1
|
Hsieh LC, Hsieh SL, Ping TN, Huang YC, Lin SJ, Chi HY, Wu CC. Apium graveolens L. alleviates acute lung injury in human A-549 cells by reducing NF-κB and NLRP3 inflammasome signaling. PHARMACEUTICAL BIOLOGY 2025; 63:1-13. [PMID: 39670672 DOI: 10.1080/13880209.2024.2433994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Apium graveolens L. (celery) is a dietary vegetable with anti-inflammatory properties. It has the potential to treat acute lung injury (ALI) caused by COVID-19 or other diseases. OBJECTIVE To investigate the effects of Apium graveolens water extract (AGWE) on ALI in human lung A-549 cells induced by lipopolysaccharide (LPS). MATERIALS AND METHODS A-549 cells were treated with AGWE for 24 h and then stimulated with 10 μg/mL LPS for another 24 h. The effects of AGWE on cell viability, the inflammatory response, oxidative stress, and apoptosis and their regulatory factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling activation were analyzed. RESULTS Treatment with 5-50 μg/mL AGWE reversed the decrease in cell viability caused by LPS (p < 0.05). AGWE can reduce interleukin (IL)-1β, IL-6, IL-18, and TNF-α levels; their EC50 values are 61.4, 65.7, 37.8, and 79.7 μg/mL, respectively. AGWE can reduce reactive oxygen species and thiobarbituric acid reactive substances in A-549 cells induced by LPS. AGWE also reduced the levels of apoptosis (EC50 of 74.8 μg/mL) and its regulators (Bid; Caspase-9, -8, and -3; Bax) and increased the levels of the mitochondrial membrane potential in A-549 cells induced by LPS. AGWE can also decrease the protein levels of NLRP3 and Caspase-1 and the activation of NF-κB signaling in A-549 cells induced by LPS. CONCLUSIONS These results show that 10 and 50 μg/mL AGWE can reduce the acute inflammation induced by LPS by reducing NF-κB and NLRP3 inflammasome signaling and mitochondria-dependent apoptosis pathways.
Collapse
Affiliation(s)
- Lan-Chi Hsieh
- Department of Dietetics, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, R.O.C
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Tsu-Ni Ping
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Yi-Chun Huang
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Ssu-Jung Lin
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Hsing-Yu Chi
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| |
Collapse
|
2
|
Gao P, Wang S, Feng B, Liu C, Wang Y, Dou S, Dong L. Volatile profiling from thermal decomposition of Amadori compounds in the alanine-glucose Maillard reaction: An DFT insight of 3-ethyl-2,5-dimethylpyrazine forming mechanism. Food Chem X 2025; 27:102446. [PMID: 40276234 PMCID: PMC12018196 DOI: 10.1016/j.fochx.2025.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
The composition of volatile compounds generated by the thermal decomposition of Amadori rearrangement products (ARPs) in the Maillard reaction between glucose and alanine was investigated by using a combination of thermal desorption cryo-trapping system and gas chromatography-mass spectrometry. A total of 25 volatile compounds were detected and identified, including 15 pyrazines, 3 pyridines, 1 pyrrole, and 6 complex nitrogen-containing compounds. The results indicated that pyrazines are the predominant products of the thermal decomposition of ARPs, and the specific formation temperatures of the various volatiles were determined. Additionally, density functional theory (DFT) was employed to study the formation mechanism of 3-ethyl-2,5-dimethylpyrazine in depth, and the structures of the reactants, transition states, and products were elucidated. Furthermore, by comparing the rate constants and reaction energy barriers of the different reactions, it was concluded that the synthesis of deoxyglucosones and the ring-forming reaction of pyrazines are the key reactions in the generation pathway of 3-ethyl-2,5-dimethylpyrazine.
Collapse
Affiliation(s)
- Pengxun Gao
- College of Life and Health, Dalian Key Laboratory of Animal Immunization, Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian 116622, Liaoning, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shang Wang
- School of Biotechnology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Baomin Feng
- College of Life and Health, Dalian Key Laboratory of Animal Immunization, Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian 116622, Liaoning, China
| | - Chunying Liu
- College of Life and Health, Dalian Key Laboratory of Animal Immunization, Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian 116622, Liaoning, China
| | - Yi Wang
- School of Biotechnology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shaohua Dou
- College of Life and Health, Dalian Key Laboratory of Animal Immunization, Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian 116622, Liaoning, China
| | - Liang Dong
- College of Life and Health, Dalian Key Laboratory of Animal Immunization, Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian 116622, Liaoning, China
| |
Collapse
|
3
|
Bouron M, Dufrois C, Himeur I, Personnic J, Saf S, Benoist G. Allergie au céleri. REVUE FRANÇAISE D'ALLERGOLOGIE 2025; 65:104142. [DOI: 10.1016/j.reval.2024.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Yuan X, Wang H, Yan L, Huang X, Tang S. Comparison of key floral components between two Tilia species and among different processing technologies as revealed by widely targeted metabolomic profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40007479 DOI: 10.1002/jsfa.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Tilia has a long history of cultivation and holds high ornamental and economic value. The volatile aroma compounds of Tilia flowers have significant characteristics that contribute to their ornamental appeal, and affect the flavor of floral tea. Here, widely targeted metabolomic analyses were conducted to investigate the aroma active compounds in the fresh inflorescences of Tilia cordata Mill. (Tc) and Tilia miqueliana Maxim. (Tm), and in samples prepared by freeze drying, air drying, and oven drying. RESULTS We identified 442 volatile organic compounds by headspace solid-phase microextraction gas chromatography-mass spectrometry. Terpenoids were the most abundant and diverse group, while heterocyclic compounds were the main contributors to the aroma profile. Notably, 46 aroma compounds were identified as primary contributors to the characteristic aroma of Tilia, including abhexon, 2-isobutyl-3-methoxypyrazine, (Z)-6-nonenal, methyl benzoate, (E)-2-hexenal, 1-hexanol, 2-thiophenemethanethiol, p-cymene, furaneol, and (Z)-4-heptenal. The concentration of volatile organic compounds was higher in Tc than in Tm, indicating a more pronounced aroma character of Tc. For both Tc and Tm, the aroma compounds were better preserved and present at higher concentrations in freeze-dried samples than in air-dried and oven-dried samples. CONCLUSION These results provide a foundation for further research on the molecular mechanisms of aroma formation in Tilia flowers and on aroma as a cue for insect pollination. Furthermore, the results provide a basis for the development and commercialization of Tilia floral teas and other related products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanli Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Lingjun Yan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Xi Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| |
Collapse
|
5
|
Yan Z, Li Z, Wang H, Dou H, Song J, Ji F, Yang Y, Lin D. Volatile metabolomics analysis reveals the flavor response of different parts of celery to ultraviolet radiation. Food Chem X 2025; 25:102213. [PMID: 39958648 PMCID: PMC11830285 DOI: 10.1016/j.fochx.2025.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Volatile metabolomics was used to analyze volatile organic compounds in celery (Apium graveolens L. cv. Dayehuang) leaves and petioles under ultraviolet (UV) radiation. Results indicated that celery encompassed 328 terpenes, 299 esters, 178 heterocyclic compounds, and 166 ketones. The additional UV radiation altered ester and heterocyclic compound in celery leaves and changed terpenoids, aldehyde, and ester in celery petiole. The content of volatile organic compounds in leaves and petiole of celery under UV radiation was significantly higher than that grown without UV radiation. The content of 40 compounds with green, floral, woody, sweet, citrus, and fruity aromas have significantly altered in celery petioles. In addition, 24 compounds were significantly altered in celery leaves, including woody and sweet. Our study provides a valuable insight into the influences of UV radiation on different parts of celery flavor, and offers a possible way to alter the flavor quality of celery.
Collapse
Affiliation(s)
- Zhengnan Yan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhixin Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Haokai Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Haijie Dou
- College of Intelligent Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Jinxiu Song
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Ji
- Key Laboratory of Agricultural Engineering in Structure and Environment of MARA, College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yanjie Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Duo Lin
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Yan J, Chen J, Huang Z, He L, Wu L, Yu L, Zhu W. Characterisation of the volatile compounds in nine varieties and three breeding selections of celery using GC-IMS and GC-MS. Food Chem X 2024; 24:101936. [PMID: 39553237 PMCID: PMC11564919 DOI: 10.1016/j.fochx.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Celery (Apium graveolens L.) is a popular vegetable crop planted worldwide. In this study, the volatile compound characteristics of three A. graveolens var. dulce varieties (type D), and six A. graveolens var. secalinum varieties (type S), and three breeding selections were analysed and 41 and 73 volatile compounds were identified using GC-MS and GC-IMS, respectively. The results showed that type S emitted more terpenes and phthalides than type D varieties. Both GC-MS and GC-IMS could discriminate between type S and type D. Six potential biomarkers, i.e., sabinene, (E)-caryophyllene, α-phellandrene, limonene, γ-terpinene, and hexanal, were identified using both models. Both GC-MS and GC-IMS could discriminate between parent and breeding selection. The relative contents of seven (GC-IMS OPLS-DA model) and ten (GC-MS OPLS-DA model) volatile compounds showed over-parent heterosis. This study provides a technical reference for distinguishing celery varieties in the same habitat and preliminarily reveals the aroma relationship between breeding selections and their parents.
Collapse
Affiliation(s)
- Jun Yan
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhiwu Huang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Lizhong He
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Lingyun Wu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Li Yu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Weimin Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| |
Collapse
|
7
|
Kręcisz M, Klemens M, Latański A, Stępień B. The Use of Beetroot Juice as an Impregnating Solution to Change Volatile Compounds, Physical Properties and Influence the Kinetics of the Celery Drying Process. Molecules 2024; 29:4050. [PMID: 39274900 PMCID: PMC11396649 DOI: 10.3390/molecules29174050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
The effect of different methods of drying celery root enriched with beet juice by vacuum impregnation (VI) was studied. The process of convection drying, vacuum drying and freeze drying was carried out. Compared to dried indigenous celery, dry impregnated tissue was characterized by lower values of dry matter, L* and b* color parameters, as well as higher values of water activity, density and a* color parameter. In addition, VI reduced the drying time. Forty Volatile Organic Compounds (VOCs) were found in celery, while fifty-one VOCs were found in the profile of celery with beetroot juice. The innovative method of vacuum impregnation made it possible to produce a new type of product with changed properties and a variable VOCs profile. The best fit of the drying process kinetics was achieved by using the logistic model. Increasing the temperature during convection drying resulted in shorter drying time, increased values of dry matter, reduced the water activity value and altered VOCs.
Collapse
Affiliation(s)
- Magdalena Kręcisz
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| | - Marta Klemens
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleks Latański
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| | - Bogdan Stępień
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| |
Collapse
|
8
|
Rudy S, Dziki D, Biernacka B, Polak R, Krzykowski A, Krajewska A, Stanisławczyk R, Rudy M, Żurek J, Rudzki G. Impact of Drying Process on Grindability and Physicochemical Properties of Celery. Foods 2024; 13:2585. [PMID: 39200512 PMCID: PMC11354119 DOI: 10.3390/foods13162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The objective of this study was to evaluate the impact of various drying methods: freeze drying, vacuum drying, convection drying, and convection-microwave drying at microwave powers of 50 W and 100 W, along with process temperatures (40 °C, 60 °C, and 80 °C), on the drying kinetics, selected physicochemical properties of dried celery stems, and their grindability. The Page model was employed to mathematically describe the drying kinetics across the entire measurement range. Convection-microwave drying significantly reduced the drying time compared to the other methods. The longest drying duration was observed with freeze drying at 40 °C. The product obtained through freeze drying at 40 °C exhibited the least alteration in color coordinates, the highest antioxidant capacity, and the greatest retention of chlorophylls and total carotenoids. At a specific temperature, the quality of the product obtained from vacuum drying was slightly lower compared to that from freeze drying. The most substantial changes in the physicochemical properties of the dried product were observed with convection-microwave drying at a microwave power of 100 W. The drying method selected had a significant impact on the energy consumption of grinding, average particle size, and the grinding energy index of the dried celery stems; these parameters worsened as the drying temperature increased. The product with the best quality characteristics and disintegration parameters was achieved using freeze drying at 40 °C.
Collapse
Affiliation(s)
- Stanisław Rudy
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Renata Polak
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland; (S.R.); (D.D.); (B.B.); (R.P.); (A.K.)
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza St. 4, 35-601 Rzeszów, Poland; (R.S.); (M.R.)
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza St. 4, 35-601 Rzeszów, Poland; (R.S.); (M.R.)
| | - Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Ćwiklińskiej 2, 35-601 Rzeszów, Poland;
| | - Grzegorz Rudzki
- Department of Endocrinology, Diabetology, and Metabolic Diseases, Medical University of Lublin, Jaczewski St. 8, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Bertella A, Gavril GL, Wrona M, Pezo D, Sidaoui A, Benlahcen K, Kihal M, Olewnik-Kruszkowska E, Salafranca J, Nerín C. Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications. Foods 2024; 13:749. [PMID: 38472862 PMCID: PMC10930757 DOI: 10.3390/foods13050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In samples of Artemisia campestris (AC), Artemisia herba-alba (AHA) and Salvia jordanii (SJ) essential oils, up to 200 distinct volatile compounds were identified. Using headspace solid-phase microextraction combined with gas chromatography-olfactometry-mass spectrometry (HS-SPME-GC-O-MS), different panelists detected 52 of these compounds. This study offers the most detailed analysis of bioactive compound profiles conducted so far. The most abundant compounds identified were curcumene, making up 12.96% of AC, and camphor, constituting 21.67% of AHA and 19.15% of SJ. The compounds with the highest odor activity value (OAV) were (E,Z)-2,4-nonadienal (geranium, pungent), 3-nonenal (cucumber) and 2-undecenal (sweet) in AC, AHA and SJ, respectively. AHA essential oil showed significant antioxidant activity (IC50 = 41.73 ± 4.14 mg/g) and hydroxyl radical generation (hydroxylation percentage = 29.62 ± 3.14), as assessed by the diphenylpicrylhydrazyl (DPPH) method. In terms of oxygen radical absorbance capacity (ORAC), the strongest antioxidant activity was obtained for SJ essential oil (antioxidant activity of the essential oils, AOX = 337.49 ± 9.87).
Collapse
Affiliation(s)
- Anis Bertella
- Department of Molecular and Cellular Biology, Faculty of Life and Nature Sciences, Abbes Laghrour Khenchela University, BP 1252 Road of Batna, Khenchela 40004, Algeria;
| | - Georgiana-Luminita Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, Sector 6, 060031 Bucharest, Romania;
| | - Magdalena Wrona
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain; (M.W.); (J.S.); (C.N.)
| | - Davinson Pezo
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, Autovía A-23 Zaragoza-Huesca Km. 299, 50830 Zaragoza, Spain
| | - Abouamama Sidaoui
- Faculty of Sciences and Technology, Department of Biology, Amine Elokkal El Hadj Moussa Egakhamouk University of Tamanghasset, Tamanghasset 11000, Algeria;
| | - Kheira Benlahcen
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Life and Nature Sciences, University of Oran 1 Ahmed BenBella, Oran 31100, Algeria; (K.B.); (M.K.)
| | - Mebrouk Kihal
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Life and Nature Sciences, University of Oran 1 Ahmed BenBella, Oran 31100, Algeria; (K.B.); (M.K.)
| | - Ewa Olewnik-Kruszkowska
- Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Jesús Salafranca
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain; (M.W.); (J.S.); (C.N.)
| | - Cristina Nerín
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain; (M.W.); (J.S.); (C.N.)
| |
Collapse
|
10
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
11
|
Shirokova AV, Dmitriev LB, Belopukhov SL, Dmitrieva VL, Danilova IL, Kharchenko VA, Pekhova OA, Myagkih EF, Tsitsilin AN, Gulevich AA, Zhuravleva EV, Kostanchuk YN, Baranova EN. The Accumulation of Volatile Compounds and the Change in the Morphology of the Leaf Wax Cover Accompanied the "Anti-Aging" Effect in Anethum graveolens L. Plants Sprayed with 6-Benzylaminopurine. Int J Mol Sci 2023; 24:15137. [PMID: 37894818 PMCID: PMC10606700 DOI: 10.3390/ijms242015137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Essential oils (EOs) are of commercial importance for medicine, food, cosmetics, the perfume industry, and agriculture. In plants, EOs, like the wax cover, serve as protection against abiotic stresses, such as high temperatures and water deficiency. The use of spraying with exogenous hormones of aromatic plants affects the accumulation and composition of volatile compounds, as well as tolerance to abiotic stress. As a result of cytokinin treatment with 6-BAP (6-benzylaminopurine) (200 mg L-l) of Anetum graveolens L. "Uzory" and "Rusich" varieties, several responses to its action were revealed: a change in the division of leaf blades, inhibition of flowering, an increase in the content of EO and its main components α-phellandrene and p-cymene in leaves, and limonene in umbels and fruits. It was revealed that the increased accumulation of EO in dill leaves was longer with sufficient moisture. In contrast, under conditions of heat and water deficiency, the effect of 6-BAP treatment on accumulations of the EO in leaves was short-lived and did not appear on umbels and fruits. The study of the cytokinin effect on a fine structure of a wax cover on the adaxial side of leaves by scanning electron microscopy revealed a change in its elements (from amorphous layers with scales to thin tubules), which probably increased the sensitivity of leaves to water deficiency and, consequently, led to a decrease in the biosynthetic activity of leaf tissue. Thus, 6-BAP had an impact on the adaptive properties of dill plants, prolonging the "youth" of vegetative organs and the ability to EO biosynthesis under conditions of sufficient moisture.
Collapse
Affiliation(s)
- Anna V. Shirokova
- Genetic and Cytology Laboratory, Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, VNIISSOK Village, 143072 Moscow, Russia
| | - Lev B. Dmitriev
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Sergey L. Belopukhov
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Valeria L. Dmitrieva
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Irina L. Danilova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Viktor A. Kharchenko
- Selection and Seed Poduction of Green Spice-Flavoring and Flower Crops Laboratory Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, 143072 Moscow, Russia;
| | - Olga A. Pekhova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Elena F. Myagkih
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Andrey N. Tsitsilin
- Botanical Garden of All-Russian Research Institute of Medicinal and Aromatic Plants, Grina 7/1, 117216 Moscow, Russia;
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
| | - Ekaterina V. Zhuravleva
- Federal State Budgetary Scientific Institution Belgorod Federal Agrarian Scientific Center of Russian Academy of Sciences, 308001 Belgorod, Russia;
| | - Yulia N. Kostanchuk
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| |
Collapse
|
12
|
Shi J, Cai H, Qin Z, Li X, Yuan S, Yue X, Sui Y, Sun A, Cui J, Zuo J, Wang Q. Ozone micro-nano bubble water preserves the quality of postharvest parsley. Food Res Int 2023; 170:113020. [PMID: 37316085 DOI: 10.1016/j.foodres.2023.113020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The production and use of ozone micro-nano bubble water (O3-MNBW) is an innovative technology that prolongs the reactivity of aqueous-phase ozone and maintains the freshness and quality of fruits and vegetables by removing pesticides, mycotoxins, and other contaminants. The quality of parsley treated with different concentrations of O3-MNBW was investigated during storage at 20 ℃ for 5 d, and found that a ten-minute exposure of parsley to 2.5 mg·L-1 O3-MNBW effectively preserved the sensory quality of parsley, and resulted in lower weight loss, respiration rate, ethylene production, MDA levels, and a higher level of firmness, vitamin C, and chlorophyll content, relative to untreated parsley. The O3-MNBW treatment also increased the level of total phenolics and flavonoids, enhanced peroxidase and ascorbate peroxidase activity, and inhibited polyphenol oxidase activity in stored parsley. Five volatile signatures identified using an electronic nose (W1W, sulfur-compounds; W2S, ethanol; W2W, aromatic- and organic- sulfur compounds; W5S, oxynitride; W1S, methane) exhibited a significant decrease in response to the O3-MNBW treatment. A total of 24 major volatiles were identified. A metabolomic analysis identified 365 differentially abundant metabolites (DMs). Among them, 30 and 19 DMs were associated with characteristic volatile flavor substance metabolism in O3-MNBW and control groups, respectively. The O3-MNBW treatment increased the abundance of most DMs related to flavor metabolism and reduced the level of naringin and apigenin. Our results provide insight into the mechanisms that are regulated in response to the exposure of parsley to O3-MNBW, and confirmed the potential use of O3-MNBW as a preservation technology.
Collapse
Affiliation(s)
- Junyan Shi
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Huiwen Cai
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhanjun Qin
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang 677000, Yunnan, China
| | - Shuzhi Yuan
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaozhen Yue
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Aidong Sun
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jingchun Cui
- College of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
13
|
Kręcisz M, Kolniak-Ostek J, Łyczko J, Stępień B. Evaluation of bioactive compounds, volatile compounds, drying process kinetics and selected physical properties of vacuum impregnation celery dried by different methods. Food Chem 2023; 413:135490. [PMID: 36804740 DOI: 10.1016/j.foodchem.2023.135490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
We have developed a new healthy snack based on celery root enriched with vegetable juices. Vacuum impregnation was used the task of which was to introduce additional valuable substances, improving properties. Thus, prepared material was dried by various methods (sublimation, vacuum, convection) using optimal conditions for the process. In the tested sample, 41 bioactive compounds and 73 volatile compounds were identified. Vacuum impregnation of celery root in the juices of onion, kale and celery stalks significantly affected the profile of bioactive compounds, Volatile Organic Compounds (VOCs), total phenolic content, antioxidant properties, drying process kinetics and physical properties of the dried products. The highest nutrient values were recorded in celery samples after impregnation with kale and onion juice. Due to its good functional and nutritional properties, the material such as celery obtained as a result vacuum impregnation process can be envisioned as the future in creating novel functional foods.
Collapse
Affiliation(s)
- Magdalena Kręcisz
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
| | - Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Grain Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37/41, 51-630 Wrocław, Poland.
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Bogdan Stępień
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
| |
Collapse
|
14
|
Zhou X, Zhu S, Wei J, Zhou Y. Volatile metabolomics and chemometric study provide insight into the formation of the characteristic cultivar aroma of Hemerocallis. Food Chem 2023; 404:134495. [DOI: 10.1016/j.foodchem.2022.134495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
15
|
Yan J, Yang X, He L, Huang Z, Zhu M, Fan L, Li H, Wu L, Yu L, Zhu W. Comprehensive Quality and Bioactive Constituent Analysis of Celery Juice Made from Different Cultivars. Foods 2022; 11:2719. [PMID: 36140847 PMCID: PMC9498075 DOI: 10.3390/foods11182719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Celery juice is rich in bioactive constituents, has good health properties, and is becoming much more popular, with its demand continuing to rise. The results of this study show that celery juice from Chinese cultivars contains more bioactive constituents, whereas celery cultivars from the United States and European countries have a higher juice yield. Compared with the other juices, the juices of five cultivars may taste sweeter, and the juices of three cultivars had a higher antioxidant capacity. The juices of six cultivars (three with the highest antioxidant capacity and three with the lowest antioxidant capacity) were selected to analyze bioactive constituents by LC/MS and GC/MS. A total of 71 phenolic acids, 38 flavonoids, 18 coumarins, 41 terpenoids, and 11 phthalides were detected in the juices of the six celery cultivars. The contents of 14 compounds had a more than 10-fold difference among these celery juices. This study first evaluated the comprehensive quality of the juices made from 26 celery cultivars and then analyzed the differences in bioactive constituents in the juices of6 celery cultivars. These findings provide information for the further study on the health functions of celery juice and can also guide celery juice production and celery breeding.
Collapse
Affiliation(s)
- Jun Yan
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Xiaofeng Yang
- Zhuanghang Integrated Experimental Station, Shanghai Academy of Agricultural Sciences, Shanghai 201415, China
| | - Lizhong He
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Zhiwu Huang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Mingfen Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Linhua Fan
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Han Li
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Lingyun Wu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| | - Li Yu
- Organ Management Office, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Weimin Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai 201403, China
| |
Collapse
|
16
|
Suh JH, Madden RT, Sung J, Chambers AH, Crane J, Wang Y. Pathway-Based Metabolomics Analysis Reveals Biosynthesis of Key Flavor Compounds in Mango. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10389-10399. [PMID: 34792344 DOI: 10.1021/acs.jafc.1c06008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mango is a tropical fruit with global demand as a result of its high sensory quality and nutritional attributes. Improving fruit quality at the consumer level could increase demand, but fruit quality is a complex trait requiring a deep understanding of flavor development to uncover key pathways that could become targets for improving sensory quality. Here, a pathway-based metabolomics (untargeted and targeted) approach was used to explore biosynthetic mechanisms of key flavor compounds with five core metabolic pathways (butanoate metabolism, phenylalanine biosynthesis and metabolism, terpenoid backbone biosynthesis, linoleic and linolenic acid pathway, and carbon fixation and sucrose metabolism) in three mango cultivars. The relationships between flavor precursors and flavor compounds were identified using correlation analysis. With these novel strategies, differentially regulated metabolic flux through the pathways was first elucidated, demonstrating possible mechanisms of key flavor formation and regulation in mango fruits.
Collapse
Affiliation(s)
- Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Robert T Madden
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Jeehye Sung
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, South Korea
| | - Alan H Chambers
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 SW 280 Street, Homestead, Florida 33031, United States
| | - Jonathan Crane
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 SW 280 Street, Homestead, Florida 33031, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| |
Collapse
|
17
|
Turner L, Wagstaff C, Gawthrop F, Lignou S. Consumer Acceptability and Sensory Profile of Three New Celery ( Apium graveolens) Hybrids and Their Parental Genotypes. Int J Mol Sci 2021; 22:ijms222413561. [PMID: 34948363 PMCID: PMC8703596 DOI: 10.3390/ijms222413561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Celery is a stalky green vegetable that is grown and consumed globally and used in many cuisines for its distinctive taste and flavour. Previous investigations identified the aroma composition of celery and profiled its sensory characteristics using a trained panel; however, evaluation of the sensory characteristics of celery combined with a consumer panel, where consumer preferences and acceptability are determined, is novel. In this study, three parental genotypes (12, 22 and 25) and three new hybrids (12x22, 22x12 and 25x12) were presented to a trained sensory panel (n = 12) for profiling and a consumer panel (n = 118), where liking and preference were assessed. Celery samples were analysed by SPME GC–MS and significant differences in aroma composition between all samples were identified, causing significant differences in the sensory profile. Furthermore, significant differences in attributes assessed for liking (appearance, aroma, texture and overall) were identified. Consumer segmentation identified three groups of consumers exhibiting differences in the hedonic reaction to the samples. Sweet and bitter taste along with overall flavour were identified as drivers of liking. Hybrid 25x12 was found to be the hybrid that exhibited high intensities for most of the attributes assessed.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Frances Gawthrop
- A.L. Tozer Ltd., Pyports, Downside Bridge Road, Cobham KT11 3EH, UK;
| | - Stella Lignou
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
- Correspondence: ; Tel.: +44-(0)118-378-8717
| |
Collapse
|
18
|
Turner L, Lignou S, Gawthrop F, Wagstaff C. Investigating the Relationship of Genotype and Geographical Location on Volatile Composition and Sensory Profile of Celery ( Apium graveolens). Int J Mol Sci 2021; 22:ijms222112016. [PMID: 34769457 PMCID: PMC8584909 DOI: 10.3390/ijms222112016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous varieties of celery are grown in multiple countries to maintain supply, demand and availability for all seasons; thus, there is an expectation for a consistent product in terms of taste, flavour, and overall quality. Differences in climate, agronomy and soil composition will all contribute to inconsistencies. This study investigated the volatile and sensory profile of eight celery genotypes grown in the UK (2018) and Spain (2019). Headspace analysis determined the volatile composition of eight genotypes, followed by assessment of the sensory profile using a trained panel. Significant differences in the volatile composition and sensory profile were observed; genotype and geographical location both exerted influences. Two genotypes exhibited similar aroma composition and sensory profile in both locations, making them good candidates to drive breeding programmes aimed at producing varieties that consistently display these distinctive sensory properties. Celery samples harvested in the UK exhibited a higher proportion of sesquiterpenes and phthalides, whereas samples harvested in Spain expressed a higher aldehyde and ketone content. Studying the relationship between growing environment and genotype will provide information to guide growers in how to consistently produce a high-quality crop.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
- Correspondence: ; Tel.: +44-(0)118-378-8717
| | - Frances Gawthrop
- A.L. Tozer Ltd., Pyports, Downside Bridge Road, Cobham KT11 3EH, UK;
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| |
Collapse
|
19
|
Optimization of Volatile Compounds Extraction from Industrial Celery ( Apium graveolens) By-Products by Using Response Surface Methodology and Study of Their Potential as Antioxidant Sources. Foods 2021; 10:foods10112664. [PMID: 34828944 PMCID: PMC8620065 DOI: 10.3390/foods10112664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the potential of industrial celery by-products (the stalk and root) serving as sources of aromatics and antioxidants was investigated. A headspace solid phase microextraction–gas chromatography–mass spectrometry (HS-SPME–GC–MS) procedure was optimized to isolate volatile compounds from celery by-products. A Box–Behnken experimental design was proposed to optimize the procedure through a response surface methodology. The optimal extraction conditions were found to be 1.6 g of homogenized fresh by-product at 30 °C for 60 min. Under these conditions, 26 volatile compounds in stalk and root samples were identified, monoterpenes and sesquiterpenes being the main components. The content of limonene and γ-terpinene found in the stalk was significantly higher in comparison with root samples. Total phenolic content and antioxidant activity (ABTS and FRAP) results underlined the celery wastes studied as good sources of free radical scavengers. This work suggests the potential application of these by-products in the food industry and opens new pathways to valorize celery residues, contributing to the circular economy.
Collapse
|
20
|
Kang L, Liu H, Zhao D, Pan C, Wang C. Pesticide Residue Behavior and Risk Assessment in Celery after Se Nanoparticles Application. Foods 2021; 10:foods10091987. [PMID: 34574104 PMCID: PMC8470415 DOI: 10.3390/foods10091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigates pesticide levels in celery, and compares their degradation, dissipation, distribution, and dietary risk after spraying with selenium (Se) nanoparticles. Abamectin, imidacloprid, acetamiprid, thiamethoxam, and lambda-cyhalothrin were sprayed at 1.6, 6.8, 2.0, 1.0, and 0.7 g a.i. ha−1 followed by a 2 g·ha−1 Se nanoparticle application during the growing period. Thiamethoxam, abamectin, imidacloprid, lambda-cyhalothrin, and acetamiprid in celery degraded following a first order kinetic model after 2 g·ha−1 Se nanoparticles application. With the exception of acetamiprid, the half-lives of thiamethoxam, abamectin, imidacloprid, and lambda-cyhalothrin were reduced from 2.4, 0.5, 1.2, 4.2 days without Se nanoparticles application to 1.4, 0.2, 0.9, 3.7 days with the addition of Se nanoparticles (2 g·ha−1), respectively. The chronic dietary exposure risk probability (RQc) and the acute dietary exposure risk probability (RQa) of celery after Se nanoparticles application were within acceptable limits for consumption except for abamectin.
Collapse
Affiliation(s)
- Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Hejiang Liu
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Duoyong Zhao
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| | - Cheng Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.L.); (D.Z.)
- Correspondence: (C.P.); (C.W.); Tel.: +86-10-6273-1978 (C.P.); +86-991-4502-047 (C.W.); Fax: +86-10-6273-3620 (C.P.)
| |
Collapse
|
21
|
Turner L, Dawda D, Wagstaff C, Gawthrop F, Lignou S. Influence of harvest maturity on the aroma quality of two celery (Apium graveolens) genotypes. Food Chem 2021; 365:130515. [PMID: 34256223 DOI: 10.1016/j.foodchem.2021.130515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Celery is a fibrous horticultural vegetable grown globally and widely consumed due to its health benefits, distinct flavours and culinary versatility. Currently, few datasets examine its aroma development across maturity which could help guide growers towards optimising harvest times whilst identifying potential consequences of harvesting outside commercial maturity. Freeze-dried celery of two genotypes, selected for biochemical and sensory differences, were harvested at three time-points and investigated using solid-phase microextraction gas chromatography/mass spectrometry (SPME GC/MS) and gas chromatography/olfactometry (GC/O). Both maturity and genotype showed significant (P < 0.05) interactions between compounds, and harvest stage exhibited greater impact upon aroma quality than plant genotype. Thus, indicating that agronomic practice is key in determining crop quality. Monoterpenes, sesquiterpenes and phthalides begun to decrease once commercial maturity was reached, whereas alcohols were more prominent in post-mature celery. GC/O results confirmed the importance of phthalides to mature celery aroma and aroma differences caused by genotype.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK.
| | - Dhriti Dawda
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK.
| | - Frances Gawthrop
- A.L. Tozer Ltd, Pyports, Downside Bridge Road, Cobham KT11 3EH, UK
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK.
| |
Collapse
|
22
|
Oliveira CC, Correia CRD. Enantioselective Heck-Matsuda Reactions: From Curiosity to a Game-Changing Methodology. CHEM REC 2021; 21:2688-2701. [PMID: 34174155 DOI: 10.1002/tcr.202100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Indexed: 11/06/2022]
Abstract
The enantioselective palladium-catalyzed Heck arylation of olefins using arenediazonium salts is one of the last features in the evolution of a synthetic method known as the Heck-Matsuda reaction. This personal account highlights the development of the enantioselective Heck-Matsuda reaction in its initial stages, the challenges faced along the way, and the interesting findings that opened new synthetic opportunities, mainly from our laboratory, featuring the Heck-Matsuda reaction as a central player in the synthesis of bioactive and functional molecules.
Collapse
Affiliation(s)
- Caio C Oliveira
- Institute of Chemistry, University of Campinas, Josué de, Castro, 10384-612, São Paulo, Brazil
| | | |
Collapse
|
23
|
Turner L, Lignou S, Gawthrop F, Wagstaff C. Investigating the Relationship of Genotype and Climate Conditions on the Volatile Composition and Sensory Profile of Celery ( Apium graveolens). Foods 2021; 10:1335. [PMID: 34200561 PMCID: PMC8227241 DOI: 10.3390/foods10061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023] Open
Abstract
Apium graveolens is a biennial crop grown across the globe for its stalks, leaves and seed and is known for its distinct flavour and strong taste. Various extraction methods on fresh and dried celery and its essential oil are reported in the literature examining the aroma profile of this crop and demonstrating that its volatile composition is determined by variables including cultivar, season, geographical location and agronomic practices. This study investigated the volatile and sensory profile of eight celery genotypes grown over two years (2018 and 2020) in the same location in the UK. Solid-phase-micro-extraction followed by gas chromatography-mass spectrometry were used to determine the volatile compounds present in these genotypes and sensory evaluation using a trained panel to assess the sensory profile of fresh celery. Significant differences (p < 0.05) in the volatile composition and sensory profile were observed and influenced by both genotype and harvest year. Two genotypes exhibited similar aroma composition and sensory profile between the years. Celery samples harvested in 2018, which possessed air temperatures that were considerably warmer than in 2020, exhibited higher proportions of sesquiterpenes and phthalides and we hypothesise that the higher proportions were generated as a response to heat stress. Studying the relationship between the genotype and the environment will provide clear information to guide growers in how to consistently produce a higher quality crop.
Collapse
Affiliation(s)
- Lucy Turner
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| | - Frances Gawthrop
- A.L.Tozer Ltd., Pyports, Downside Bridge Road, Cobham KT11 3EH, UK;
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (L.T.); (C.W.)
| |
Collapse
|
24
|
Kokotkiewicz A, Badura A, Tabaczyńska Ż, Lorenc A, Buciński A, Luczkiewicz M. Optimization of Distillation Conditions for Improved Recovery of Phthalides from Celery (Apium graveolens L.) Seeds. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/137612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|