole drying on roller process had lower PFs than the whole extrusion process, indicated that the drying on roller process had a greater effect on pesticide residues. The PFs of accelerated storage for five pesticides were all below 1. Overall, this study provides important references for monitoring pesticide residues in the processing and storage of rice flour. Moreover, the PFs obtained in this study could be useful in the dietary exposure and risk assessment of pesticides in rice flour.
Collapse
Affiliation(s)
- Jinmiao Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Qingchao Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Lu Shi
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Yahui Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Zhiyong Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Bian C, Luo J, Gao M, Shi X, Li Y, Li B, Tang L. Pydiflumetofen in paddy field environments: Its dissipation dynamics and dietary risk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Jiao Y, Liu C, Feng C, Regenstein JM, Luo Y, Tan Y, Hong H. Bioaccessibility and Intestinal Transport of Deltamethrin in Pacific Oyster ( Magallana Gigas) Using Simulated Digestion/NCM460 Cell Models. Front Nutr 2021; 8:726620. [PMID: 34485369 PMCID: PMC8415909 DOI: 10.3389/fnut.2021.726620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Deltamethrin (DEL) can be introduced into the food chain through bioaccumulation in Pacific oysters, and then potentially threaten human health. The objective of this study was to investigate the bioaccessibility of DEL in oysters with different cooking methods after simulated digestion. DEL content in different tissues of oysters going from high to low were gills, mantle, viscera, and adductor muscle. Bioaccessibility of DEL in oysters decreased after steaming (65%) or roasting (51%) treatments compared with raw oysters (82%), which indicated that roasting can be used as a recommended cooking method for oysters. In the simulated digestion process, the concentration of DEL in the digestive juice and the bioaccessibility of DEL were affected by the pH in the gastric phase. And the transport efficiency of DEL through the monolayer molecular membrane of NCM460 cells ranged from 35 to 45%. These results can help assess the potential harm to consumers of DEL in shellfish. Furthermore, it provides a reference for the impact of lipophilic toxins in seafood.
Collapse
Affiliation(s)
- Yadan Jiao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chune Liu
- Institute of Yantai, China Agricultural University, Yantai, Shandong, China
| | - Chunsong Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
He Z, Zhang J, Shi D, Gao B, Wang Z, Zhang Y, Wang M. Deoxynivalenol in Fusarium graminearum: Evaluation of Cyproconazole Stereoisomers In Vitro and In Planta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9735-9742. [PMID: 34427095 DOI: 10.1021/acs.jafc.1c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cyproconazole (CPZ), a representative chiral triazole fungicide, is widely used to control Fusarium head blight (FHB). In this study, the stereoselective efficiency of CPZ was investigated in vitro and in planta. Consistent results were observed between the in vitro bioassay and the in planta visual disease rating, with the control efficacy ordered RS-CPZ > RR-CPZ > SR-CPZ > SS-CPZ. Unexpectedly, the in planta deoxynivalenol level was in the order RR-CPZ > RS-CPZ > SS-CPZ > SR-CPZ, while RS-CPZ inhibited the deoxynivalenol production and ergosterol biosynthesis in Fusarium graminearum. We further investigated that the Tri genes were upregulated in Fusarium graminearum of the RS-CPZ group, and SR-CPZ preferentially degraded in wheat. An extra action mode of CPZ was inferred to stimulate the production of deoxynivalenol. These findings revealed the stereoselective efficiency of CPZ stereoisomers against FHB and provided new insights into the mechanism of action of triazole fungicides against FHB and deoxynivalenol.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongya Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
- Toxicological Centre, University of Antwerp, Wilrijk 2610, Belgium
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Bai A, Liu S, Chen A, Chen W, Luo X, Liu Y, Zhang D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem 2021; 359:129983. [PMID: 33964658 DOI: 10.1016/j.foodchem.2021.129983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The fate of eighteen pesticides in field-collected rice samples during Chinese Baijiu production was systematically studied. The results indicated that steeping decreased flonicamid residue by 73.2% due to its high water-solubility and low octanol/water partition coefficient. The steaming step reduced pesticide residues by 32.0%-75.3% through evaporation or thermal degradation. After steaming, the pesticide residues were further reduced by 39.8-74.2% in fermentation which might be caused by biological degradation. In addition, distillation was shown to be most effective, responsible for greater than 90% losses of the remaining pesticide residues. The processing factors (PFs) were generally lower than 1 for different processes and the whole procedure. These results revealed that the procedure of Chinese Baijiu production could dramatically decrease residues of all the eighteen pesticides. Overall, this study provide important references for monitoring pesticide residue levels during the production of Chinese Baijiu from rice, and ensuring proper risk assessment from pesticide contamination.
Collapse
Affiliation(s)
- Aijuan Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Shaowen Liu
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiangwen Luo
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
22
|
Optimization of a rice cooking method using response surface methodology with desirability function approach to minimize pesticide concentration. Food Chem 2021; 352:129364. [PMID: 33657482 DOI: 10.1016/j.foodchem.2021.129364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/07/2022]
Abstract
Rice is contaminated with pesticides applied in pre and post-harvest. These contaminations could be reduced through household operations like washing and cooking. Therefore, in the present research, a pre-soaking rice cooking method was used to reduce pesticides residues. Response Surface Methodology with Central Composite Design was applied to minimize pesticides concentration by choosing the best soaking time and water:rice grain relation before cooking. A quadratic polynomial equation was obtained. Desirability function approach gave the optimal cooking conditions as 14 h soaking time and water:rice grain relation of 3. This process allowed a pesticide elimination of 100.0%, 93.5%, 98.4%, 98.5%, 99.0%, and 95.0%, of azoxystrobin, cyproconazole, deltamethrin, epoxiconazole, kresoxim-methyl and penconazole, respectively.
Collapse
|
23
|
Hayar S, Zeitoun R, Maestroni BM. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules 2021; 26:molecules26041176. [PMID: 33671830 PMCID: PMC7927040 DOI: 10.3390/molecules26041176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The QuEChERS method was applied to the determination of pesticide residues in vine (Vitis vinifera) leaves by LC-MSMS. The method was validated in-house for 33 pesticides representing 17 different chemical groups, that are most commonly used in grape production. Recoveries for the pesticides tested ranged from 75 to 104%, and repeatability and reproducibility relative standard deviations (RSDr% and RSDRw%) were less than 20%. The method was applied to the analysis of pesticide residues in 17 market brands of vine leaves processed according to three different preservation methods and sampled from the Lebanese market. Dried vine leaves were more contaminated with pesticide residues than those preserved in brine or stuffed vine leaves. The systemic fungicides were the most frequently detected among all the phytosanitary compounds usually applied to grape production. Brine-preserved and stuffed vine leaves contained lower concentrations of the residues but still contained a cocktail of different pesticides.
Collapse
Affiliation(s)
- Salem Hayar
- Doctoral School of Science and Technology, Research Platform for Environmental Sciences (EDST-PRASE), Lebanese University, Rafic Hariri Campus, Hadath-Mount Lebanon, Lebanon
- Department of Plant Protection, Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekweneh-Beirut, Lebanon
- Environmental Health Research Lab (EHRL), Faculty of Sciences, Section V, Lebanese University, Nabatieh, Lebanon;
- Correspondence: ; Tel.: +961-3-416364
| | - Rawan Zeitoun
- Environmental Health Research Lab (EHRL), Faculty of Sciences, Section V, Lebanese University, Nabatieh, Lebanon;
- Department of Chemistry and Biochemistry, Faculty of Sciences, Section V, Lebanese University, Nabatieh, Lebanon
| | - Britt Marianna Maestroni
- Food and Environmental Protection Laboratory, Joint FAO/IAEA Division of Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna, Austria;
| |
Collapse
|