1
|
da Silva Martins ICV, Massironi KC, Lopes ICS, da Silva EO, de Matos Macchi B, Mafra D, do Nascimento JLM. On the Path to a Sustainable Diet: Native Brazilian Fruits of the Caryocar spp. (Pequi and Piquiá) and Potential Health Benefits in Chronic Kidney Disease. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:112. [PMID: 40285980 DOI: 10.1007/s11130-025-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
The Caryocar genus includes Caryocar brasiliense, Caryocar villosum, and Caryocar coriaceum, known as pequi, piquiá, and piqui, respectively. They grow in the Cerrado and Amazonian biomes, significantly impacting the local economy. Caryocar spp. fruits are rich in carotenoids, lipids (oleic and palmitic acid), dietary fiber, zinc, magnesium, calcium, and polyphenols. These bioactive compounds potentially prevent and treat several non-communicable diseases, including chronic kidney disease (CKD). This narrative review discusses the potential advantages of Caryocar spp. including antioxidant and anti-inflammatory properties and the effects on renal insufficiency. The literature review shows that nutritional interventions are essential for CKD patients. Previous studies with Caryocar spp. demonstrate that cardiovascular protective effects due to their antioxidant and anti-inflammatory properties. Additionally, it emphasizes the importance of biodiversity in human health promotion. In conclusion, this review offers a theoretical foundation for Caryocar spp. as a potential nutraceutical in the context of CKD and highlights its value as a key component of a sustainable diet.
Collapse
Affiliation(s)
| | | | - Izabella Carla Silva Lopes
- Programa de Pós-graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Barbarella de Matos Macchi
- Programa de Pós-graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Denise Mafra
- Programa de Pós-graduação em Ciências Médicas, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - José Luiz Martins do Nascimento
- Programa de Pós-graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Melo JOF, Conchinhas B, Leitão AEB, Ramos ALCC, de Sousa IMN, Ferreira RMDSB, Ribeiro AC, Batista-Santos P. Phenolic Compounds Characterization of Caryocar brasiliense Peel with Potential Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2016. [PMID: 39124134 PMCID: PMC11314331 DOI: 10.3390/plants13152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
The pequi (Caryocar brasiliense) fruit peel, despite being frequently discarded, has a high content of bioactive compounds, and therefore has a high nutritional value. The present study aimed to explore the bioactivities in the pequi peel, particularly their potential health benefits at the level of antioxidant activity. The exploitation of this fruit could also present significant economic benefits and applications of pequi by-products would represent a reduction in waste, having a positive impact on the environment. Phenolic compounds present in the pequi exocarp and external mesocarp were identified by paper spray mass spectrometry (PS-MS) and quantified by HPLC. The total phenolic content (TPC) along with the amount of 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and the amount of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) were also determined in peel extracts. Epicatechin was the most abundant phenolic compound found, followed by the caffeic, salicylic, and gallic acids. In addition, fingerprinting revealed compounds related to several beneficial health effects. In short, the results obtained were encouraging for potential applications of pequi peel in the field of functional foods.
Collapse
Affiliation(s)
- Júlio Onésio Ferreira Melo
- Departamento Ciências Exatas e Biológicas, Universidade Federal de São João Del-Rei (UFSJ), Sete Lagoas 35701-970, MG, Brazil
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
| | - Beatriz Conchinhas
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
| | - António Eduardo Baptista Leitão
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Isabel Maria Nunes de Sousa
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ricardo Manuel de Seixas Boavida Ferreira
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ana Cristina Ribeiro
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- Faculdade Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Paula Batista-Santos
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
3
|
Diniz LA, Ferreira LDAQ, Ribeiro RDB, de Jesus SLG, Anestino TA, Caldeira ASP, Souto GR, de Avelar GF, Amaral FA, Ferreira MVL, Madeira MFM, Braga FC, Diniz IMA. Exploring the association between a standardized extract of pequi peels (Caryocar brasiliense Cambess) and blue light as a photodynamic therapy for treating superficial wounds. Photochem Photobiol 2024; 100:712-724. [PMID: 37909171 DOI: 10.1111/php.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Natural products derived from plants can be used as photosensitizers for antimicrobial photodynamic therapy (aPDT) combining key therapeutic strategies for tissue repair while controlling microorganisms' growth. We investigated a standardized extract of pequi peels (Caryocar brasiliense Cambess) as a brownish natural photosensitizer for aPDT using blue light. Three concentrations of the pequi extract (PE; 10, 30, or 90 μg/mL) were tested solely or associated with blue laser (445 nm, 100 mW, 138 J/cm2, 6 J, 60 s). In vitro, we quantified reactive oxygen species (ROS), assessed skin keratinocytes (HaCat) viability and migration, and aPDT antimicrobial activity on Streptococcus or Staphylococcus strains. In vivo, we assessed wound closure for the most active concentration disclosed by the in vitro assay (30 μg/mL). Upon aPDT treatments, ROS were significantly increased in cell monolayers regardless of PE concentration. PE at low doses stimulates epithelial cells. Although PE stimulated cellular migration, aPDT was moderately cytotoxic to skin keratinocytes, particularly at the highest concentration. The antimicrobial activity was observed for PE at the lowest concentration (10 μg/mL) and mostly at PE 10 μg/mL and 30 μg/mL when used as aPDT photosensitizers. aPDT with PE 30 μg/mL presents antimicrobial activity without compromising the initial phases of skin repair.
Collapse
Affiliation(s)
- Luiza Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Almeida Queiroz Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela de Brito Ribeiro
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah Luiza Galvão de Jesus
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thales Augusto Anestino
- Department of Microbiology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alisson Samuel Portes Caldeira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Vice Directorate of Research, René Rachou Institute-Fiocruz Minas, Belo Horizonte, Brazil
| | - Giovanna Ribeiro Souto
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Dentistry, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - Gleide Fernandes de Avelar
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- LASER Biotechnologies, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Monteiro-Alfredo T, Macedo MLR, de Picoli Souza K, Matafome P. New Therapeutic Strategies for Obesity and Its Metabolic Sequelae: Brazilian Cerrado as a Unique Biome. Int J Mol Sci 2023; 24:15588. [PMID: 37958572 PMCID: PMC10648839 DOI: 10.3390/ijms242115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Brazil has several important biomes holding impressive fauna and flora biodiversity. Cerrado being one of the richest ones and a significant area in the search for new plant-based products, such as foods, cosmetics, and medicines. The therapeutic potential of Cerrado plants has been described by several studies associating ethnopharmacological knowledge with phytochemical compounds and therapeutic effects. Based on this wide range of options, the Brazilian population has been using these medicinal plants (MP) for centuries for the treatment of various health conditions. Among these, we highlight metabolic diseases, namely obesity and its metabolic alterations from metabolic syndrome to later stages such as type 2 diabetes (T2D). Several studies have shown that adipose tissue (AT) dysfunction leads to proinflammatory cytokine secretion and impaired free fatty acid (FFA) oxidation and oxidative status, creating the basis for insulin resistance and glucose dysmetabolism. In this scenario, the great Brazilian biodiversity and a wide variety of phytochemical compounds make it an important candidate for the identification of pharmacological strategies for the treatment of these conditions. This review aimed to analyze and summarize the current literature on plants from the Brazilian Cerrado that have therapeutic activity against obesity and its metabolic conditions, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
5
|
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, Agliata J, Li Q, Wan C, Somavat P. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. ULTRASONICS SONOCHEMISTRY 2023; 95:106418. [PMID: 37094478 PMCID: PMC10149314 DOI: 10.1016/j.ultsonch.2023.106418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Lucas Kuehnel
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Qianwei Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
6
|
Zhang J, Li Y, Li Y, Li Y, Gong X, Zhou L, Xu J, Guo Y. Structure, selenization modification, and antitumor activity of a glucomannan from Platycodon grandiflorum. Int J Biol Macromol 2022; 220:1345-1355. [PMID: 36087750 DOI: 10.1016/j.ijbiomac.2022.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
Platycodon grandiflorum is consumed popularly as a nutritional and healthy plant in East Asia, which has multiple medicinal functions. As an exploration to elucidate the beneficial ingredients, an acetylated glucomannan (PGP40-1) was purified from P. grandiflorum. Structural analysis showed that PGP40-1 was composed of →4)-β-Manp-(1→, →4)-β-Glcp-(1→, →6)-β-Glcp-(1→, and terminal α-Glcp-(1→. PGP40-1 was found to possess weak antitumor activity in vitro, which was thus modified to afford a selenized polysaccharide (Se-PGP40-1) by the HNO3/Na2SeO3 method. Se-PGP40-1 showed significant antitumor activity in cell and zebrafish models, which could inhibit tumor proliferation and migration by inducing cell apoptosis and blocking angiogenesis. The research not only clarifies the ingredients of P. grandiflorum with high economical value, but also affords a potential antitumor agent originating from the plant polysaccharide.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuejun Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaotang Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Linan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
7
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
8
|
Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. ACTA ACUST UNITED AC 2021; 31:505-518. [PMID: 34548709 PMCID: PMC8447804 DOI: 10.1007/s43450-021-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
Although Brazil gathers two fundamental features to occupy a leading position on the development of biodiversity-based medicines, the largest flora on earth and a broad tradition on the use of medicinal plants, the number of products derived from the national genetic heritage is so far modest, either as single drugs or as herbal medicines. This article highlights some aspects that may have contributed to the low rates of success and proposes new insights for innovation. We initially approach the use of medicinal plants in Brazil, molded by its ethnic diversity, and the development of the local pharmaceutical industry. A discussion of some governmental initiatives to support plant-based drug development is then presented. Employing the economic concept of “middle-income trap,” we further propose that Brazil is stuck in a “middle-level science trap,” since the increase in the number of scientific publications that launched the country to an intermediate publishing position has not been translated into drug development. Two new approaches to escape from this trap are presented, which may result in innovative drug development. The first is based on the exploitation of the antifragility properties of herbal products aiming to investigate non-canonical pharmacodynamics mechanisms of action, aligned with the concepts of system biology. The second is the manufacture of herbal products based on the circular economy principles, including the use of byproducts for the development of new therapeutical agents. The adoption of these strategies may result in innovative phytomedicines, with global competitiveness.
Collapse
|