1
|
Singh S, Yadav P, Yadav KS. A novel diglycosidase for the transformation of naringin to naringenin and neohesperidose. Int J Biol Macromol 2024; 280:135744. [PMID: 39304037 DOI: 10.1016/j.ijbiomac.2024.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A novel fungal diglycosidase that transforms naringin into naringenin and neohesperidose, a rare biotransformation, has been purified to homogeneity using a simple procedure involving precipitation of the enzyme from the culture filtrate of the fungal strain using 80 % saturation of ammonium sulphate, dissolving the precipitate in minimum volume of the buffer and dialysing that against the buffer. The purified enzyme gives single protein bands of molecular mass 64.6 kDa in SDS-PAGE analysis. The purity of the enzyme has been further confirmed by the appearance of single protein band in native page analysis. Using naringin as the substrate, the diglycosidase has Km and kcat values of 0.20 m mol L-1 and 0.66 s-1, respectively, at pH 4.0 and 313 K. The specific activity of the purified enzyme using naringin as the natural substrate is 1.018 katal/kg. The diglycosidase also transforms rutin into quercetin and rutinose but has no effect on hesperidin. The feasibilities of preparing neohesperidose from naringin and rutinose from rutin on milligram scales using the pure enzyme have been demonstrated. These results open the way for developing an enzymatic process for preparation of neohesperidose from naringin. The reported diglycosidase has immense future applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shikha Singh
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, U. P. 273009, India
| | - Pratibha Yadav
- Centre for Rural Development and Technology, IIT Delhi, Hauz Khas, New Delhi, India, 110016
| | - Kamlesh Singh Yadav
- Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, U. P. 273009, India.
| |
Collapse
|
2
|
Scerra M, Foti F, Caparra P, Bognanno M, Fortugno P, Autolitano D, Viglianti D, Bella MS, Cannone MS, Chies L. Effects of Bergamot ( Citrus bergamia Risso) By-Product on Growth Performance and Meat Quality of Growing Rabbits. Foods 2024; 13:2611. [PMID: 39200537 PMCID: PMC11353517 DOI: 10.3390/foods13162611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to investigate the effects of feeding dried bergamot pulp to rabbits on animal performance and meat quality. Thirty rabbits were assigned to two groups (balanced for body weight, 804.4 ± 2.35 g) and fed individually for 60 days a basal diet (control) or the basal diet in which part of the cereals was replaced with 10% of dried bergamot pulp (DBP). There were no effects of DBP on growth performance, carcass yield, or the crude protein and ether extract composition of meat. The concentrations of α-linolenic acid (C18:3 n-3) and eicosapentaenoic acid (C20:5 n-3) increased in the longissimus thoracis et lumborum muscle (p < 0.01 and p = 0.021, respectively) after integrating dried bergamot pulp into the diet, leading to higher levels of total of ω-3 fatty acids (p < 0.01) compared to the control treatment. The inclusion of dried bergamot pulp improved the oxidative stability in meat (p < 0.001), where TBARS values were lower after 4 and 7 days of refrigerated storage (p < 0.001) in the DBP group than in the control group. Finally, feeding dried bergamot pulp to rabbits improves meat quality without negatively influencing growth performance.
Collapse
Affiliation(s)
- Manuel Scerra
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Francesco Foti
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Pasquale Caparra
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Matteo Bognanno
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Paolo Fortugno
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Domenico Autolitano
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Domenico Viglianti
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| | - Marco Sebastiano Bella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (M.S.B.); (M.S.C.)
| | - Marco Sebastiano Cannone
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (M.S.B.); (M.S.C.)
| | - Luigi Chies
- Produzioni Animali Unit, Dipartimento di Agraria, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy; (F.F.); (P.C.); (M.B.); (P.F.); (D.A.); (D.V.); (L.C.)
| |
Collapse
|
3
|
Okomo Aloo S, Park S, Martins Oyinloye T, Oh DH. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation. Food Chem 2024; 439:138086. [PMID: 38043281 DOI: 10.1016/j.foodchem.2023.138086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Dehulled hempseed (DHS), fermented dehulled hempseed (FDHS), hempseed cake (HSC), and fermented HSC (FHSC) were examined for their phytochemical composition, health benefits, and rheological characteristics. At 500 µg/mL concentration, DHS, FDHS, HSC, and FHSC extracts exhibited the ability to inhibit DPPH radicals, with 32.46 %, 47.35 %, 33.85 %, and 47.41 %, respectively. Similarly, they demonstrated potential to scavenge ABTS radicals by 13.7 %, 27.87 %, 14.40 % and 25.70 %, respectively. For lipase inhibition activity, FDHS (72.92 %) and FDHS (85.89 %) outperformed DHS (52.94 %) and HSC (43.08 %). Furthermore, FHSC enhanced the survival and reduced fat accumulation in glucose-supplemented Caenorhabditis elegans. We used HPLC and UHPLC-ESI-QTOF-MS for metabolite analysis, quantifying eight polyphenols using HPLC and identifying thirty-four metabolites with UHPLC-ESI-QTOF-MS. Generally, metabolomics indicated an improved metabolite profile after fermentation. Fermentation also showed impact on rheological characteristics, modifying viscosity, loss modulus, and storage modulus. These findings collectively demonstrate the ability of fermentation in enhancing overall value of hempseed.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Timilehin Martins Oyinloye
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
4
|
Michailidis M, Ziogas V, Sarrou E, Nasiopoulou E, Styliani Titeli V, Skodra C, Tanou G, Ganopoulos I, Martens S, Molassiotis A. Screening the Citrus Greek National Germplasm Collection for fruit quality and metabolic footprint. Food Chem 2024; 435:137573. [PMID: 37769559 DOI: 10.1016/j.foodchem.2023.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Citrus fruits are one of the most important fruits in the global food industry due to their unique taste and nutritional benefits. Herein, we characterize the physicochemical and bioactive attributes of twenty-nine Greek citrus accessions, including oranges, mandarins/clementines, lemons, bergamot, citrons and lime along with twenty-seven highly commercial international cultivars. The assessed genotypes differ in various quality traits including color, ripening, and textural attributes. Several indigenous cultivars displayed desirable organoleptic traits, such as the oranges 'Valencia Oval Porou' (e.g., juice content and ascorbic acid) and 'Sanguine Gouritis' (eg., soluble solids (SSC) and acidity (TA) ratio), the mandarin 'Clementine Porou' (e.g., SSC/TA) and the lemon 'Vakalou' (e.g., firmness, acidity). Differences in primary metabolites, mainly in sugars, organic acids and amino acids were recorded among the tested species and cultivars. In addition, the autochthonous orange cultivars 'Sanguine Gouritsis' and 'Valencia Oval Porou' contained high sucrose levels whereas 'Lainato Chanion' had high hesperidin content. This large-scale analysis supports the ample availability of genetic resources for the development of citrus cultivars with improved nutritional quality traits.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Vasileios Ziogas
- Intsitute of Olive Tree, Subtropical Plants and Viticulture, ELGO-DIMITRA, Chania 73134, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece
| | - Elpida Nasiopoulou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Vaia Styliani Titeli
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece; Joint Laboratory of Horticulture, ELGO-Dimitra, Thessaloniki-Thermi 57001, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece; Joint Laboratory of Horticulture, ELGO-Dimitra, Thessaloniki-Thermi 57001, Greece
| | - Stefan Martens
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38098, San Michele all'Adige, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| |
Collapse
|
5
|
Xu Y, Zhang S, Yuan S, Su Y, Jia Y, Zhang Y, Duan X. Study of Active Phytochemicals and Mechanisms of Cnidii Fructus in Treating Osteoporosis Based on HPLC-Q-TOF-MS/MS and Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:317-334. [PMID: 37350000 DOI: 10.2174/1386207326666230622163202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION This study aimed to clarify the anti-osteoporosis mechanism of Cnidii Fructus (CF) via network pharmacology and experimental verification. METHODS HPLC fingerprints combined with HPLC-Q-TOF-MS/MS analysis confirmed common components (CCS) of CF. Then, network pharmacology was used to investigate the anti-OP mechanism of CF, including potential anti-OP phytochemicals, potential targets, and related signalling pathway. Molecular docking analysis was carried on investigating the protein-ligand interactions. Finally, in vitro experiments were performed to verify anti-OP mechanism of CF. RESULTS In this study, 17 compounds from CF were identified by HPLC-Q-TOF-MS/MS and HPLC fingerprints and then were further screened key compounds and potential targets by PPI analysis, ingredient-target network and hub network. The key compounds were SCZ10 (Diosmin), SCZ16 (Pabulenol), SCZ6 (Osthenol), SCZ8 (Bergaptol) and SCZ4 (Xanthotoxol). The potential targets were SRC, MAPK1, PIK3CA, AKT1 and HSP90AA1. Molecular docking further analysis indicated that the five key compounds have a good binding affinity with related proteins. CCK8 assays, TRAP staining experiments, and ALP activity assays concluded that osthenol and bergaptol inhibited osteoclast formation and promoted osteoblast bone formation to improve osteoporosis. CONCLUSION Based on network pharmacology and in vitro experiments analysis, this study revealed that CF possessed an anti-OP effect, and its potential therapeutic effect may be involved with osthenol and bergaptol from CF.
Collapse
Affiliation(s)
- Yincong Xu
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, 050200, China
| | - Shuai Zhang
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, 050200, China
| | - Shinong Yuan
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Yanlei Su
- Bethune Internation Peace Hospital (The 980st Hospital of the PLA Joint Logistics Support Force), Shijiazhuang, 050082, P.R. China
| | - Yuqian Jia
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Development and Industrialization, Shijiazhuang, 050200, P.R. China
| | - Xuhong Duan
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| |
Collapse
|
6
|
Zhang Q, Song W, Tao G, Li Q, Wang L, Huang W, Gao L, Yin L, Ye Y. Comparison of Chemical Compositions and Antioxidant Activities for the Immature Fruits of Citrus changshan-huyou Y.B. Chang and Citrus aurantium L. Molecules 2023; 28:5057. [PMID: 37446717 DOI: 10.3390/molecules28135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Quzhou Aurantii Fructus (QAF), the dried immature fruit of Citrus changshan-huyou Y.B. Chang, is similar to Aurantii Fructus (AF), the dried immature fruit of Citrus aurantium L. or its cultivars, in terms of composition, pharmacological action, and appearance. However, potential chemical markers to distinguish QAF from AF remain unknown owing to the lack of a comprehensive systematic chemical comparison aligned with discriminant analysis. To achieve a better understanding of the differences in their composition, this study aimed to identify the basic chemical compounds in QAF (n = 42) and AF (n = 8) using ultra-performance liquid chromatography coupled with electron spray ionization and quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were used to further analyze, screen, and verify potential chemical markers; the antioxidant capacity was assayed in vitro. A total of 108 compounds were found in QAF and AF, including 25 flavonoids, 8 limonoids, 2 coumarins, and 73 volatile components. The chemometric analysis indicated that the main components in QAF and AF were very similar. Trace differential components, including 9 flavonoids, 2 coumarins, 5 limonoids, and 26 volatile compounds, were screened as potential chemical markers to distinguish between QAF and AF. Additionally, the antioxidant capacity of QAF was found to be greater than that of AF. This research provides insights into the quality control and clinical application of QAF.
Collapse
Affiliation(s)
- Qixin Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Wenying Song
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Guanqi Tao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Lixia Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Changshan Characteristic Industry Development Center, Quzhou 324000, China
| | - Wenkang Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Lai Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 311300, China
| |
Collapse
|
7
|
Jakimiuk K, Strawa JW, Granica S, Locatelli M, Tartaglia A, Tomczyk M. Determination of Flavonoids in Selected Scleranthus Species and Their Anti-Collagenase and Antioxidant Potential. Molecules 2022; 27:molecules27062015. [PMID: 35335375 PMCID: PMC8951040 DOI: 10.3390/molecules27062015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
A new 5,7-dihydroxy-3′-methoxy-4′-acetoxyflavone-8-C-β-d-arabinopyranoside-2″-O-(4‴-acetoxy)-glucoside (6) and three known flavone C-glycosides—5,7,3′,4′-tetrahydroxyflavone-6-C-xyloside-8-C-β-d-glucoside (lucenin-1) (7), 5,7,3′-trihydroxyflavone-6-C-glucoside-8-C-β-d-glucoside (vicenin-2) (8), and 5,7,4′-trihydroxy-3′-methoxyflavone-6-C-β-d-glucopyranoside-8-C-α-arabinopyranoside (chrysoeriol-6-C-β-d-glucopyranoside-8-C-α-arabinopyranoside) (9)—were isolated from aerial parts of Scleranthus perennis L. (Caryophyllaceae). Their structures were determined through the use of comprehensive spectroscopic and spectrometric methods, and a method for the quantification of the major constituents of S. perennis and S. annuus L. was developed. Furthermore, the anti-collagenase and antioxidant activities of all isolated compounds obtained from extracts and fractions from both Scleranthus species were evaluated. The highest percentage of collagenase inhibition (at 400 µg/mL) was distinguished for methanolic extracts (22.06%, 32.04%) and ethyl acetate fractions (16.59%, 14.40%) from S. annuus and S. perennis. Compounds 6–9 displayed moderate inhibitory activity, with IC50 values ranging from 39.59–73.86 µM.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Sebastian Granica
- Microbiota Lab, Center for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, 66100 Chieti, Italy; (M.L.); (A.T.)
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, 66100 Chieti, Italy; (M.L.); (A.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
- Correspondence: ; Tel.: +48-85-748-5694
| |
Collapse
|
8
|
LIN LJ, CHEN X, CAI HT, ZHANG XY, GAO XY. Dynamic changes of microbial flora in the pickled bergamot (Citrus medica L. var. sarcodactylis) - LaoXiangHuang (LXH) during aging. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Xi CHEN
- South China Agricultural University, China
| | - Hui-Tian CAI
- South China Agricultural University, China; SCAU (Chaozhou) Food Institute Co. Ltd., China
| | - Xiao-Yong ZHANG
- South China Agricultural University, China; South China Agricultural University, China
| | - Xiang-Yang GAO
- South China Agricultural University, China; SCAU (Chaozhou) Food Institute Co. Ltd., China
| |
Collapse
|
9
|
Quezada C, Estay H, Cassano A, Troncoso E, Ruby-Figueroa R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. MEMBRANES 2021; 11:368. [PMID: 34070146 PMCID: PMC8158366 DOI: 10.3390/membranes11050368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
In any membrane filtration, the prediction of permeate flux is critical to calculate the membrane surface required, which is an essential parameter for scaling-up, equipment sizing, and cost determination. For this reason, several models based on phenomenological or theoretical derivation (such as gel-polarization, osmotic pressure, resistance-in-series, and fouling models) and non-phenomenological models have been developed and widely used to describe the limiting phenomena as well as to predict the permeate flux. In general, the development of models or their modifications is done for a particular synthetic model solution and membrane system that shows a good capacity of prediction. However, in more complex matrices, such as fruit juices, those models might not have the same performance. In this context, the present work shows a review of different phenomenological and non-phenomenological models for permeate flux prediction in UF, and a comparison, between selected models, of the permeate flux predictive capacity. Selected models were tested with data from our previous work reported for three fruit juices (bergamot, kiwi, and pomegranate) processed in a cross-flow system for 10 h. The validation of each selected model's capacity of prediction was performed through a robust statistical examination, including a residual analysis. The results obtained, within the statistically validated models, showed that phenomenological models present a high variability of prediction (values of R-square in the range of 75.91-99.78%), Mean Absolute Percentage Error (MAPE) in the range of 3.14-51.69, and Root Mean Square Error (RMSE) in the range of 0.22-2.01 among the investigated juices. The non-phenomenological models showed a great capacity to predict permeate flux with R-squares higher than 97% and lower MAPE (0.25-2.03) and RMSE (3.74-28.91). Even though the estimated parameters have no physical meaning and do not shed light into the fundamental mechanistic principles that govern these processes, these results suggest that non-phenomenological models are a useful tool from a practical point of view to predict the permeate flux, under defined operating conditions, in membrane separation processes. However, the phenomenological models are still a proper tool for scaling-up and for an understanding the UF process.
Collapse
Affiliation(s)
- Carolina Quezada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
- Programa de Doctorado en Ciencia de Materiales e Ingeniería de Procesos (Doctoral Program in Materials Science and Process Engineering), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007 (AMTC Building), Santiago 8370451, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Italy;
| | - Elizabeth Troncoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| |
Collapse
|
10
|
Untargeted Metabolomics Analysis Using FTIR and UHPLC-Q-Orbitrap HRMS of Two Curculigo Species and Evaluation of their Antioxidant and α-Glucosidase Inhibitory Activities. Metabolites 2021; 11:metabo11010042. [PMID: 33430143 PMCID: PMC7827591 DOI: 10.3390/metabo11010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/01/2022] Open
Abstract
Curculigo orchioides and C. latifolia have been used as traditional medicines such as antidiabetic and anticancer. This study measured the total phenolics and flavonoid contents as well as analyzed the functional groups and chemical compounds using Fourier-transform infrared (FTIR) spectra and UHPLC-Q-Orbitrap-HRMS profiling for the discrimination of plant parts, geographical origin, and compounds that presumably have a significant contribution as antioxidant and α-glucosidase inhibitors on both plants. The total phenolics and flavonoids contents in Curculigo species varied from 142.09 to 452.47 mg gallic acid equivalent (GAE/g) and from 0.82 to 5.44 mg quercetin equivalent (QE/g), respectively. The lowest IC50 for antioxidant and α-glucosidase inhibitory activities is presented by C. latifolia from a higher altitude region. Principal component analysis (PCA) from FTIR and UHPLC-Q-Orbitrap-HRMS data could discriminate the plant parts and geographical origin. Partial least squares (PLS) analysis has identified several functional groups, such as O–H, C–H, C=O, C–C, C–O, and chemical compounds, unknown-185 and unknown-85, that are most likely to contribute to the antioxidant and α-glucosidase inhibitory activities.
Collapse
|