1
|
Abarca-Rivas C, Martín-García A, Riu-Aumatell M, López-Tamames E. Indole Content Profiling During Biological Ageing of Cava Sparkling Wine. Foods 2025; 14:722. [PMID: 40077425 PMCID: PMC11899149 DOI: 10.3390/foods14050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Indoles are bioactive components found in wine products and are associated with yeast activity. Cava, a Spanish sparkling wine, is characterized by aging in contact with lees, making it a potential matrix for indoles. Therefore, the aim of this study was to determine the indole content in Cava produced at an industrial scale. Nine indoles were analysed by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry in Cava samples with different ageing times (n = 74). Significant amounts of tryptophan (2.3-1680.4 μg/L), tryptophan ethyl ester (0.1-5.2 μg/L), 5-methoxytryptophol (0.3-29.2 µg/L) and n-acetyl serotonin (0.3-2.3 μg/L) were determined. Tryptophan and tryptophan ethyl ester were positively correlated and decreased with ageing time. In fact, a concentration of less than 0.56 μg of the latter indole can become a marker of the most aged Cavas. The ageing time in contact with lees seems to play a key role affecting the indole content, since base wines show high amount of tryptophan and tryptophan ethyl ester while aged sparkling wines have values around the lower 95% confidence limit. Notably, the identification of tryptophan ethyl ester as a potential marker for aging in Cava suggests a new avenue for further research and quality assessment in its production.
Collapse
Affiliation(s)
- Clara Abarca-Rivas
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Antioxidants Naturals: Polifenols”, University of Barcelona, 08028 Barcelona, Spain;
| | - Alba Martín-García
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| | - Montserrat Riu-Aumatell
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| | - Elvira López-Tamames
- Aroma, and Food Quality Factors Group, Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), CCNIEC Research Group “Aroma and Food Quality Factors Group”, University of Barcelona, 08028 Barcelona, Spain; (A.M.-G.); (E.L.-T.)
| |
Collapse
|
2
|
Boban A, Vrhovsek U, Anesi A, Milanović V, Gajdoš Kljusurić J, Jurun Z, Budić-Leto I. Modulation of Aromatic Amino Acid Metabolism by Indigenous Non- Saccharomyces Yeasts in Croatian Maraština Wines. Foods 2024; 13:2939. [PMID: 39335868 PMCID: PMC11431312 DOI: 10.3390/foods13182939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to provide novel information on the impact of indigenous non-Saccharomyces yeasts, including Metschnikowia chrysoperlae, Metschnikowia sinensis/shanxiensis, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Pichia kluyveri, on metabolites related to the metabolism of tryptophan, phenylalanine, and tyrosine. The experiment included two fermentation practices: monoculture and sequential fermentation with commercial Saccharomyces cerevisiae, using sterile Maraština grape juice. A targeted approach through ultrahigh-resolution liquid chromatography associated with mass spectrometry was used to quantify 38 metabolites. All the indigenous yeasts demonstrated better consumption of tryptophan in monoculture than in interaction with S. cerevisiae. M. sinensis/shanxiensis was the only producer of indole-3-carboxylic acid, while its ethyl ester was detected in monoculture fermentation with H. guilliermondii. H. guilliermondii consumed the most phenylalanine among the other isolates. 5-hydroxy-L-tryptophan was detected in fermentations with M. pulcherrima and M. sinensis/shanxiensis. M. pulcherrima significantly increased tryptophol content and utilised tyrosine in monoculture fermentations. Sequential fermentation with M. sinensis/shanxiensis and S. cerevisiae produced higher amounts of N-acetyl derivatives of tryptophan and phenylalanine, while H. guilliermondii-S. cerevisiae fermentation resulted in wines with the highest concentrations of L-kynurenine and 3-hydroxyanthranilic acid. P. kluyveri produced the highest concentration of N-acetyl-L-tyrosine in monoculture fermentations. These findings highlight the different yeast metabolic pathways.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (A.B.); (Z.J.)
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (A.A.)
| | - Andrea Anesi
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (A.A.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Zvonimir Jurun
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (A.B.); (Z.J.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia; (A.B.); (Z.J.)
| |
Collapse
|
3
|
Sun H, Jiang Z, Chen Z, Liu G, Liu Z. Effects of fermented unconventional protein feed on pig production in China. Front Vet Sci 2024; 11:1446233. [PMID: 39144079 PMCID: PMC11322053 DOI: 10.3389/fvets.2024.1446233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Unconventional protein feeds, characterized by low nutritional value, high variability, and poor palatability, have limited their application in swine production. Fermentation technology holds the key to addressing these shortcomings. Given the ban on antibiotics in China, the inferior quality of imported pig breeds, and long-term dependence on imported soybean, the prospects for fermented unconventional protein feeds are promising. This paper delves into the common types of fermented unconventional protein feeds, factors influencing the fermentation process, the mechanisms by which they enhance swine health, and the challenges and prospects of fermented feeds, offering theoretical insights for the future development of the feed industry.
Collapse
Affiliation(s)
- Haoxuan Sun
- Cofco Joycome (Jilin) Co., Ltd., Songyuan, China
| | - Zipeng Jiang
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Zexue Liu
- COFCO Wuhan Meat Product Co., Ltd., Wuhan, China
| |
Collapse
|
4
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
5
|
Zheng C, Hou S, Zhou Y, Yu C, Li H. Regulation of the PFK1 gene on the interspecies microbial competition behavior of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:272. [PMID: 38517486 PMCID: PMC10959778 DOI: 10.1007/s00253-024-13091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
Saccharomyces cerevisiae is a widely used strain for ethanol fermentation; meanwhile, efficient utilization of glucose could effectively promote ethanol production. The PFK1 gene is a key gene for intracellular glucose metabolism in S. cerevisiae. Our previous work suggested that although deletion of the PFK1 gene could confer higher oxidative tolerance to S. cerevisiae cells, the PFK1Δ strain was prone to contamination by other microorganisms. High interspecies microbial competition ability is vital for the growth and survival of microorganisms in co-cultures. The result of our previous studies hinted us a reasonable logic that the EMP (i.e., the Embden-Meyerhof-Parnas pathway, the glycolytic pathway) key gene PFK1 could be involved in regulating interspecies competitiveness of S. cerevisiae through the regulation of glucose utilization and ethanol production efficiency. The results suggest that under 2% and 5% glucose, the PFK1Δ strain showed slower growth than the S288c wild-type and TDH1Δ strains in the lag and exponential growth stages, but realized higher growth in the stationary stage. However, relative high supplement of glucose (10%) eliminated this phenomenon, suggesting the importance of glucose in the regulation of PFK1 in yeast cell growth. Furthermore, during the lag growth phase, the PFK1Δ strain displayed a decelerated glucose consumption rate (P < 0.05). The expression levels of the HXT2, HXT5, and HXT6 genes decreased by approximately 0.5-fold (P < 0.05) and the expression level of the ZWF1 exhibited a onefold increase in the PFK1Δ strain compared to that in the S. cerevisiae S288c wild-type strain (P < 0.05).These findings suggested that the PFK1 inhibited the uptake and utilization of intracellular glucose by yeast cells, resulting in a higher amount of residual glucose in the medium for the PFK1Δ strain to utilize for growth during the reverse overshoot stage in the stationary phase. The results presented here also indicated the potential of ethanol as a defensive weapon against S. cerevisiae. The lower ethanol yield in the early stage of the PFK1Δ strain (P < 0.001) and the decreased expression levels of the PDC5 and PDC6 (P < 0.05), which led to slower growth, resulted in the strain being less competitive than the wild-type strain when co-cultured with Escherichia coli. The lower interspecies competitiveness of the PFK1Δ strain further promoted the growth of co-cultured E. coli, which in turn activated the ethanol production efficiency of the PFK1Δ strain to antagonize it from E. coli at the stationary stage. The results presented clarified the regulation of the PFK1 gene on the growth and interspecies microbial competition behavior of S. cerevisiae and would help us to understand the microbial interactions between S. cerevisiae and other microorganisms. KEY POINTS: • PFK1Δ strain could realize reverse growth overshoot at the stationary stage • PFK1 deletion decreased ethanol yield and interspecific competitiveness • Proportion of E. coli in co-culture affected ethanol yield capacity of yeast cells.
Collapse
Affiliation(s)
- Caijuan Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuxin Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yu Zhou
- School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Li
- School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China.
| |
Collapse
|
6
|
Yılmaz C, Ecem Berk Ş, Gökmen V. Effect of different stress conditions on the formation of amino acid derivatives by Brewer's and Baker's yeast during fermentation. Food Chem 2024; 435:137513. [PMID: 37774628 DOI: 10.1016/j.foodchem.2023.137513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The effects of environmental stresses on the formation of amino acid derivatives by Saccharomyces cerevisiae NCYC 88 and Saccharomyces cerevisiae NCYC 79 were investigated. Fermentation was performed in model systems under different temperature, pH, alcohol, phenolic, and osmotic stress conditions, as well as in beer and dough. According to stress response molecules, yeasts were more affected by osmotic, temperature, and alcohol stresses. Both yeast strains increased the formation of kynurenic acid, tryptophan ethyl ester, tryptophol, and gamma-aminobutyric acid under osmotic stress conditions in model systems. Indole-3-acetic acid was found to be higher in the ferulic acid stress dough (262 µg/kg dry weight, d.w.) compared to the control dough (132 µg/kg d.w.) at the end of the fermentation. The results may enable the development of new strategies for designing novel foods with a desired composition of bioactive amino acid derivatives.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Şenel Ecem Berk
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye.
| |
Collapse
|
7
|
Sadok I, Jędruchniewicz K. Dietary Kynurenine Pathway Metabolites-Source, Fate, and Chromatographic Determinations. Int J Mol Sci 2023; 24:16304. [PMID: 38003492 PMCID: PMC10671297 DOI: 10.3390/ijms242216304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Tryptophan metabolism plays an essential role in human health. In mammals, about 95% of dietary tryptophan is metabolized through the kynurenine pathway, which is associated with the development of several pathologies, including neurodegeneration. Some of the kynurenine pathway metabolites are agonists of the aryl hydrocarbon receptor involved in metabolic functions, inflammation, and carcinogenesis. Thus, their origins, fates, and roles are of widespread interest. Except for being produced endogenously, these metabolites can originate from exogenous sources (e.g., food) and undergo absorption in the digestive tract. Recently, a special focus on exogenous sources of tryptophan metabolites was observed. This overview summarizes current knowledge about the occurrence of the kynurenine pathway metabolites (kynurenines) in food and the analytical method utilized for their determination in different food matrices. Special attention was paid to sample preparation and chromatographic analysis, which has proven to be a core technique for the detection and quantification of kynurenines. A discussion of the fate and role of dietary kynurenines has also been addressed. This review will, hopefully, guide further studies on the impact of dietary kynurenines on human health.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Katarzyna Jędruchniewicz
- Laboratory of Separation and Spectroscopic Method Applications, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
8
|
Ruiz-de-Villa C, Poblet M, Bordons A, Reguant C, Rozès N. Comparative study of inoculation strategies of Torulaspora delbrueckii and Saccharomyces cerevisiae on the performance of alcoholic and malolactic fermentations in an optimized synthetic grape must. Int J Food Microbiol 2023; 404:110367. [PMID: 37597274 DOI: 10.1016/j.ijfoodmicro.2023.110367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Progress in oenological biotechnology now makes it possible to control alcoholic (AF) and malolactic (MLF) fermentation processes for the production of wines. Key factors in controlling these processes and enhancing wine quality include the use of selected strains of non-Saccharomyces species, Saccharomyces cerevisiae, and Oenococcus oeni, as well as the method of inoculation (co-inoculation or sequential) and the timing of inoculation. In the present work, we investigated the effects of different inoculation strategies of two Torulaspora delbrueckii (Td-V and Td-P) strains followed by S. cerevisiae. Times (two, four, and six days) and types (co-inoculation and sequential) of inoculation were evaluated on the AF of a synthetic grape must. Furthermore, this synthetic medium was optimized by adding linoleic acid and β-sitosterol to simulate the natural grape must and facilitate reproducible results in potential assays. Subsequently, the wines obtained were inoculated with two strains of Oenococcus oeni to carry out MLF. Parameters after AF were analysed to observe the impact of wine composition on the MLF performance. The results showed that the optimization of the must through the addition of linoleic acid and β-sitosterol significantly enhanced MLF performance. This suggests that these lipids can positively impact the metabolism of O. oeni, leading to improved MLF efficiency. Furthermore, we observed that a 4-day contact period with T. delbrueckii leads to the most efficient MLF process and contributed to the modification of certain AF metabolites, such as the reduction of ethanol and acetic acid, as well as an increase in available nitrogen. The combination of Td-P with Oo-VP41 for 4 or 6 days during MLF showed that it could be the optimal option in terms of efficiency. By evaluating different T. delbrueckii inoculation strategies, optimizing the synthetic medium and studying the effects on wine composition, we aimed to gain insights into the relationship between AF conditions and subsequent MLF performance. Through this study, we aim to provide valuable insights for winemakers and researchers in the field of wine production and will contribute to a better understanding of the complex interactions between these species in the fermentation process.
Collapse
Affiliation(s)
- Candela Ruiz-de-Villa
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Montse Poblet
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
9
|
Ziuzia P, Janiec Z, Wróbel-Kwiatkowska M, Lazar Z, Rakicka-Pustułka M. Honey's Yeast-New Source of Valuable Species for Industrial Applications. Int J Mol Sci 2023; 24:ijms24097889. [PMID: 37175595 PMCID: PMC10178026 DOI: 10.3390/ijms24097889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Honey is a rich source of compounds with biological activity; moreover, it is a valuable source of various microorganisms. The aim of this study was to isolate and identify yeast from a sample of lime honey from Poland as well as to assess its ability to biosynthesize value-added chemicals such as kynurenic acid, erythritol, mannitol, and citric acid on common carbon sources. Fifteen yeast strains belonging to the species Yarrowia lipolytica, Candida magnolia, and Starmerella magnoliae were isolated. In shake-flask screening, the best value-added compound producers were chosen. In the last step, scaling up of the culture in the bioreactor was performed. A newly isolated strain of Y. lipolytica No. 12 produced 3.9 mg/L of kynurenic acid growing on fructose. Strain Y. lipolytica No. 9 synthesized 32.6 g/L of erythritol on technical glycerol with a low concentration of byproducts. Strain Y. lipolytica No. 5 produced 15.1 g/L of mannitol on technical glycerol, and strain No. 3 produced a very high amount of citric acid (76.6 g/L) on technical glycerol. In conclusion, to the best of our knowledge this is the first study to report the use of yeast isolates from honey to produce valuable chemicals. This study proves that natural products such as lime honey can be an excellent source of wild-type yeasts with valuable production properties.
Collapse
Affiliation(s)
- Patrycja Ziuzia
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 31 Norwida St., 50-375 Wroclaw, Poland
| | - Zuzanna Janiec
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| |
Collapse
|
10
|
Miliordos DE, Alatzas A, Kontoudakis N, Unlubayir M, Hatzopoulos P, Lanoue A, Kotseridis Y. Benzothiadiazole Affects Grape Polyphenol Metabolism and Wine Quality in Two Greek Cultivars: Effects during Ripening Period over Two Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:1179. [PMID: 36904039 PMCID: PMC10005230 DOI: 10.3390/plants12051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019-2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions.
Collapse
Affiliation(s)
- Dimitrios-Evangelos Miliordos
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Anastasios Alatzas
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Kontoudakis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st Km Drama-Mikrochori, 66100 Drama, Greece
| | - Marianne Unlubayir
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Yorgos Kotseridis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
11
|
Qin L, Huang M, Ma Y, Zhang D, Cui Y, Kang W. Effects of two Saccharomyces cerevisiae strains on physicochemical and oenological properties of Aranèle white wine. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Metagenomic bacterial diversity and metabolomics profiling of Buttafuoco wine production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Bin Zakaria S, Bin Zahari MS, Binti Hisamudin SZ. Development and characterization of hybrid liquid fertilizer from celery and cucumber wastes. MATERIALS TODAY: PROCEEDINGS 2023; 75:116-122. [DOI: 10.1016/j.matpr.2022.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
15
|
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL. Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J Fungi (Basel) 2022; 8:984. [PMID: 36294549 PMCID: PMC9605484 DOI: 10.3390/jof8100984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
The importance of insects for angiosperm pollination is widely recognized. In fact, approximately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a third part player in this story has been properly acknowledged. Microorganisms inhabiting floral nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast origin can influence insects' foraging behavior, e.g., by attracting them to flowers (although repelling effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells, which provide them with nutrients and protect them from pathogenic microorganisms. In return, insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent. From the plant's point of view, the result is flowers being pollinated. From humanity's perspective, this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde, ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account for a global market of approximately USD 15 billion. In this scenario, the present review addresses the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming to encourage researchers worldwide to dig into this field.
Collapse
Affiliation(s)
- Eduardo D. Fenner
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sérgio L. Alves
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
16
|
Abstract
The utilization of native yeast strains associated with a distinct terroir for autochthonous grape types represents a novel trend in winemaking, contributing to the production of unique wines with regional character. Hence, this study aimed to isolate native strains of the yeast H. uvarum from the surface of various fruits and to characterize its fermentation capability in Prokupac grape must. Out of 31 yeasts, 8 isolates were identified as H. uvarum. The isolates were able to grow at low (4 °C) temperatures, SO2 concentrations up to 300 ppm and ethanol concentrations up to 5%. Additionally, they provided a good profile of organic acids during the microvinification of sterile grape must. Although the content of acetic acid (0.54–0.63 g/L) was relatively high, the sniffing test proved that the yeast isolates developed a pleasant aroma characterized as fruity. All H. uvarum isolates produced twice the concentration of glycerol compared to commercial wine yeast Saccharomyces cerevisiae, contributing to the fullness and sweetness of the wine. The results for pure and sequential fermentation protocols confirmed that the selected S-2 isolate has good oenological characteristics, the capability to reduce the ethanol content (up to 1% v/v) and a potential to give a distinctive note to Prokupac-grape wines.
Collapse
|
17
|
Yılmaz C, Gökmen V. Perspective on the Formation, Analysis, and Health Effects of Neuroactive Compounds in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13364-13372. [PMID: 34738798 DOI: 10.1021/acs.jafc.1c05181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Foods contain neuroactive compounds, such as γ-aminobutyric acid, serotonin, kynurenic acid, and catecholamines. Neuroactive compounds synthesized by humans have various behavioral and physiological roles. It is thus significant for future studies to investigate how diet-derived neuroactive compounds can impact human health and mood. In this perspective, we provide a background for the brief formation mechanisms of neuroactive compounds in plants and microorganisms, their concentrations in foods, and their potential health effects. Liquid chromatography approaches for the analysis of neuroactive compounds are highlighted, together with the extraction procedures. The possibilities for the design of novel foods containing neuroactive compounds are also discussed.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
18
|
Canlı M, Çelik EE, Kocadağlı T, Kanmaz EÖ, Gökmen V. Formation of Bioactive Tyrosine Derivatives during Sprouting and Fermenting of Selected Whole Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12517-12526. [PMID: 34652133 DOI: 10.1021/acs.jafc.1c05064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sprouting is a popular method in cereal processing because sprouted grains are accepted to have high nutritional value. The increased proteolytic activity by sprouting increases the free amino acids in grains. It was hypothesized that an increased amount of tyrosine can be utilized by microorganisms during fermentation to form higher amounts of bioactive tyrosine derivatives. Sprouting increased the tyrosine and tyramine contents considerably, but increases and decreases in l-3,4-dihydroxyphenylalanine (l-DOPA) and dopamine were specific to the cereal. More tyramine, l-DOPA, and dopamine formation was observed during sourdough fermentation than that in yeast fermentation. As a result of the combined application of sprouting (48 h at 20 °C) and sourdough fermentation (36 h at 30 °C), the amounts of dopamine, l-DOPA, and tyramine found in rye were 27, 50, and 136 mg/kg, respectively. Cereal products rich in dopamine and l-DOPA can thus be produced as functional food ingredients with their positive effects on human health and mood.
Collapse
Affiliation(s)
- Merve Canlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Ecem Evrim Çelik
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Evrim Özkaynak Kanmaz
- Department of Nutrition and Dietetics, Artvin Çoruh University, 08100 Seyitler, Artvin, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
19
|
Wang B, Tan F, Chu R, Li G, Li L, Yang T, Zhang M. The effect of non-Saccharomyces yeasts on biogenic amines in wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
21
|
Kang X, Gao Z, Zheng L, Zhang X, Li H. Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|