1
|
Han H, Lee E, Kweon M. Predominant factors in milling and wheat variety influencing particle size and quality of whole wheat flour. J Food Sci 2025; 90:e70191. [PMID: 40285467 PMCID: PMC12032541 DOI: 10.1111/1750-3841.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the effects of mill type, milling conditions, and wheat variety on the mean particle size, particle size distribution, and quality characteristics of whole wheat flour (WWFs). Three wheat varieties (Goso [GS], Hojoong [HJ], and Joongmo [JM]), representing varying protein contents, were milled using two types of mills: an ultra-centrifugal mill (UM) and a cutting mill (CM). The milling conditions were adjusted based on the sieve openings (0.5 and 1.0 mm) and rotor speeds (UM: 6000 and 14,000 rpm; CM: 2000 and 4000 rpm). The mean particle size and particle size distribution of the WWFs were significantly influenced by the mill type, milling conditions, and their interactions. UM and CM produced distinct particle size distributions, with CM yielding a broader range and a more pronounced bimodal distribution. Furthermore, the type of mill and milling conditions, along with their interactions, affected the damaged starch content, water and sodium carbonate solvent retention capacity, pasting properties, and antioxidant activity of the WWFs. The wheat variety influenced parameters such as moisture, ash, damaged starch content, sodium dodecyl sulfate sedimentation volume, rapid viscoanalyzer (RVA) pasting properties, total phenolic content, and antioxidant activity. Notably, selecting an appropriate mill type and milling conditions is critical for producing WWFs with high gluten strength from high-protein wheat varieties. PRACTICAL APPLICATION: Controlling particle size through milling optimization is essential for producing high-quality whole wheat flour, particularly from wheat varieties with high protein content.
Collapse
Affiliation(s)
- Hyeonsu Han
- Department of Food Science and NutritionPusan National UniversityBusanSouth Korea
| | - Eunji Lee
- Department of Food Science and NutritionPusan National UniversityBusanSouth Korea
| | - Meera Kweon
- Department of Food Science and NutritionPusan National UniversityBusanSouth Korea
- Kimchi Research InstitutePusan National UniversityBusanSouth Korea
| |
Collapse
|
2
|
Soncin Alfaro GM, McGee RJ, Kiszonas AM. Influence of genotype and environment on field pea composition and milling traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40091715 DOI: 10.1002/jsfa.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The rise in popularity of field peas (Pisum sativum) can be linked to their advantageous health and nutritional properties. Field pea seeds, yellow or green, are often consumed as an ingredient after being dehulled, split, and ground into flour. This study investigated the effects of genotype, growing location, and their interaction on milling of peas and on the chemical and physical characteristics of pea seeds by testing eight genotypes of yellow peas grown in four different locations. RESULTS The growing location influenced the contents of ash, fat, and protein in the seeds, measured by near-infrared reflectance spectroscopy. A positive correlation was observed between seed weight and surface area, evaluated by image analysis. Seeds were milled with an ultracentrifugal mill for measurement of dehulling and splitting efficiency (DSE), and quantification of coarse flour and fine flour yield. Positive correlations were observed between both DSE and coarse fraction and DSE and flour yield. Genotype and location affected DSE and coarse fraction, with a greater influence from the growing location. Fine flour yield was impacted by pea genotype. The milling traits had significant genotype × location interaction. CONCLUSION This study demonstrated that genotype and growing location influenced the milling of yellow peas and the fine flour yield. This information can assist breeding programs to select cultivars to achieve a more efficient milling and improve quality and use of yellow peas. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Rebecca J McGee
- United States Department of Agriculture, Agriculture Research Service, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, USA
| | - Alecia M Kiszonas
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Laboratory, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Zhang M, Han Y, Liu H, Chen B, Li Q, Li C. Microstructure and digestive behaviors of inner, middle, and outer layers of pork during heating. Food Chem 2024; 458:140263. [PMID: 38981396 DOI: 10.1016/j.foodchem.2024.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
To investigate the effects of heat treatment on the microstructure and digestive behaviors of pork, meat samples were subjected to a 100 °C water bath for 26 min. The inner, medium, and outer layers were assigned and analyzed according to the temperature gradient. Compared to the raw samples, significant changes were observed in the microscopic structure of pork. As the temperature increased, the myofibrillar structure of pork underwent increasingly severe damage and the moisture content decreased significantly (P < 0.05). Moreover, differential peptides were identified in digested products of the inner, middle, and outer layers of cooked pork, which are mainly derived from the structural proteins of pork. The outcomes of molecular docking indicated that a greater number of hydrogen bonds were formed between myosin and the digestive enzyme in the inner layer, rather than other parts, contributing to the transformation of digestive behaviors.
Collapse
Affiliation(s)
- Miao Zhang
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Shanghai Institute for Food and Drug Control, Nanjing 200233, China
| | - Hui Liu
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Chen
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Qian Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Manouel T, Subasi BG, Abdollahi M. Impacts of Harvest Year and Cultivation Location on Off-Flavor Compounds and Functionality of Pea Protein Isolate. Foods 2024; 13:3423. [PMID: 39517206 PMCID: PMC11545078 DOI: 10.3390/foods13213423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of four different harvest years and two cultivation locations (CLs) of pea seeds on their protein wet fractionation yield, volatile and non-volatile beany flavors, and functionality were investigated. Both harvest years and CLs significantly affected protein recovery, but protein purity was primarily influenced by CLs. Seed age emerged as a dominant factor causing the reduction in linolenic/linoleic acid content and lipoxygenase (LOX) activity which surpassed the effect of harvest years in the seeds but not in their proteins. CL significantly affected fatty acid composition in both seeds and proteins, whereas its effect on LOX activity was discernible only in the proteins. Volatile beany compounds in the proteins were affected by both harvest years and CLs, correlating with their polyunsaturated fatty acid (PUFA) content and LOX activity. Both factors minimally impacted the emulsification capacity of the proteins but imposed a significant effect on their rheological properties. Altogether, the results revealed that seed crop years and especially locations affect pea protein quality, calling for proper adaptation strategies.
Collapse
Affiliation(s)
| | | | - Mehdi Abdollahi
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Olakanmi SJ, Jayas DS, Paliwal J, Aluko RE. Impact of Particle Size on the Physicochemical, Functional, and In Vitro Digestibility Properties of Fava Bean Flour and Bread. Foods 2024; 13:2862. [PMID: 39335791 PMCID: PMC11431143 DOI: 10.3390/foods13182862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Fava beans, renowned for their nutritional value and sustainable cultivation, are pivotal in various food applications. This study examined the implications of varying the particle size on the functional, physicochemical, and in vitro digestibility properties of fava bean flour. Fava bean was milled into 0.14, 0.50, and 1.0 mm particle sizes using a Ferkar multipurpose knife mill. Physicochemical analyses showed that the 0.14 mm flour had more starch damage, but higher protein and fat contents. Functionality assessments revealed that the finer particle sizes had better foaming properties, swelling power, and gelation behavior than the coarse particle size. Emulsion capacity showed that for all the pH conditions, 1.00 mm particle size flour had a significantly higher (p < 0.05) oil droplet size, while the 0.5 and 0.14 mm flours had smaller and similar oil droplet sizes. Moreover, in vitro digestibility assays resulted in improved starch digestion (p ˂ 0.05) with the increase in flour particle size. Varying the particle size of fava bean flour had less impact on the in vitro digestibility of the bread produced from wheat-fava bean composite flour, with an average of 84%. The findings underscore the critical role of particle size in tailoring fava bean flour for specific culinary purposes and nutritional considerations.
Collapse
Affiliation(s)
- Sunday J. Olakanmi
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (S.J.O.); (J.P.)
| | - Digvir S. Jayas
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (S.J.O.); (J.P.)
- President’s Office, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (S.J.O.); (J.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
6
|
Vurro F, De Angelis D, Squeo G, Caponio F, Summo C, Pasqualone A. Exploring Volatile Profiles and De-Flavoring Strategies for Enhanced Acceptance of Lentil-Based Foods: A Review. Foods 2024; 13:2608. [PMID: 39200535 PMCID: PMC11353891 DOI: 10.3390/foods13162608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Lentils are marketed as dry seeds, fresh sprouts, flours, protein isolates, and concentrates used as ingredients in many traditional and innovative food products, including dairy and meat analogs. Appreciated for their nutritional and health benefits, lentil ingredients and food products may be affected by off-flavor notes described as "beany", "green", and "grassy", which can limit consumer acceptance. This narrative review delves into the volatile profiles of lentil ingredients and possible de-flavoring strategies, focusing on their effectiveness. Assuming that appropriate storage and processing are conducted, so as to prevent or limit undesired oxidative phenomena, several treatments are available: thermal (pre-cooking, roasting, and drying), non-thermal (high-pressure processing, alcohol washing, pH variation, and addition of adsorbents), and biotechnological (germination and fermentation), all of which are able to reduce the beany flavor. It appears that lentil is less studied than other legumes and more research should be conducted. Innovative technologies with great potential, such as high-pressure processing or the use of adsorbents, have been not been explored in detail or are still totally unexplored for lentil. In parallel, the development of lentil varieties with a low LOX and lipid content, as is currently in progress for soybean and pea, would significantly reduce off-flavor notes.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari ‘Aldo Moro’, Via Amendola, 165/a, 70126 Bari, Italy; (F.V.); (D.D.A.); (G.S.); (C.S.)
| |
Collapse
|
7
|
Deng L, Chen Q, Ohm JB, Islam S, Rao J, Jin Z, Xu M. Upcycling soybean meal through enzymatic conversion of insoluble fiber into soluble dietary fiber enhanced by ball milling. J Food Sci 2024; 89:4871-4883. [PMID: 39004871 DOI: 10.1111/1750-3841.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Insoluble dietary fiber (IDF) in soybean meal, due to the insolubility, is one of the major impediments to upcycle the soybean meal for its value-added use. This study converted IDF to soluble dietary fiber (SDF) using ball milling and enzymatic hydrolysis of the IDF. The impact of ball milling and enzymatic hydrolysis on the physicochemical and functional properties of SDF was evaluated. Cellulase, hemicellulase, xylanase, galacturonase, and arabinofuranosidase were employed for hydrolyzing IDF. The results showed that ball milling significantly reduced the particle size of IDF, facilitating enhanced enzymatic hydrolysis and resulting in SDF with lower molecular weight and varied monosaccharide composition. The synergistic effect of ball milling and enzymatic processes with combination of cellulase-xylanase-galacturonase was evident by the improved conversion rates (69.8%) and altered weight-averaged molecular weight (<5900 Da) of the resulting SDF. Rheological and microstructural analyses of the SDF gel indicated that specific enzyme combinations led to SDF gels with distinct viscoelastic properties, pore sizes, and functional capabilities, suitable for varied applications in the food and pharmaceutical sectors. This comprehensive evaluation demonstrates the potential of optimized physical bioprocessing techniques in developing functional ingredients with tailored properties for industrial use.
Collapse
Affiliation(s)
- Lingzhu Deng
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Qiong Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jae-Bom Ohm
- Edward T. Schafer Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, USDA-ARS, Fargo, North Dakota, USA
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
8
|
Lee DJ, Cheng F, Li D, Ding K, Carlin J, Moore E, Ai Y. Important roles of coarse particles in pasting and gelling performance of different pulse flours under high-temperature heating. Food Chem 2024; 447:138896. [PMID: 38458133 DOI: 10.1016/j.foodchem.2024.138896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Dehulled pea, lentil, and faba bean grains were milled into flours with 0.5- to 2.5-mm sieves. As the particle size decreased, damaged-starch contents of the flours from the same pulse crop increased. At a holding temperature of 95 °C in RVA, peak and final viscosities and gelling ability of the flours generally increased as the particle size decreased. When the holding temperature increased from 95 to 140 °C, pasting viscosities of pea and lentil flours and gel hardness of lentil flours gradually decreased. In contrast, pasting viscosities and gel hardness of faba bean flours reached the highest values at 120 °C. The comparison of the pulse flours varying in particle size across the three market classes revealed that coarse particles comprising agglomerated starch, protein, and dietary fiber (i.e., particles of the second peak in the bimodal particle-size distribution curves) showed significant correlations with certain important functional properties of pulse flours.
Collapse
Affiliation(s)
- Dong-Jin Lee
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon State, Republic of Korea
| | - Fan Cheng
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dongxing Li
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ke Ding
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Emily Moore
- PerkinElmer, Scientific Canada ULC, Woodbridge, ON, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Chen J, Chai J, Sun X, Tao Y, Chen X, Zhou G, Xu X. Unexpected variations in the effects of ultrasound-assisted myofibrillar protein processing under varying viscosity conditions. ULTRASONICS SONOCHEMISTRY 2023; 99:106553. [PMID: 37574643 PMCID: PMC10448329 DOI: 10.1016/j.ultsonch.2023.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The efficient synthesis of myofibrillar protein(MRN)-gallic acid (GAD) complex in ultrasound (UID)-assisted processing is a challenging problem in food manufacturing. In this investigation, the effect of viscosity characteristics on the efficiency of UID processing in MRN-based beverages was analyzed. Both viscosity and surface tension can increase sono-physico-chemical effects on the degradation of terephthalic acid and crystal violet, with surface tension having a more significant effect (negative correlation, R2 = 0.99) than viscosity (positive correlation, R2 = 0.79). The structural indicators and microstructure demonstrated that the reaggregation and refolding of the MRN structure during the modification procedure occurred with relatively small three-dimensional dimensions. Compared to the MRN/GAD4 group, the water contact angle of the MRN/GAD7 system enhanced by 129.44%, leading to greater system stability. The ABTS-scavenging capacity of the system increased by approximately 19.45% due to the increase in viscosity of these two categories.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Tao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Auer J, Östlund J, Nilsson K, Johansson M, Herneke A, Langton M. Nordic Crops as Alternatives to Soy-An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023; 12:2607. [PMID: 37444345 DOI: 10.3390/foods12132607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in cereals impair the sensory properties of the resulting food products, and few mitigation methods are successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment, fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes, and functional properties of all the three crops assessed, making them suitable for replacing soy in a broad range of products, although more research is needed on all attributes.
Collapse
Affiliation(s)
- Jaqueline Auer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johanna Östlund
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Klara Nilsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
11
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Gu Z, Jin Z, Schwarz P, Rao J, Chen B. Unraveling the role of germination days on the aroma variations of roasted barley malts via gas chromatography-mass spectrometry based untargeted and targeted flavoromics. Food Chem 2023; 426:136563. [PMID: 37315420 DOI: 10.1016/j.foodchem.2023.136563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Roasting imparts malts with an increased amount of hedonic aromas. However, the relationship between the production of roasted malts and the generation of characteristic malt aromas remains unclear. In this study, roasted barley malts (RM) were prepared from three consecutive germination days (3, 4, 5D), and the aroma profiles among RM and base malt were holistically compared via HS-SPME-GC-MS/O-based flavoromics. Furthermore, the wort color, free amino acids, reducing sugars, and fatty acids compositions were determined before-and-after roasting. Results showed that roasting could flatten variations of precursors regardless of germination days. Additionally, based on quantitation of 53 aromas, a PLS-DA model was applied to differentiate all malts by 17 aromas with VIP ≥ 1. As for aroma harmony, RM with 4D-germination outstood due to a pleasant nutty note with the highest sweet-to-nutty index of 0.8. This work answers how germination days would impact the aroma of RM for the first time.
Collapse
Affiliation(s)
- Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
13
|
Chen J, Zeng X, Sun X, Zhou G, Xu X. A comparison of the impacts of different polysaccharides on the sono-physico-chemical consequences of ultrasonic-assisted modifications. ULTRASONICS SONOCHEMISTRY 2023; 96:106427. [PMID: 37149927 PMCID: PMC10192650 DOI: 10.1016/j.ultsonch.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
This study aimed to examine the sono-physico-chemical effects of ultrasound (UND) and its impact on the conjugate rates of morin (MOI) following the addition of polysaccharides in various conditions. In comparison to the control group, the incorporation of quaternary ammonium chitosan decreased the rate of MOI conjugation by 17.38%, but the addition of locust bean gum enhanced the grafting rate by 29.89%. Notably, the highest degree of myofibrillar protein (MRN) unfolding (fluorescence intensity: 114435.50), the most stable state (-44.98 mV), and the greatest specific surface area (393.06 cm2/cm3) were observed in the UMP/LBG group. The outcomes of atomic force microscopy and scanning electron microscopy revealed that the inclusion of locust bean gum led to a different microscopic morphology than the other two polysaccharides, which may be the primary cause of the strongest sono-physico-chemical effects of the system. This work demonstrated that acoustic settings can be tuned based on the characteristics of polysaccharides to maximize the advantages of sono-physico-chemical impacts in UND-assisted MOI processing.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Flavor Effects from Processing to Consumer Acceptability. Foods 2023; 12:foods12112237. [PMID: 37297480 DOI: 10.3390/foods12112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Faba beans as an alternative source of protein have received significant attention from consumers and the food industry. Flavor represents a major driving force that hinders the utilization faba beans in various products due to off-flavor. Off-flavors are produced from degradation of amino acids and unsaturated fatty acids during seed development and post-harvest processing stages (storage, dehulling, thermal treatment, and protein extraction). In this review, we discuss the current state of knowledge on the aroma of faba bean ingredients and various aspects, such as cultivar, processing, and product formulation that influence flavour. Germination, fermentation, and pH modulation were identified as promising methods to improve overall flavor and bitter compounds. The probable pathway in controlling off-flavor evolution during processing has also been discussed to provide efficient strategies to limit their impact and to encourage the use of faba bean ingredients in healthy food design.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
15
|
Jiang H, Qi X, Zhong S, Schwarz P, Chen B, Rao J. Effect of treatment of Fusarium head blight infected barley grains with hop essential oil nanoemulsion on the quality and safety of malted barley. Food Chem 2023; 421:136172. [PMID: 37094405 DOI: 10.1016/j.foodchem.2023.136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Fusarium mycotoxin contamination of malting barley has been a persistent food safety issue for malting companies. In this study, the effect of hop essential oil (HEO) nanoemulsion on fungal biomass and mycotoxin production during the malting process was evaluated. Furthermore, the localization of fungal hyphae on the surface and inside the tissue of barley and malts was observed. The application of HEO nanoemulsion reduced fungal biomass and deoxynivalenol (DON) contents at each stage of the malting process as compared to control. During malting process, the fungal hyphae on kernel surfaces was reduced appreciably after steeping. However, the increment of hyphae was observed between the husk and testa layer of barley after germination than raw barley grains. In addition to its antifungal activity, the antioxidant activity of HEO in the treated malts suppressed the formation of aldehydes. This study lays the foundation for the utilization of HEO in the malting industry.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Xiaoxi Qi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
16
|
Cheng F, Ding K, Yin H, Tulbek M, Chigwedere CM, Ai Y. Milling and differential sieving to diversify flour functionality: A comparison between pulses and cereals. Food Res Int 2023; 163:112223. [PMID: 36596152 DOI: 10.1016/j.foodres.2022.112223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, pulse (pea, lentil) and cereal (barley, oats) seeds were firstly milled into whole flours, which were then sieved into coarse and fine flours. The particle sizes of the three generated flour streams followed a descending order of coarse > whole > fine, consistent with the observation under scanning electron microscopy (SEM). Among the four crops, the three flour streams showed the same rank order of fine > whole > coarse in starch and damaged-starch contents but the opposite order in ash and total dietary fiber contents. Thus, those functional properties closely related to starch occurring in flour, such as L* (brightness), starch gelatinization enthalpy change (ΔH), and gel hardness, followed the same order of fine > whole > coarse. By contrast, protein contents of the three flour streams did not vary in pea and lentil but showed a trend of coarse > whole > fine in barley and oats, which could partially explain generally comparable foaming and emulsifying properties of the three streams of pulse flours as well as an order of coarse > whole > fine in oil-binding capacity (OBC) of cereal flours, respectively. The different particle sizes and chemical compositions of the three flour streams only resulted in a descending order of fine > whole > coarse in the pasting viscosities of the pulse flours but did not lead to such a clear trend in the cereal flours, which could be partly attributable to the different microscopic structures of the pulse and cereal seeds and their corresponding flours. This research clearly demonstrated that particle size, chemical composition, and microscopic structure were important variables determining the specific techno-functional properties of pulse and cereal flours.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ke Ding
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hanyue Yin
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mehmet Tulbek
- Saskatchewan Food Industry Development Centre, Saskatoon, SK, Canada
| | - Claire Maria Chigwedere
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
Fang B, Gu Z, Ohm JB, Chen B, Rao J. Reverse micelles extraction of hemp protein isolate: Impact of defatting process on protein structure, functionality, and aromatic profile. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Modification of physicochemical, functional properties, and digestibility of macronutrients in common bean (Phaseolus vulgaris L.) flours by different thermally treated whole seeds. Food Chem 2022; 382:132570. [PMID: 35245760 DOI: 10.1016/j.foodchem.2022.132570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The utilization of beans (Phaseolus vulgaris L.) is hindered by unpleasant flavors, low macronutrients digestibility, and long cooking time. The pre-thermally treated beans can overcome these limitations. Therefore, the effect of thermal methods (moist-heat and dry-heat) and bean market classes (black, navy, kidney, and pinto) on functional properties and digestibility of bean flours were compared to raw counterparts. Within bean class, moist-heated samples showed increased water-holding capacities of 2.54-2.87 g H2O/g sample and starch/protein digestibility whereas dry-heated samples showed enhanced flavor profile and increased oil-holding capacities of 1.04-1.14 g oil/g sample. Among bean classes, moist-heated kidney bean flour showed the highest water-holding capacity of 2.87 g H2O/g sample and starch/protein digestibility while dry-heated pinto bean flour had the highest oil-holding capacity of 1.14 g oil/g sample. The current result may provide a basis for the development of pre-thermally treated legume flours and facilitate their applications.
Collapse
|
19
|
Gu Z, Jin Z, Schwarz P, Rao J, Chen B. Uncovering aroma boundary compositions of barley malts by untargeted and targeted flavoromics with HS-SPME-GC-MS/olfactometry. Food Chem 2022; 394:133541. [PMID: 35759835 DOI: 10.1016/j.foodchem.2022.133541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
In this study, HS-SPME/GC-MS based untargeted and targeted flavoromics combing with olfactometry were employed to uncover aroma boundary compositions of five types of commercial barley malts with a wide range of Lovibond (L), including kilned base malts (1.8 L and 3.5 L) and roasted caramel malts (10 L, 60 L, and 120 L). Thirty-two compounds were identified as aroma-active with modified detection frequency (MF) > 50%. 3-Methylbutanal (malty), (2E)-nonenal (fatty, cardboard-like), and 2-furfural (burnt, bready) were recognized as the most influential odorants with MF > 70% in all the malts. After untargeted flavoromics, twenty-eight aromas were retained and quantitated. Furthermore, aroma boundary compositions inside/among malt groups were explored with PLS-DA. Eight aroma markers, 3-methylbutanal, 2-isopropyl-5-methyl-2-hexenal, (2E,4E)-Decadienal, 2-furfual, maltol, 2-acetylpyrrole, phenylacetaldehyde, and ethyl hexadecanoate were shortlisted for aroma boundary compositions regarding to the Lovibond of malts.
Collapse
Affiliation(s)
- Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Paul Schwarz
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
20
|
Gu Z, Chen X, Rao J, Chen B. Statistical evaluation to validate matrix-matched calibration for standardized beany odor compound quantitation in yellow pea flour using HS-SPME-GC-MS. Food Funct 2022; 13:3968-3981. [PMID: 35293919 DOI: 10.1039/d2fo00050d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Accurate and precise quantitation of beany odor compounds is important in developing yellow pea (Pisum sativum L., YP) flour-based foods. Aiming at establishing standardized external calibration using an internal standard (ECIS) quantitation method, the effect of solvent extraction on matrix deodorization and systematic statistical analysis on quantitation was evaluated. Initially, accelerated dichloromethane extraction on YP flour and starch produced two clearest deodorized matrix-matched matrices. Secondly, due to the heteroskedasticity, weighted least squares regression (WLSR) was introduced to build calibration curves. The curve linearity and regression parameters were further confirmed via a t-test. Lastly, methodology indicators including LOD/LOQ, accuracy and precision, and the matrix effect (ME) were assessed. Results showed that there were no significant differences in the quantity of beany odor compounds interpolated from two deodorized matrices. This study demonstrated for the first time that despite the unignorable ME, deodorized starch is a feasible and affordable alternative to deodorized YP flour in the quantitation of beany odor compounds to achieve a reliable result.
Collapse
Affiliation(s)
- Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| | - Xiao Chen
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, USA.
| |
Collapse
|
21
|
Physicochemical properties and volatile components of pea flour fermented by Lactobacillus rhamnosus L08. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Ultracentrifugal milling and steam heating pretreatment improves structural characteristics, functional properties, and in vitro binding capacity of cellulase modified soy okara residues. Food Chem 2022; 384:132526. [PMID: 35217458 DOI: 10.1016/j.foodchem.2022.132526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
Abstract
Soy okara contains high levels of insoluble dietary fiber (IDF). The objective of this work is to investigate the composition, structure changes, and functionality of okara residues after the modification by ultracentrifugal milling (M), milling + steam heating (M + S), or milling + steam heating + enzymatic (M + S + E) treatment. The results showed that the combination of M + S could significantly convert okara IDF into soluble ones, and the highest conversion rate (59%) was achieved with the smallest size (147 µm). The structural characterization revealed that size reduction altered the functional groups and crystallinity of the modified okara residues with irregular and enlarged morphology. More importantly, the functionalities, including water and oil holding capacities, swelling capacity, as well as cholesterol and bile acid binding capacities were improved remarkably in okara residues pretreated by M + S prior to cellulase hydrolysis. The findings provide new insights on the effective biotransformation of okara into valuable food ingredients.
Collapse
|
23
|
Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Zhao Z, Ming J, Zhao G, Lei L. Color, Starch Digestibility, and In Vitro Fermentation of Roasted Highland Barley Flour with Different Fractions. Foods 2022; 11:foods11030287. [PMID: 35159439 PMCID: PMC8834473 DOI: 10.3390/foods11030287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Highland barley (HB) is commonly milled into flour for direct consumption or further processed with other food formulations. Nevertheless, the association between milling and HB flour properties remains lacking. This work studied the effect of particle sizes (coarse, 250–500 μm; medium, 150–250 μm; fine, <150 μm) on physicochemical and nutritional properties of raw and sand-roasted HB flour. Gelatinization enthalpy decreased with increasing particle sizes of raw HB flour, while no endothermic transitions were observed in sand-roasted flour. Sand roasting destroyed starch granules and decreased short-range molecular order. Starch digestibility increased while total short-chain fatty acids (SCFAs) production decreased with decreasing particle sizes in all samples. The relative crystallinity of sand-roasted HB flour decreased by 80–88% compared with raw samples. Sand roasting raised in vitro starch digestibility, while total SCFAs during in vitro fecal fermentation decreased. Sand-roasted HB flour with particle sizes <150 μm had the highest starch digestibility (94.0%) but the lowest production of total SCFAs (1.89–2.24 mM). Pearson’s correlation analysis confirmed the relationship between the nutritional qualities of HB flour and milling.
Collapse
Affiliation(s)
- Zixuan Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (Z.Z.); (J.M.); (G.Z.)
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China; (Z.Z.); (J.M.); (G.Z.)
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (Z.Z.); (J.M.); (G.Z.)
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, China; (Z.Z.); (J.M.); (G.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1902
| |
Collapse
|
25
|
Trindler C, Annika Kopf-Bolanz K, Denkel C. Aroma of peas, its constituents and reduction strategies - Effects from breeding to processing. Food Chem 2021; 376:131892. [PMID: 34971885 DOI: 10.1016/j.foodchem.2021.131892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Peas as an alternative protein source have attracted a great deal of interest from the food industry and consumers in recent years. However, pea proteins usually do not taste neutral and exhibit a distinct flavor, often characterized as "beany". This is usually contrasted by the food industry's desire for sensory neutral protein sources. In this review, we highlight the current state of knowledge about the aroma of peas and its changes along the pea value chain. Possible causes and origins, and approaches to reduce or eliminate the aroma constituents are presented. Fermentative methods were identified as interesting to mitigate undesirable off-flavors. Major potential has also been discussed for breeding, as there appears to be a considerable leverage at this point in the value chain: a reduction of plant-derived flavors, precursors, or substrates involved in off-flavor evolution could prevent the need for expensive removal later.
Collapse
|
26
|
Comprehensive Understanding of Roller Milling on the Physicochemical Properties of Red Lentil and Yellow Pea Flours. Processes (Basel) 2021. [DOI: 10.3390/pr9101836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The development of convenience foods by incorporating nutrient-rich pulses such as peas and lentils will tremendously alter the future of pulse and cereal industries. However, these pulses should be size-reduced before being incorporated into many food products. Therefore, an attempt was made to adapt roller mill settings to produce de-husked yellow pea and red lentil flours. The milling flowsheets unique to yellow peas and red lentils were developed in producing small, medium, and large flours with maximum yield and flour quality. This study also investigated the differences in chemical composition, physical characteristics, and particle size distributions of the resultant six flour fractions. The kernel dimensions and physicochemical properties of the whole yellow pea and red lentils were also studied to develop customized mill settings. Overall, the mill settings had a significant effect on the physical properties of different particle-sized flours. The geometric mean diameters of different particle-sized red lentil flours were 56.05 μm (small), 67.01 μm (medium), and 97.17 μm (large), while for yellow pea flours they were 41.38 μm (small), 60.81 μm (medium), and 98.31 μm (large). The particle size distribution of all the flour types showed a bimodal distribution, except for the small-sized yellow pea flour. For both the pulse types, slightly more than 50% flour was approximately sizing 50 μm, 75 μm, and 100 μm for small, medium, and large settings, respectively. The chemical composition of the flour types remained practically the same for different-sized flours, fulfilling the objective of this current study. The damaged starch values for red lentil and yellow pea flour types increased with a decrease in flour particle size. Based on the Hausner’s ratios, the flowability of large-sized flour of red lentils could be described as passable; however, all the remaining five flour types were indicated as either poor or very poor. The findings of this study assist the millers to adapt yellow pea and red lentil milling technologies with minor modifications to the existing facilities. The study also helps in boosting the production of various baking products using pulse and wheat flour blends to enhance their nutritional quality.
Collapse
|
27
|
Li XL, Liu WJ, Xu BC, Zhang B. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature. Food Chem 2021; 370:130899. [PMID: 34509149 DOI: 10.1016/j.foodchem.2021.130899] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023]
Abstract
The oil-in-water high internal phase emulsions (HIPEs) could be stabilized by pea protein isolate nanoparticles (PPINs) induced by potassium metabisulfite (K2S2O5). Confocal laser scanning microscope proved that PPINs were attached on the oil-water interface, indicating characteristic of Pickering HIPEs. The HIPEs stabilized by PPINs of higher concentration had smaller droplet size, better storage and centrifugal stability than that of PPINs of low concentration because there were enough particles to constitute the thick interface film. The storage modulus was higher than loss modulus indicating that HIPEs exhibited gel-like structure. At different temperatures and ionic strengths, HIPEs exhibited flocculation but still maintained a stable gel-like structure. The strain curve of HIPEs showed Type III nonlinear behavior due to the flocculation of emulsion droplets. HIPEs stabilized by PPINs might be a potential alternative to partially hydrogenated oils to reduce intake of trans fatty acids.
Collapse
Affiliation(s)
- Xiao-Long Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Wen-Jie Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
28
|
Li C, Chen X, Jin Z, Gu Z, Rao J, Chen B. Physicochemical property changes and aroma differences of fermented yellow pea flours: role of Lactobacilli and fermentation time. Food Funct 2021; 12:6950-6963. [PMID: 34137413 DOI: 10.1039/d1fo00608h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to evaluate the physicochemical properties and aroma differences of yellow pea flours fermented by five lactic acid bacteria (LAB) strains including two Lactiplantibacillus, two Lactobacillus, and one Lacticaseibacillus with different fermentation time. The cell population and the pH of pea flour slurry, as well as the proximate chemical composition, amino acids, thermal and pasting properties, surface morphology, and aromatic differences of fermented flours were characterized. The cell population of all strains except for Lactobacillus helveticus was observed to reach above 107 CFU mL-1 after 24 h of fermentation. The fermentation with Lactobacilli resulted in the increase of amino acids and ash contents, and the reduction of fat content. Rapid viscosity analysis indicated that short time (18 h) fermentation with L. helveticus drastically improved the pasting properties of the flours by facilitating starch granule expansion. The aromatic compounds of the fermented yellow pea flours were highly reliant on the strains and fermentation time. The untargeted metabolomics analysis with the aid of multivariate data analysis can discriminate the aroma differences among the fermented yellow pea flours. L. acidophilus fermentation led to the production of three aromatic compounds which may contribute to an improved aromatic profile.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|