1
|
Jiang S, Guo T, Liu J, Liu T, Gong W. Biodegradable antimicrobial films prepared in a continuous way by melt extrusion using plant extracts as effective components. Food Chem 2025; 464:141643. [PMID: 39447263 DOI: 10.1016/j.foodchem.2024.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Packaging plays an important role in delaying food spoilage. However, conventional packaging films do not have antimicrobial properties. Films with antimicrobial components are receiving growing research interest. However, many of the reported studies use conventional non-degradable polymers during film preparation, posing a significant threat to the environment and sustainable development. Furthermore, conventional inorganic antibacterial agents are commonly used during film preparation, posing a risk to food safety. In this study, antibacterial compounds were extracted from diverse plants, and then biodegradable antimicrobial films were prepared in a continuous way via the melt extrusion method. Especially, films prepared using Vernicia fordii and Phyllanthus urinaria extracts showed effective antibacterial activities against common foodborne pathogens. This study is the first to prepare antibacterial films in a continuous way using natural plant extracts as the effective components, and may shed new light on future research in preparing green antibacterial films via environment-friendly approaches.
Collapse
Affiliation(s)
- Shanxue Jiang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Tongming Guo
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jinhao Liu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tingwu Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China.
| |
Collapse
|
2
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Egorov AR, Khubiev OM, Golubev RA, Semenkova DI, Nikolaev AA, Maharramov AM, Mammadova GZ, Liu W, Tskhovrebov AG, Kritchenkov AS. New Antibacterial and Antioxidant Chitin Derivatives: Ultrasonic Preparation and Biological Effects. Polymers (Basel) 2024; 16:2509. [PMID: 39274141 PMCID: PMC11398081 DOI: 10.3390/polym16172509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This work focuses on the first use of ultrasonic phenol-ene coupling as a polymer analogous transformation. The ultrasonic reaction was introduced into chitin chemistry, resulting in the fast and convenient preparation of new water-soluble cationic chitin derivatives. Since water-soluble derivatives of fully deacetylated chitin are poorly described in the literature, the synthesis of each new type of these derivatives is a significant event in polysaccharide chemistry. Polycations, or cationic polymers, are of particular interest as antibacterial agents. Consequently, the resulting polymers were tested for their antibacterial activity and toxicity. We found that the highly substituted polymer of medium molecular weight exhibited the most pronounced in vitro antibacterial effect. We prepared nanoparticles using the ionic gelation technique. The most effective in vitro antibacterial chitin-based systems were tested in vivo in rats. These tests demonstrated outstanding antibacterial effects combined with an absence of toxicity. Additionally, we found that the resulting polymers, unlike their nanoparticle counterparts, also exhibited strong antioxidant effects. In summary, we demonstrated the effectiveness of ultrasound in polymer chemistry and highlighted the importance of the sonochemical approach in the chemical modification of polysaccharides. This approach enables the synthesis of derivatives with improved physicochemical and biological properties.
Collapse
Affiliation(s)
- Anton R Egorov
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Omar M Khubiev
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Roman A Golubev
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, General Lyudnikov Ave. 13, 210009 Vitebsk, Belarus
| | - Daria I Semenkova
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, General Lyudnikov Ave. 13, 210009 Vitebsk, Belarus
| | - Andrey A Nikolaev
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Abel M Maharramov
- Organic Chemistry Department, Baku State University, Z. Khalilov Street, 23, 1148 Baku, Azerbaijan
| | - Gunay Z Mammadova
- Organic Chemistry Department, Baku State University, Z. Khalilov Street, 23, 1148 Baku, Azerbaijan
| | - Wanjun Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Alexander G Tskhovrebov
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Department of Human Ecology and Bioelementology, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, General Lyudnikov Ave. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
4
|
Gao Y, Gong X, Ruan Q, Zhang C, Zhao K. Antibacterial Activity of Novel Agent N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan against Streptococcus mutans. Molecules 2024; 29:4126. [PMID: 39274979 PMCID: PMC11397297 DOI: 10.3390/molecules29174126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Dental caries (DC) is one of the most common oral diseases and is mainly caused by Streptococcus mutans (S. mutans). The use of antibiotics against S. mutans usually has side effects, including developing resistance. N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), a natural product, has great potential utility in antibacterial agents owing to its low toxicity and good biocompatibility. Thus, the purpose of the present study was to explore the antimicrobial activity of N-2-HACC against S. mutans through the permeability of the cell wall, integrity of cell membrane, protein and nucleic acid synthesis, respiratory metabolism, and biofilm formation. Our results confirmed that the MIC of N-2-HACC against S. mutans was 0.625 mg/mL with a 90.01 ± 1.54% inhibition rate. SEM observed the formation of cavities on the surface of S. mutans after 12 h N-2-HACC treatment. The level of alkaline phosphatase (AKP) activity was higher in the N-2-HACC treatment group than in the control group, indicating that N-2-HACC can improve the permeability of the cell wall. Also, N-2-HACC treatment can destroy the cell membrane of S. mutans by increasing conductivity and absorbance at 260 nm, decreasing cell metabolic activity, and enhancing the fluorescence at 488 nm. Respiratory metabolism revealed that the activities of the Na+-K+-ATP enzyme, pyruvate kinase (PK), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were decreased after N-2-HACC treatment, revealing that N-2-HACC can inhibit glycolysis and the tricarboxylic acid cycle (TCA cycle) of S. mutans. Moreover, N-2-HACC can also decrease the contents of the nucleic acid and solution protein of S. mutans, interfere with biofilm formation, and decrease the mRNA expression level of biofilm formation-related genes. Therefore, these results verify that N-2-HACC has strong antibacterial activity against S. mutans, acting via cell membrane integrity damage, increasing the permeability of cell walls, interfering with bacterial protein and nucleic acid synthesis, perturbing glycolysis and the TCA cycle, and inhibiting biofilm formation. It is suggested that N-2-HACC may represent a new potential synthetically modified antibacterial material against S. mutans.
Collapse
Affiliation(s)
- Yuan Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Xiaochen Gong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Qicheng Ruan
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Taher MA, Dawood DH, Selim MAE, Amin BH, Elsherbiny EA. Effect of Chitosan/Gum Arabic Blends Enriched by Sodium Nitroprusside or Methyl Salicylate on the Storability and Antioxidant Activity of Tomato Fruit. Polymers (Basel) 2024; 16:1518. [PMID: 38891464 PMCID: PMC11174673 DOI: 10.3390/polym16111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of methyl salicylate (MeSA) or sodium nitroprusside (SNP) in chitosan (CS)/Gum Arabic (GA) mixture on physio-chemical characteristics and antioxidant status during the postharvest ripening of green tomato fruits was studied. CS/GA-MeSA at a 1 mM formulation was the best treatment to retard firmness and titratable acidity (TA) losses. Moreover, this formulation retarded pigmentation progress where it had the lowest significant values of total carotenes (TCs) and lycopene (LYP) contents until the 15th day of the storage period, as well as efficiently faced the rise in malondialdehyde (MDA) levels. Moreover, peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), and phenylalanine ammonia-lyase (PAL) activities of tomatoes treated with CS/GA-SNP at 2 mM were significantly better than that of control in the primary stages of storage. CS/GA-SNP at a 2 mM formulation showed an extremely high significant content of total polyphenol (TP) in the early stage of storage, while CS/GA and CS/GA-MeSA at 1 and 2 mM accumulated higher significant TP contents than uncoated fruits at the late stage of storage. All formulations were characterized by FTIR spectroscopy. Furthermore, the polymer formulations exhibited strong antifungal activity against Alternaria alternata and Botrytis cinerea as major pathogens of postharvest tomatoes. Transmission electron microscope (TEM) observations for the mycelia of both fungi treated by CS/GA-MeSA at 2 mM revealed serious ultrastructural damage, including distortion of the cell wall and cell membrane and degradation of cytoplasmic organelles.
Collapse
Affiliation(s)
- Mohamed A. Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Dawood H. Dawood
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed A. E. Selim
- Agricultural Microbiology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Basma H. Amin
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt;
| | | |
Collapse
|
6
|
Al-Ahmary KM, Al-Mhyawi SR, Khan S, Alrashdi KS, Shafie A, Babalghith AO, Ashour AA, Alshareef TH, Moglad E. Medicinal and chemosensing applications of chitosan based material: A review. Int J Biol Macromol 2024; 268:131493. [PMID: 38608983 DOI: 10.1016/j.ijbiomac.2024.131493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Chitosan (CTS), has emerged as a highly intriguing biopolymer with widespread applications, drawing significant attention in various fields ranging from medicinal to chemosensing. Key characteristics of chitosan include solubility, biocompatibility, biodegradability and reactivity, making it versatile in numerous sectors. Several derivatives have been documented for their diverse therapeutic properties, such as antibacterial, antifungal, anti-diabetic, anti-inflammatory, anticancer and antioxidant activities. Furthermore, these compounds serve as highly sensitive and selective chemosensor for the detection of various analytes such as heavy metal ions, anions and various other species in agricultural, environmental and biological matrixes. CTS derivatives interacting with these species and give analytical signals. In this review, we embark on an exploration of the latest advancements in CTS-based materials, emphasizing their noteworthy contributions to medicinal chemistry spanning the years from 2021 to 2023. The intrinsic biological and physiological properties of CTS make it an ideal platform for designing materials that interact seamlessly with biological systems. The review also explores the utilization of chitosan-based materials for the development of colorimetric and fluorimetric chemosensors capable of detecting metal ions, anions and various other species, contributing to advancements in environmental monitoring, healthcare diagnostics, and industrial processes.
Collapse
Affiliation(s)
| | - Saedah R Al-Mhyawi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Kamelah S Alrashdi
- Department of Chemistry, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 1109, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tasneem H Alshareef
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, Saudi Arabia
| |
Collapse
|
7
|
Cáceres-Wenzel MI, Bernassani FN, Fuchs JS, Cortón E, Cochón AC. Mixture toxicity study of two metal oxide nanoparticles and chlorpyrifos on Eisenia andrei earthworms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35470-35482. [PMID: 38730216 DOI: 10.1007/s11356-024-33604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Co-exposure soil studies of pollutants are necessary for an appropriate ecological risk assessment. Here, we examined the effects of two-component mixtures of metal oxide nanoparticles (ZnO NPs or goethite NPs) with the insecticide chlorpyrifos (CPF) under laboratory conditions in short-term artificial soil assays using Eisenia andrei earthworms. We characterized NPs and their mixtures by scanning electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential, and evaluated effects on metal accumulation, oxidative stress enzymes, and neurotoxicity related biomarkers in single and combined toxicity assays. Exposure to ZnO NPs increased Zn levels compared to control in single and combined exposure (ZnO NPs + CPF) at 72 h and 7 days, respectively. In contrast, there was no indication of Fe increase in organisms exposed to goethite NPs. One of the most notable effects on oxidative stress biomarkers was produced by single exposure to goethite NPs, showing that the worms were more sensitive to goethite NPs than to ZnO NPs. Acetylcholinesterase and carboxylesterase activities indicated that ZnO NPs alone were not neurotoxic to earthworms, but similar degrees of inhibition were observed after single CPF and ZnO NPs + CPF exposure. Differences between single and combined exposure were found for catalase and superoxide dismutase (goethite NPs) and for glutathione S-transferase (ZnO NPs) activities, mostly at 72 h. These findings suggest a necessity to evaluate mixtures of NPs with co-existing contaminants in soil, and that the nature of metal oxide NPs and exposure time are relevant factors to be considered when assessing combined toxicity, as it may have an impact on ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Marcela I Cáceres-Wenzel
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina.
| | - Florencia N Bernassani
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Julio S Fuchs
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Eduardo Cortón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Adriana C Cochón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, 1428, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
8
|
Koirala P, Bhandari Y, Khadka A, Kumar SR, Nirmal NP. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int J Biol Macromol 2024; 262:130008. [PMID: 38331073 DOI: 10.1016/j.ijbiomac.2024.130008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Yash Bhandari
- Department of Nutrition and Dietetics, Central Campus of Technology, Tribhuvan University, Nepal
| | - Abhishek Khadka
- Rural Reconstruction Nepal, 288 Gairidhara Road 2, Kathmandu Metropolitan City, Bagmati, Nepal
| | - Simmi Ranjan Kumar
- Department of Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
9
|
Wang L, Guo R, Liang X, Ji Y, Zhang J, Gai G, Guo Z. Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Mar Drugs 2023; 21:606. [PMID: 38132927 PMCID: PMC10745101 DOI: 10.3390/md21120606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 μg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China;
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Guowei Gai
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (L.W.); (R.G.); (Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
11
|
Ansari MA. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2565. [PMID: 37447126 DOI: 10.3390/plants12132565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Globally, food safety and security are receiving a lot of attention to ensure a steady supply of nutrient-rich and safe food. Nanotechnology is used in a wide range of technical processes, including the development of new materials and the enhancement of food safety and security. Nanomaterials are used to improve the protective effects of food and help detect microbial contamination, hazardous chemicals, and pesticides. Nanosensors are used to detect pathogens and allergens in food. Food processing is enhanced further by nanocapsulation, which allows for the delivery of bioactive compounds, increases food bioavailability, and extends food shelf life. Various forms of nanomaterials have been developed to improve food safety and enhance agricultural productivity, including nanometals, nanorods, nanofilms, nanotubes, nanofibers, nanolayers, and nanosheets. Such materials are used for developing nanofertilizers, nanopesticides, and nanomaterials to induce plant growth, genome modification, and transgene expression in plants. Nanomaterials have antimicrobial properties, promote plants' innate immunity, and act as delivery agents for active ingredients. Nanocomposites offer good acid-resistance capabilities, effective recyclability, significant thermostability, and enhanced storage stability. Nanomaterials have been extensively used for the targeted delivery and release of genes and proteins into plant cells. In this review article, we discuss the role of nanotechnology in food safety and security. Furthermore, we include a partial literature survey on the use of nanotechnology in food packaging, food safety, food preservation using smart nanocarriers, the detection of food-borne pathogens and allergens using nanosensors, and crop growth and yield improvement; however, extensive research on nanotechnology is warranted.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
12
|
Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC. Selenium nanoparticles enhanced potato starch film for active food packaging application. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bongekile K. Ndwandwe
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein South Africa
| | - Soraya P. Malinga
- Department of Chemical Sciences University of Johannesburg Doornfontein South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences University of Pretoria Hatfield South Africa
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein South Africa
| |
Collapse
|
13
|
Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Egorov AR, Khubiev O, Rubanik VV, Rubanik VV, Lobanov NN, Savilov SV, Kirichuk AA, Kritchenkov IS, Tskhovrebov AG, Kritchenkov AS. The first selenium containing chitin and chitosan derivatives: Combined synthetic, catalytic and biological studies. Int J Biol Macromol 2022; 209:2175-2187. [PMID: 35513092 DOI: 10.1016/j.ijbiomac.2022.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022]
Abstract
Ultrasonic approach to the synthesis of the first selenium-containing derivatives of chitin and chitosan has been developed. The synthetic procedure is simple, provides high yields, does not require harsh conditions, and uses water as the reaction medium. The elaborated chitin and chitosan derivatives and their based nanoparticles are non-toxic and possess high antibacterial and antifungal activity. Their antimicrobial activity exceeds the effect of the classic antibiotics (Ampicillin and Gentamicin) and the antifungal drug Amphotericin B. The obtained selenium-containing cationic chitin and chitosan derivatives exhibit a high transfection activity and are promising gene delivery vectors. Nanoparticles of the synthesized polymers are highly efficient catalysts for the oxidation of 1-phenylethyl alcohol to acetophenone by bromine at room temperature.
Collapse
Affiliation(s)
- Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Omar Khubiev
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Serguei V Savilov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Alexander G Tskhovrebov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Faculty of Science, Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| |
Collapse
|
15
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
17
|
Ling X, Yan Z, Liu Y, Lu G. Transport of nanoparticles in porous media and its effects on the co-existing pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117098. [PMID: 33857878 DOI: 10.1016/j.envpol.2021.117098] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are widely used in daily life owing to their superior characteristics. The release and transport of nanoparticles (NPs) in the environment is inevitable during their entire life cycle, posing a risk to the aquatic environment. Thus, considerable attention has been focused on the fate and behavior of NPs in porous media, as well as the co-transport of NPs with other pollutants. In this review, current knowledge about the retention and transport behavior of NPs in porous media is summarized. NP transport in porous media is dominated by various internal and external factors, including the characteristics of NPs, porous media, and water flow. Generally, NPs with high density, small particle size, and surface coating are easily transported in porous media with the characteristics of large size, smooth surface, and low water saturation. Meanwhile, high pH and velocity, low temperature, and natural organic matter-containing fluids are also conducive to NP transport. Aggregation, adsorption, straining, and blocking are the primary mechanisms by which NPs affect the transport of co-existing pollutants in porous media. Current research on NP transport has been performed predominantly using modal porous media (e.g., sand and glass beads); however, there is a large gap between simulated and natural porous media. Further studies should focus on the transport, fate, and interaction of NPs and coexistent pollutants in natural porous media, as well as the coupling mechanisms under actual environmental conditions.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|