1
|
Nashed MS, Hassanen EI, Issa MY, Tohamy AF, Prince AM, Hussien AM, Soliman MM. The mollifying effect of Sambucus nigra extract on StAR gene expression, oxidative stress, and apoptosis induced by fenpropathrin in male rats. Food Chem Toxicol 2024; 189:114744. [PMID: 38782235 DOI: 10.1016/j.fct.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fenpropathrin (FNP) is a man-made insecticide of to the pyrethroid class, commonly employed in agricultural and horticultural practices. However, it has a prolonged persistence in the environment. Sambucus nigra, also referred to as SN, is a botanical species recognized for its notable antioxidant characteristics. The objective of this study was to examine if SN extract could mitigate the reproductive toxicity induced by FNP in rats. A total of thirty rats were categorized into six distinct groups: a control group with no treatment, two groups getting SN extract at varying doses, a group receiving FNP, and two groups receiving both FNP and SN extract. The exposure to FNP led to a decline in the number and movement of sperm, lowered levels of testosterone, and reduced the activity of the StAR gene in the FNP group compared to the control group (p < 0.05). In addition, FNP resulted in a significant increase in malondialdehyde levels with a significant drop in GSH content compared to the control group (p < 0.05). Also, a significant increase in the expression of caspase 3. Nevertheless, the administration of SN extract alleviated these effects and reinstated spermatogenesis, thereby bringing the parameters closer to those observed in the control group. The data indicate that FNP can induce testicular harm and infertility, but SN extract can mitigate these detrimental consequences.
Collapse
Affiliation(s)
- Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Liu S, Yan J, Xu B, Huang X, Qin H, Zhao J, Xia C, Yan S, Liu G. Fates and models for exposure pathways of pyrethroid pesticide residues: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116342. [PMID: 38657457 DOI: 10.1016/j.ecoenv.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Pyrethroids (PYs) are widely applied pesticides whose residues pose potential health risks. This review describes current knowledge on PY chemical properties, usage patterns, environmental and food contamination, and human exposure models. It evaluates life cycle assessment (LCA), chemical alternatives assessment (CAA), and high-throughput screening (HTS) as tools for pesticide policy. Despite efforts to mitigate PY presence, their pervasive residues in the environment and food persist. And the highest concentrations ranged from 54,360 to 80,500 ng/L in water samples from agricultural fields. Food processing techniques variably reduce PY levels, yet no method guarantees complete elimination. This review provides insights into the fates and exposure pathways of PY residues in agriculture and food, and highlights the necessity for improved PY management and alternative practices to safeguard health and environment.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jisha Yan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Haixiong Qin
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, PR China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, Henan 450000, PR China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| |
Collapse
|
3
|
Soman S, Christiansen A, Florinski R, Bharat G, Steindal EH, Nizzetto L, Chakraborty P. An updated status of currently used pesticides in India: Human dietary exposure from an Indian food basket. ENVIRONMENTAL RESEARCH 2024; 242:117543. [PMID: 38008203 DOI: 10.1016/j.envres.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
Currently used pesticides (CUPs) were introduced to have lower persistence and bioaccumulation, and lesser bioavailability towards non-target species. Nevertheless, CUPs still represent a concern for both human health and the environment. India is an important agricultural country experiencing a conversion from the use of obsolete organochlorine pesticides to a newer generation of phytosanitary products. As for other developing countries, very little is known about the transfer of CUPs to the human diet in India, where systematic monitoring is not in place. In this study, we analyzed ninety four CUPs and detected thirty CUPs in several food products belonging to five types: cereals and pulses, vegetables, fruits, animal-based foods, and water. Samples were taken from markets in Delhi (aggregating food produced all over India) and in the periurban area of Dehradun (northern India) (representing food produced locally and through more traditional practices). Overall, chlorpyrifos and chlorpropham were the most detected CUPs with a detection frequency of 33% and 25%, respectively. Except for vegetables and fruits, the levels of CUPs in all other food types were significantly higher in samples from Delhi (p < 0.05). Exposure dosage of CUPs through different food matrices was calculated, and chlorpropham detected in potatoes had the maximum exposure dosage to humans (2.46 × 10-6 mg/kg/day). Risk analysis based on the hazard quotient technique indicated that chlorpyrifos in rice (2.76 × 10-2) can be a concern.
Collapse
Affiliation(s)
- Sidhi Soman
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | | | - Roman Florinski
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Universitetstunet 3, 1432, Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; The Faculty of Biology and Environmental Protection, The University of Lodz, Poland.
| |
Collapse
|
4
|
Lin Y, Zhou C, Li D, Jia Y, Dong Q, Yu H, Wu T, Pan C. Mitigation of Acetamiprid Residue Disruption on Pea Seed Germination by Selenium Nanoparticles and Lentinans. PLANTS (BASEL, SWITZERLAND) 2023; 12:2781. [PMID: 37570938 PMCID: PMC10420818 DOI: 10.3390/plants12152781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
- Huizhou Yinnong Technology Co., Ltd., Huizhou 516057, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| |
Collapse
|
5
|
Zhao Y, Zheng W, Liao M, Zhou S, He W, Liu M, Yao Z. Fluorescent detection of tartrazine based on the supramolecular self-assembly of cationic perylene diimide. Mikrochim Acta 2023; 190:290. [PMID: 37442817 DOI: 10.1007/s00604-023-05862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023]
Abstract
A cationic perylene probe was designed and synthesized for sensitive determination of tartrazine. In the presence of tartrazine, the fluorescence of the perylene probe was quenched by efficient supramolecular self-assembly of the perylene derivate. The quenching is caused by the synergistic effect of noncovalent interactions including static electricity, π-π stacking, and hydrophobic interaction. Benefiting from these advantages, the probe exhibited excellent sensing performance to tartrazine within 2 min. The detection and quantification limit of tartrazine are as low as 2.42 and 8.07 nmol L-1, respectively, with a wide linear operation range from 15 to 500 nmol L-1. Most importantly, due to the high binding affinity (3.22 × 107 mol L-1) between the perylene probe and tartrazine, the sensing system shows great anti-interference capacity. Subsequently, the visualization application of the approach was evaluated by portable device, and the limits of detection for visual detection for test strip, membrane, and hydrogel were 0.5, 0.5, and 5 μmol L-1, respectively. The approach has been applied to monitor tartrazine in various food condiments with recoveries in the range 91.29-108.83%. As far as we know, this is the first report of using perylene-based probe for tartrazine determination, offering a promising strategy for the construction of perylene-based detection system in the field of food safety.
Collapse
Affiliation(s)
- Yijian Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Weilian Zheng
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mengyu Liao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuai Zhou
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Weiheng He
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ming Liu
- Technical Center for Safety of Industrial Products of Tianjin Customs District, Tianjin Key Laboratory of Port Non-Traditional Security (NTS) Risk Prevention and Control Science and Technology, Laboratory of Emergency Inspection and Testing for Toxicological Safety Assessment of Import and Export Food Safety of General Administration of Customs, Tianjin, China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
6
|
Zhao J, Zhang J, Hu B, Gao C, Li Z, Sun Z, You J. A FRET-based ratiometric fluorescent probe for Hg 2+ detection in aqueous solution and bioimaging in multiple samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121965. [PMID: 36265300 DOI: 10.1016/j.saa.2022.121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Mercury ion, as a metal cation with great toxic effect, is widely present in various production and living environments. It seriously threatens human health and environmental safety. It is of great significance to develop convenient and effective methods for mercury ion detection. Here, we designed and synthesized a new ratiometric fluorescent probe (namely APS-NA) for the detection of mercury ions in the environment and multiple biological samples. The probe is constructed by covalently connecting two fluorophores with lipolic acid to achieve fluorescence resonance energy transfer (FRET). In the molecular structure of APS-NA, acridone is used as an energy donor, 1,8-naphthalimide is used as an energy acceptor, and a dithioacetal group is used as the reaction site for Hg2+. The intact APS-NA mainly shows the green fluorescence from the acceptor moiety 1,8-naphthalimide; the presence of Hg2+ ions would break the dithioacetal linkage between acridone and 1,8-naphthalimide; the defunctionalization of FRET would lead to bright blue fluorescence emission of acridone; thus ratiometric fluorescent detection of Hg2+ can be achieved by this recognition process. The probe not only has a large Stokes shift (Δλ = 110 nm), but also has high selectivity, high sensitivity (low detection limit 30 nM) and naked eye visualization. In addition, we have successfully used this probe for the detection Hg2+ of actual samples and imaging of a variety of organisms. These results indicate that the probe has broad application prospects.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, PR China; Jining College Affiliated Senior High School, Jining 272100, PR China
| | - Jiawei Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, PR China
| | - Baojun Hu
- Linzi Branch of Zibo Municipal Bureau of Ecology and Environment, Linzi 255400, PR China
| | - Chunyu Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, PR China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, PR China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, PR China.
| | - Jinmao You
- College of Chemistry an Chemical Engineering, Shaoxing University, Shaoxing 312000, PR China
| |
Collapse
|
7
|
Ma S, Wang L, Guo G, Yu J, Di X. Systematic Stereoselectivity Evaluations of Tetramethrin Enantiomers: Stereoselective Cytotoxicity, Metabolism, and Environmental Fate in Earthworms, Soils, Vegetables, and Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:234-243. [PMID: 36577083 DOI: 10.1021/acs.jafc.2c06489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetramethrin is a widely applied type I chiral pyrethroid insecticide that exists as a mixture of four isomers. In the present study, its stereoselective cytotoxicity, bioaccumulation, degradation, and metabolism were investigated for the first time at the enantiomeric level in detail by using a sensitive chiral high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. Results showed that among rac-tetramethrin and its four enantiomers, the trans (+)-1R,3R-tetramethrin had the strongest inhibition effect on the PC12 cells. In the earthworm exposure trial, the concentration of trans (-)-1S,3S-tetramethrin was 0.94-8.92 times in earthworms (cultivated in natural soil) and 1.67-5.01 times (cultivated in artificial soil) higher than trans (+)-1R,3R-tetramethrin, respectively. In the greenhouse experiment, the trans (+)-1R,3R-tetramethrin and cis (+)-1R,3S-tetramethrin were preferentially degraded. Furthermore, for rat liver microsome in vitro incubation, the maximum metabolism rate of cis (-)-1S,3R-tetramethrin was 1.50 times higher than its antipodes. Altogether, the aim of this study was to provide a scientific and reasonable reference for the possibility of developing a single enantiomer to replace the application of rac-tetramethrin, which could possess better bioactivity and lower ecotoxicity, and thus permit more reliable and accurate environmental monitoring and risk assessment.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Wang
- Department of Animal Products and Fishery Products, Liaoning Institute for Agro-product Veterinary Drugs and Feed Control, Liaoning Inspection, Examination & Certification Center, Shenyang110000, China
| | - Guoxian Guo
- Department of Animal Products and Fishery Products, Liaoning Institute for Agro-product Veterinary Drugs and Feed Control, Liaoning Inspection, Examination & Certification Center, Shenyang110000, China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
8
|
Ma Q, Zhu YT, Li YD, Zhang ZL, Huang J, Zuo Y. Quantification of heavy metals and health risk assessment in Sichuan pickle. J Food Sci 2022; 87:2229-2244. [PMID: 35446445 DOI: 10.1111/1750-3841.16136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
Sichuan pickle is one of popular traditional fermented foods in China. However, the contamination of heavy metals in Sichuan pickle, particularly home-made Sichuan pickle and aged pickle brine, is little known. Therefore, the content of trace (Cr, Cu, and Zn) and toxic elements (As, Pb, and Cd) in Sichuan industrial pickle (SIP), Sichuan home-made pickle (SHP), and aged pickle brine collected from local markets and families in Sichuan province, respectively, was detected by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) and the health risk was assessed by target hazard quotients including target hazard quotient (THQ) and total target hazard quotient (TTHQ). Consequently, the mean concentrations of Cr, Cu, Zn, As, Pb, and Cd were 0.122, 0.540, 2.516, 0.023, 0.015, and 0.106 mg/kg in SIP and 0.071, 0.364, 2.698, 0.014, 0.015, and 0.289 mg/kg in SHP, respectively, lower than the maximum allowable concentrations set by Chinese regulations, except for Cr and Cd in few samples. Principal component analysis of the heavy metal content could obviously distinguish between SIP and SHP. The content of As, Pb, and Cd in leaf pickles was significantly higher than that in pickles fermented with other types of vegetables. A significant enrichment of heavy metals in aged pickle brine over 10 years was observed, but pickle jars had no significant effect on heavy metal content in aged pickle brine. The intake of heavy metals through daily consumption of SIP and SHP was at a safe level, whereas the TTHQ of leaf pickle was 1.006, indicating a potential health risk. In conclusion, this study provided fundamental data for food safety assurance of Sichuan pickle. PRACTICAL APPLICATION: Sichuan pickle is one of popular traditional fermented foods in China. In the present study, we investigated the contamination of heavy metals in Sichuan pickles by detecting the content of Cr, Cu, Zn, As, Cd, and Pb in Sichuan industrial pickle, Sichuan home-made pickle, and aged pickle brine, and estimated the health risk to local residents. This study can provide a reference for the safety risk of Sichuan industrial and home-made pickle in terms of heavy metal contamination, and enhance the food safety in the processing, production, and consumption of Sichuan pickle in local families and pickle industry.
Collapse
Affiliation(s)
- Qian Ma
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yi-Dan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Zhou-Li Zhang
- Nanchong Institute for Food and Drug Control, Nanchong, China
| | - Jing Huang
- Qianhe Condiment and Food Co. Ltd., Meishan, Sichuan, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
9
|
Wongmaneepratip W, Leong M, Yang H. Quantification and risk assessment of pyrethroid residues in seafood based on nanoparticle-extraction approach. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Jiao Y, Liu C, Feng C, Regenstein JM, Luo Y, Tan Y, Hong H. Bioaccessibility and Intestinal Transport of Deltamethrin in Pacific Oyster ( Magallana Gigas) Using Simulated Digestion/NCM460 Cell Models. Front Nutr 2021; 8:726620. [PMID: 34485369 PMCID: PMC8415909 DOI: 10.3389/fnut.2021.726620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Deltamethrin (DEL) can be introduced into the food chain through bioaccumulation in Pacific oysters, and then potentially threaten human health. The objective of this study was to investigate the bioaccessibility of DEL in oysters with different cooking methods after simulated digestion. DEL content in different tissues of oysters going from high to low were gills, mantle, viscera, and adductor muscle. Bioaccessibility of DEL in oysters decreased after steaming (65%) or roasting (51%) treatments compared with raw oysters (82%), which indicated that roasting can be used as a recommended cooking method for oysters. In the simulated digestion process, the concentration of DEL in the digestive juice and the bioaccessibility of DEL were affected by the pH in the gastric phase. And the transport efficiency of DEL through the monolayer molecular membrane of NCM460 cells ranged from 35 to 45%. These results can help assess the potential harm to consumers of DEL in shellfish. Furthermore, it provides a reference for the impact of lipophilic toxins in seafood.
Collapse
Affiliation(s)
- Yadan Jiao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chune Liu
- Institute of Yantai, China Agricultural University, Yantai, Shandong, China
| | - Chunsong Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|