1
|
Song X, Xu Z, Sun H, Cao C, Chang S, Su G, Zhang J. Reducing the bitterness of angiotensin-I-converting enzyme (ACE) inhibitory peptides from soybean protein by NADES-driven Maillard reaction. Food Chem 2025; 468:142438. [PMID: 39708506 DOI: 10.1016/j.foodchem.2024.142438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Soybean peptide (SP) exhibits significant angiotensin-I-converting enzyme inhibitory (ACEI) activity, however, its strong bitterness restricts its use in food industry. This study aimed to reduce the bitterness of SP by natural deep eutectic solvent (NADES)-driven Maillard reaction (MR). Results showed that both the mixtures of Glucose-NADES and the Glucose-Xylose-NADES formed the hydrogen bonds and shown good thermal stability analyzed by using Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). Compared with Glucose-NADES, Glucose-Xylose-NADES exhibited higher reaction activity, while lower ACEI-activity and higher bitterness were observed in its Maillard reaction products (MRPs). It also indicated that NADES's excellent ability to increase umami free amino acid (FAAs) and reduce bitter FAAs during MR, were key factors in reducing bitterness. Some amino acids (Glu, Asp, Leu and Ala) were considered to have a higher contribution to change the bitterness of MRPs. This study is expected to provide a theoretical basis for preparing functional peptides with high activity and good taste.
Collapse
Affiliation(s)
- Xueying Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Zhenqiu Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Huaxing Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chenchen Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Shuaiqi Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
2
|
Chen M, Li Y, Liu X. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. Food Funct 2025; 16:797-814. [PMID: 39785824 DOI: 10.1039/d4fo04969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases (CVD) represent a primary global health challenge. Poor dietary choices and lifestyle factors significantly increase the risk of developing CVD. Legumes, recognized as functional foods, contain various bioactive components such as active peptides, protease inhibitors, saponins, isoflavones, lectins, phytates, and tannins. Studies have demonstrated that several of these compounds are associated with the prevention and treatment of cardiovascular diseases, notably active peptides, saponins, isoflavones, and tannins. This review aims to analyze and summarize the relationship between bioactive compounds in legumes and cardiovascular health. It elaborates on the mechanisms through which active ingredients in legumes interact with risk factors for cardiovascular diseases, such as hypertension, hypercholesterolemia, endothelial dysfunction, and atherosclerosis. These mechanisms include, but are not limited to, lowering blood pressure, regulating lipid levels, promoting anticoagulation, enhancing endothelial function, and modulating TLR4 and NF-κB signaling pathways. Together, these mechanisms emphasize the potential of legumes in improving cardiovascular health. Additionally, the limitations of bioactive components in legumes and their practical applications, with the goal of fostering further advancements in this area were discussed.
Collapse
Affiliation(s)
- Mengqian Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Bao X, Zhang Y, Wang L, Dai Z, Zhu Y, Huo M, Li R, Hu Y, Shen Q, Xue Y. Machine learning discovery of novel antihypertensive peptides from highland barley protein inhibiting angiotensin I-converting enzyme (ACE). Food Res Int 2025; 202:115689. [PMID: 39967093 DOI: 10.1016/j.foodres.2025.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Hypertension is a major global health concern, and there is a need for new antihypertensive agents derived from natural sources. This study aims to identify novel angiotensin I-converting enzyme (ACE) inhibitors from bioactive peptides derived from food sources, particularly highland barley proteins, addressing the gap in effective natural ACE inhibitors. This research employs a machine learning-based pipeline combined with peptidomics to screen for ACE-inhibitory peptides, Gradient Boosted Decision Trees (GBDT) with the best performance among four tested models was used to predict the ACE-inhibitory capacity of peptides derived from papain-hydrolyzed highland barley protein. The selected peptides were validated through computer simulations and in vitro experiments, with FPRPFL identified as the most potent ACE-inhibitor (IC50 = 1.18 μM). Enzyme inhibition kinetics and digestion stability simulations were used to investigate its inhibition mode and stability. The binding mode and mechanism of action of FPRPFL with ACE were further analyzed using circular dichroism, molecular docking and molecular dynamics simulations. Network pharmacology revealed its multi-target and multi-pathway antihypertensive properties. The integration of machine learning and in vitro experiments enables accurate bioactive peptides identification and comprehensive their functionality analysis, establishing a valuable pipeline for elucidating peptide mechanisms and laying a solid foundation for industrial-scale production of natural ACE-inhibitors.
Collapse
Affiliation(s)
- Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, PR China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Mengyao Huo
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Rong Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Sichuan Chengdu, 610106, PR China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, PR China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Dang K, Lan J, Wang Y, Pan D, Du L, Suo S, Dang Y, Gao X. Screening and evaluation of novel DPP-IV inhibitory peptides in goat milk based on molecular docking and molecular dynamics simulation. Food Chem X 2025; 25:102217. [PMID: 39974530 PMCID: PMC11838108 DOI: 10.1016/j.fochx.2025.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Virtual screening techniques have gained much attention as a means of studying bioactive peptides. This study aimed to screen DPP-IV inhibitor peptides in goat milk after simulated digestion in vitro combined with molecular docking and dynamics simulations. By evaluating the docking energy and active sites, and by analyzing RMSD, RMSF, and Rg values, two novel peptides, GPFPLL and LPYPY, were successfully screened and identified. GPFPLL and LPYPY were found to exhibit high inhibitory activity against DPP-IV (IC50 of 130.68 ± 10.38 μM and 179.52 ± 18.89 μM, respectively). Both GPFPLL and LPYPY stably bound to S1 and S1' in DPP-IV, and both demonstrated competitive inhibition of DPP-IV. The inhibition of DPP-IV by GPFPLL and LPYPY after in vitro digestion reached 31.90 % ± 1.80 % and 39.37 % ± 0.90 %, respectively. In a Caco-2 cell experiment, GPFPLL and LPYPY exhibited significant inhibition of DPP-IV, reaching 46.53 % ± 3.48 % and 65.98 % ± 2.87 %, respectively, when the concentration of each peptide was 2 mg/mL. The results of this study suggest that using molecular docking and dynamics simulations to screen novel peptides is an effective approach, and the identified peptides GPFPLL and LPYPY show potential for diabetes management.
Collapse
Affiliation(s)
- Kuo Dang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Lan
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yanli Wang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Lihui Du
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shikun Suo
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Rodríguez JE, Andrade-Jorge E, Barquet-Nieto A, Estrada-Soto SE, Gallardo-Ortíz IA, Villalobos-Molina R. BMY 7378, a selective α 1D-adrenoceptor antagonist, is a new angiotensin converting enzyme inhibitor: In silico, in vitro and in vivo approach. Biochim Biophys Acta Gen Subj 2025; 1869:130732. [PMID: 39631474 DOI: 10.1016/j.bbagen.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BMY 7378 is a multitarget drug primarily known for its selective antagonism of α1D-adrenoceptors (α1D-AR), exhibiting both hypotensive effects and the ability to prevent or reverse angiotensin II-induced vascular hypertrophy. Notably, BMY 7378 contains a phenylpiperazine moiety, a structural feature associated with angiotensin-converting enzyme (ACE) inhibition. This study aimed to investigate ACE inhibition as a potential pharmacological mechanism of BMY 7378. Using an in silico approach we predicted BMY 7378 interactions with the ACE active site, followed by in vitro activity assays. Additionally, ACE protein expression in the heart was analyzed following four weeks of BMY 7378 treatment in 7-8-month-old spontaneously hypertensive rats (SHR). All assays were benchmarked against captopril, a standard ACE inhibitor. In silico results showed that BMY 7378 binds to the ACE active site, though with reduced interaction with Zn701 (73.7 % compared to captopril), likely due to the pKa of its amino group. The inhibitory concentration 50 (IC50) for BMY 7378 was 136 μM, lower than other reported phenylpiperazine derivatives. Furthermore, BMY 7378 significantly increased ACE expression in the hearts of SHR, with an increase of 8.5-fold compared to captopril. In conclusion, BMY 7378 exhibits dual activity as an α1D-AR antagonist and an ACE inhibitor, making it a promising pharmacological tool for investigating and potentially treating hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
- Jessica E Rodríguez
- Bioquímica Clínica, Carrera de Químico Farmacéutico Biólogo, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Av. Guelatao con Av. Exploradores, Ejército de Oriente, Iztapalapa, 09230, Ciudad de Mexico, México; Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México
| | - Erik Andrade-Jorge
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, 11340 Ciudad de México, México
| | - Alina Barquet-Nieto
- Laboratorio de Investigación en Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, 11340 Ciudad de México, México
| | - Samuel E Estrada-Soto
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, México
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México.
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México.
| |
Collapse
|
6
|
Yao X, Cao X, Chen L, Liao W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System. Nutrients 2024; 17:97. [PMID: 39796531 PMCID: PMC11722916 DOI: 10.3390/nu17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect. In addition, artificial intelligence has improved the efficiency of ACE inhibitory peptide identifications. Moreover, the inhibition of renin and blockade or down-regulation of angiotensin type I receptor (AT1R) have also been demonstrated to be effective intervention strategies. With the identification of the ACE2/Ang (1-7)/MasR axis, activation or up-regulation of angiotensin-converting enzyme 2 (ACE2) has also emerged as a new intervention pathway. This review summarizes the research progress of antihypertensive peptides in intervening with hypertension from the perspective of their properties, sources, and key factors. The objective of this review is to provide theoretical references for the development of antihypertensive peptides and the explorations of the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Yao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| |
Collapse
|
7
|
Gu S, Ling Q, Bao G, Xie L, Shi Y, Wang X. Effect of Various Fruit Extracts on Angiotensin I-Converting Enzyme (ACE) and Kallikrein (KLK) Activities. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:860-866. [PMID: 39180648 DOI: 10.1007/s11130-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Hypertension is one of the main risk factors for cardiovascular disease and causes widespread morbidity and mortality worldwide. The aim of this work was to screen the fruit with high angiotensin I-converting enzyme (ACE) inhibitory activity and kallikrein (KLK) promotion activity by three different extraction methods from 22 kinds of fruits. Results showed that the aqueous extracts of fresh kiwifruit significantly inhibited ACE activity (47.71%), whereas the KLK activity was also inhibited (4.56%). This indicated that the substances inhibiting ACE activity existed in kiwifruit might be small molecular substances such as polyphenols. The nonpolar substance existed in the ethanol extracts of grape inhibited ACE activity significantly. The enzymatic hydrolysates of red grape significantly promoted KLK activity, whereas its ethanol extracts significantly inhibited KLK activity. This results suggested that the components that lower blood pressure and raise blood pressure are generally presented in the same fruit, the former are mostly water-soluble substances, while the latter are generally alcohol-soluble substances. If certain or individual components can be isolated from edible fruits, they may significantly affect blood pressure in humans.
Collapse
Affiliation(s)
- Shuang Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiaojia Ling
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guifeng Bao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lin Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yongqing Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangyang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Rzhepakovsky I, Piskov S, Avanesyan S, Kurchenko V, Shakhbanov M, Sizonenko M, Timchenko L, Kovaleva I, Özbek HN, Gogus F, Poklar Ulrih N, Nagdalian A. Analysis of bioactive compounds of hen egg components at the first half of incubation. J Food Sci 2024; 89:8784-8803. [PMID: 39656750 DOI: 10.1111/1750-3841.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
A comparative analysis of mass-volume characteristics of structural and morphological components of hen eggs before incubation and on the fifth (HH25-HH27) and 10th (HH36) days of incubation was carried out. During incubation, egg weight decreased by 9.25% (10 days), mainly due to a decrease in albumen weight (35.8%). The ratio of lipid-soluble fraction (LSF) and water-soluble fraction (WSF) in the mixed components and yolk did not change significantly. The total amount of solids in the mixed substances practically does not change during incubation. Antiradical activity of substances increased significantly by more than three times on the fifth day and additionally by 38.6% at the 10th day in relation to the fifth day. Total antioxidant activity increased by 18.9% on the fifth day and by 24.3% on the 10th day, compared to eggs before incubation. Transformation of the main components of WSF and LSF of albumin, yolk, and chicken embryo (CE) was studied using high-performance liquid chromatography and gas chromatography with mass spectrometry. On the 10th day, an increase in the number of high-molecular proteins is recorded, which indicates the activation of enzymatic processes of transformation of the main albumen proteins into proteins of organs and tissues of CE. This may cause an increase in the biological activity of substances. It was found that in conditions of in vitro digestion, antiradical activity increases by two times, anti-inflammatory activity increases by 2.4 times, and an angiotensin-converting enzyme inhibitory effect occurs in the mixed components of a 10-day incubation egg.
Collapse
Affiliation(s)
- Igor Rzhepakovsky
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Sergei Piskov
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Svetlana Avanesyan
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Vladimir Kurchenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
- Research Laboratory of Applied Biology Problems, Belarusian State University, Minsk, Belarus
| | - Magomed Shakhbanov
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Marina Sizonenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Lyudmila Timchenko
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Irina Kovaleva
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| | - Hatice Neval Özbek
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Fahrettin Gogus
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | | | - Andrey Nagdalian
- Faculty of Medicine and Biology, North-Caucasus Federal University, Stavropol, Russia
| |
Collapse
|
9
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
10
|
Cao J, Xiang B, Dou B, Hu J, Zhang L, Kang X, Lyu M, Wang S. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules 2024; 14:581. [PMID: 38785988 PMCID: PMC11117660 DOI: 10.3390/biom14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 μM), QGPIGPR (IC50 = 81.09 μM), and GPTGPAGP (IC50 = 168.11 μM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.
Collapse
Affiliation(s)
- Jiaming Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyuan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
11
|
Li X, Peng C, Xiao S, Wang Q, Zhou A. Two Novel Angiotensin-Converting Enzyme (ACE) Inhibitory and ACE2 Upregulating Peptides from the Hydrolysate of Pumpkin ( Cucurbita moschata) Seed Meal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10909-10922. [PMID: 38689562 DOI: 10.1021/acs.jafc.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 μM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Chenghai Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| |
Collapse
|
12
|
Xie J, Chen S, Huan P, Wang S, Zhuang Y. A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats. Int J Biol Macromol 2024; 266:131152. [PMID: 38556230 DOI: 10.1016/j.ijbiomac.2024.131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aims to seek angiotensin-I-converting enzyme inhibitory (ACEi) peptides from walnut using different enzymatic hydrolysis, and further to validate the potent ACEi peptides identified and screened via peptidomics and in silico analysis against hypertension in spontaneously hypertensive rats (SHRs). Results showed that walnut protein hydrolysate (WPH) prepared by combination of alcalase and simulated gastrointestinal digestion exhibited high ACEi activity. WPH was separated via Sephadex-G25, and four peptides were identified, screened and verified based on their PeptideRanker score, structural characteristic and ACE inhibition. Interestingly, FDWLR showed the highest ACEi activity with IC50 value of 8.02 μg/mL, which might be related to its close affinity with ACE observed in molecular docking. Subsequently, high absorption and non-toxicity of FDWLR was predicted via in silico absorption, distribution, metabolism, excretion and toxicity. Furthermore, FDWLR exhibited positively vasoregulation in Ang II-induced human umbilical vein endothelial cells, and great blood pressure lowering effect in SHRs.
Collapse
Affiliation(s)
- Jinxiang Xie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shupeng Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Pengtao Huan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shuguang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
13
|
Fan H, Shang N, Davidge ST, Wu J. Chicken Muscle-Derived ACE2-Upregulating Peptide VVHPKESF Reduces Blood Pressure Associated with the ACE2/Ang (1-7)/MasR Axis in Spontaneously Hypertensive Rats. Mol Nutr Food Res 2024; 68:e2300524. [PMID: 38356052 DOI: 10.1002/mnfr.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/29/2023] [Indexed: 02/16/2024]
Abstract
SCOPE This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Nan Shang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| |
Collapse
|
14
|
Zhou M, Song T, Li W, Huang M, Zheng L, Zhao M. Identification and Screening of Potential ACE2 Activating Peptides from Soybean Protein Isolate Hydrolysate against Ang II-Induced Endothelial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11957-11969. [PMID: 37501259 DOI: 10.1021/acs.jafc.3c03013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a counterregulator against ACE by converting angiotensin II (Ang II) to Ang-(1-7), and its down-regulation leads to endothelial dysfunction in the vascular system. In the present study, we investigated the effects of soybean protein isolate hydrolysate (SPIH) on Ang II-induced endothelial dysfunction with its underlying mechanisms via ACE2 activation in human umbilical vein endothelial cells (HUVECs). We further screened potential ACE2 activating peptides by peptidomics analysis combined with bioinformatics tools. Results showed that SPIH remarkably attenuated Ang II-induced cell migration from 129 to 92%, decreased the ROS level from 2.22-fold to 1.45-fold, and increased NO concentration from 31.4 ± 0.7 to 43.7 ± 0.1 μM in HUVECs. However, these beneficial effects were reversed by ACE2 inhibitor MLN-4760 to a certain extent, indicating the modulation of ACE2. Further results revealed that SPIH (1 mg/mL) significantly increased the expression and activity of ACE2 and two novel ACE2 activating peptides with different mechanisms were explored from SPIH. IVPQ and IAVPT (50 μM) enhanced ACE2 activity, and only IVPQ (50 μM) increased ACE2 protein expression in HUVECs. These findings furthered our understanding of the antihypertensive mechanism of SPIH mediating the ACE2 activation on vascular endothelium.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P.R. China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, P.R. China
| | - Wen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, P.R. China
| |
Collapse
|
15
|
Zhang L, Pan D, Shao L, Zheng Y, Hao W, Kan Y, Cao J, Yu H, Liu J. Oil palm kernel globulin antihypertensive peptides: isolation and characterization, ACE inhibition mechanisms, zinc-chelating activity, security and stability. Front Pharmacol 2023; 14:1225256. [PMID: 37601067 PMCID: PMC10433220 DOI: 10.3389/fphar.2023.1225256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: The oil palm kernel (OPK) expeller is the main byproduct of palm oil, but its utilization is limited. Methods: To obtain angiotensin-I-converting enzyme (ACE) inhibition peptides with Zn-chelating capacity, defatted oil palm kernel globulin hydrolysates (DOPKGH) were subjected to Sephadex G-15 gel electrophoresis, reverse-phase high liquid performance chromatography, and UPLC-ESI-MS/MS analysis. Results and discussion: Five representative oligopeptides, including Gln-Arg-Leu-Asp-Arg-Cys-Lys (QRLERCK), Leu-Leu-Leu-Gly-Val-Ala-Asn-Tyr-Arg (LLLGVANYR), Arg-Ala-Asp-Val-Phe-Asn-Pro-Arg (RADVFNPR), Arg-Val-Ile-Lys-Tyr-Asn-Gly-Gly-Gly-Ser-Gly (RVIKYNGGGSG), and Glu-Val-Pro-Gln-Ala-Tyr-Ile-Pro (EVPQAYIP), without potential toxicity and allergenicity, were identified in DOPKGH. Of these, only EVPQAYIP showed both ACE-inhibitory activity (IC50: 102.75 μmol/L) and Zn-chelating capacity (11.69 mg/g). Molecular docking and inhibition kinetics showed that EVPQAYIP was a competitive inhibitor of ACE because it could bind to Glu384, Lys511, and Gln281 (belonging to the central S1 and S2 pockets, respectively) of ACE. Moreover, EVPQAYIP affects zinc tetrahedral coordination in ACE by binding to Glu411; the amino and carboxyl groups of EVPQAYIP chelate with zinc ions. During gastrointestinal digestion, the ACE inhibitory activity of EVPQAYIP was relatively stable. Additionally, EVPQAYIP enhanced zinc stability in the intestine and exerted antihypertensive effects in spontaneous hypertensive rats. These results suggest the potential application of OPK peptides as ingredients in antihypertensive agents or zinc fortification.
Collapse
Affiliation(s)
| | | | | | - Yajun Zheng
- Food Science College of Shanxi Normal University, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
16
|
Liao W, Yan S, Cao X, Xia H, Wang S, Sun G, Cai K. A Novel LSTM-Based Machine Learning Model for Predicting the Activity of Food Protein-Derived Antihypertensive Peptides. Molecules 2023; 28:4901. [PMID: 37446561 DOI: 10.3390/molecules28134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Food protein-derived antihypertensive peptides are a representative type of bioactive peptides. Several models based on partial least squares regression have been constructed to delineate the relationship between the structure and activity of the peptides. Machine-learning-based models have been applied in broad areas, which also indicates their potential to be incorporated into the field of bioactive peptides. In this study, a long short-term memory (LSTM) algorithm-based deep learning model was constructed, which could predict the IC50 value of the peptide in inhibiting ACE activity. In addition to the test dataset, the model was also validated using randomly synthesized peptides. The LSTM-based model constructed in this study provides an efficient and simplified method for screening antihypertensive peptides from food proteins.
Collapse
Affiliation(s)
- Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Siyuan Yan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Kaida Cai
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Statistics and Actuarial Sciences, School of Mathematics, Southeast University, Nanjing 210009, China
| |
Collapse
|
17
|
Li Y, Li J, Cheng C, Zheng Y, Li H, Zhu Z, Yan Y, Hao W, Qin N. Study on the In Silico Screening and Characterization, Inhibition Mechanisms, Zinc-Chelate Activity, and Stability of ACE-Inhibitory Peptides Identified in Naked Oat Bran Albumin Hydrolysates. Foods 2023; 12:2268. [PMID: 37297512 PMCID: PMC10252509 DOI: 10.3390/foods12112268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, naked oat bran albumin hydrolysates (NOBAH) were subjected to gel chromatography with Sephadex G-15, reverse phase-high liquid performance separation, and UPLC-ESI-MS/MS identification. Six safe peptides including Gly-Thr-Thr-Gly-Gly-Met-Gly-Thr (GTTGGMGT), Gln-Tyr-Val-Pro-Phe (QYVPF), Gly-Ala-Ala-Ala-Ala-Leu-Val (GAAAALV), Gly-Tyr-His-Gly-His (GYHGH), Gly-Leu-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Glu-Gly-Gly (GLRAAAAAAEGG), and Pro-Ser-Ser-Pro-Pro-Ser (PSSPPS) were identified. Next, in silico screening demonstrated that QYVPF and GYHGH had both angiotensin-I-converting enzyme (ACE) inhibition activity (IC50: 243.36 and 321.94 μmol/L, respectively) and Zinc-chelating ability (14.85 and 0.32 mg/g, respectively). The inhibition kinetics demonstrated that QYVPF and GYHGH were both uncompetitive inhibitors of ACE. Molecular docking showed that QYVPF and GYHGH could bind, respectively, three and five active residues of ACE with short hydrogen bonds (but not belonging to any central pocket). QYVPF and GYHGH could bind, respectively, twenty-two and eleven residues through hydrophobic interactions. Moreover, GYHGH was able to affect zinc tetrahedral coordination in ACE by interacting with His383. The inhibition activities of QYVPF and GYHGH toward ACE were relatively resistant to gastrointestinal digestion. GYHGH improved zinc solubility in the intestines (p > 0.05) because its amino and carboxyl groups were chelating sites for zinc ions. These results suggest the potential applications of naked oat peptides for potential antihypertension or zinc fortification.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Junru Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Chaoxia Cheng
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Yajun Zheng
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Hanxu Li
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Zilin Zhu
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Yuxiang Yan
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Wenhui Hao
- College of Food Science, Shanxi Normal University, Taiyuan 030092, China; (Y.L.); (J.L.); (C.C.); (H.L.); (Z.Z.); (Y.Y.); (W.H.)
| | - Nan Qin
- College of Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
18
|
Ahmed S, Moni MIZ, Begum M, Sultana MR, Kabir A, Eqbal MJ, Das SK, Ullah W, Haque TS. Poultry farmers' knowledge, attitude, and practices toward poultry waste management in Bangladesh. Vet World 2023; 16:554-563. [PMID: 37041846 PMCID: PMC10082732 DOI: 10.14202/vetworld.2023.554-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The improper handling of poultry litter and waste poses risks to humans and environment by introducing certain compounds, elements, and pathogenic microorganisms into the surrounding environment and food chain. However, understanding the farmers' knowledge, attitude, and practices (KAP) could provide insights into the constraints that hinder the appropriate adoption of waste management. Therefore, this study aimed to assess poultry farmers' KAP regarding waste management issues. Materials and Methods A cross-sectional KAP study was conducted with native poultry keepers and small-scale commercial poultry farmers in seven districts of Bangladesh. In the survey, 385 poultry producers were interviewed using validated structured questionnaires through face-to-face interviews to collect the quantitative data in their domiciles. Results The overall KAP of farmers regarding poultry waste management issues demonstrated a low level of KAP (p = 0.001). The analysis shows that roughly 5% of farmers have a high level of knowledge of poultry waste management issues, followed by around one-third of respondents having a moderate level of knowledge. Considering the attitude domain, more than one-fifth of native poultry keepers and nearly two-thirds of commercial producers demonstrated a low level of attitude toward poultry waste management. Considering the overall analysis, roughly half of the respondents found a high level of attitude, and over half of the farmers showed a moderate level of attitude toward poultry waste management issues. The analysis showed that the level of good practices for native and commercial poultry production systems is estimated at 77.3% versus 45.9%, respectively, despite the farmers' lesser knowledge and attitudes toward poultry waste management systems. Overall, analysis showed that nearly 60% and 40% of poultry producers had high and moderate levels, respectively, of good practices in poultry waste management issues. Conclusion Analysis of the KAP data shows that farmers had a low level of KAP toward poultry waste management. The result of this study will assist in formulating appropriate strategies and to adopt poultry waste management solutions by poultry farmers to reduce environmental degradation.
Collapse
Affiliation(s)
- Soshe Ahmed
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Corresponding author: Soshe Ahmed, e-mail: Co-authors: MIZM: , MB: , MRS: , AK: , MJE: , SKD: , WU: , TSH:
| | - Mst. I. Z. Moni
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mst. R. Sultana
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aurangazeb Kabir
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. J. Eqbal
- Palli Karma Sahayak Foundation, Dhaka, Bangladesh
| | - Sunny K. Das
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Woli Ullah
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasmin S. Haque
- Department of Anthropology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
19
|
Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers. Food Res Int 2023; 164:112340. [PMID: 36737933 DOI: 10.1016/j.foodres.2022.112340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Two novel hypoglycemic peptides VY and SFLLR were identified from douchi as the major peptides responsible for the glucose uptake activity. The present work aimed to elucidate their digestion, absorption and transport properties using simulated digestion and Caco-2 cell monolayers transport models. Besides, the effects of digestion and absorption on the structure and activity were also studied. The results showed that VY was resistant to gastrointestinal tract digestion and could cross Caco-2 cell monolayers intactly via both TJs-mediated passive paracellular pathway and PepT1-mediated active route. In comparison, SFLLR was partially degraded into small fragments of SFLL, SFL, and SF by the digestive system, leading to increased glucose uptake activity. Notably, SFLLR, SFLL, and SFL were partly hydrolyzed by aminopeptidase N or dipeptidyl peptidase IV during transport, but they were transported intact. SFL was transported via both paracellular diffusion and PepT1-mediated routes, while SFLLR and SFLL were via paracellular route only.
Collapse
|
20
|
Mahamud AU, Samonty I. Spent hen: Insights into pharmaceutical and commercial prospects. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Ismam Samonty
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
21
|
Lee JH, Kim TK, Yong HI, Cha JY, Song KM, Lee HG, Je JG, Kang MC, Choi YS. Peptides inhibiting angiotensin-I-converting enzyme: Isolation from flavourzyme hydrolysate of Protaetia brevitarsis larva protein and identification. Food Chem 2023; 399:133897. [DOI: 10.1016/j.foodchem.2022.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
|
22
|
Fan H, Wu K, Wu J. LRW fails to reduce blood pressure in spontaneously hypertensive rats due to its low gastrointestinal stability and transepithelial permeability. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Okagu IU, Ezeorba TPC, Aham EC, Aguchem RN, Nechi RN. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100078. [PMID: 35415696 PMCID: PMC8991738 DOI: 10.1016/j.fochms.2022.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Hypertension has remained a silent-killer. Novel peptides recently isolated from food proteins. Molecular mechanism of blood pressure-lowering: renin and ACE-inhibition, and beyond. Proposed molecular mechanisms for future research. Novel peptides are excellent candidates for nutraceutical development.
Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.
Collapse
Affiliation(s)
- Innocent U Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | | | - Emmanuel C Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Rita N Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Regina N Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
24
|
Fan H, Bhullar KS, Wang Z, Wu J. Chicken muscle protein-derived peptide VVHPKESF reduces TNFα-induced inflammation and oxidative stress by suppressing TNFR1 signaling in human vascular endothelial cells. Mol Nutr Food Res 2022; 66:e2200184. [PMID: 35770889 DOI: 10.1002/mnfr.202200184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
SCOPE This study aimed to investigate the protective effects of four chicken muscle-derived peptides (Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. METHODS AND RESULTS Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng/mL) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) were measured by qRT-PCR or western blotting; soluble TNFR1 level and NADPH oxidase activity were determined by Elisa kits; superoxide was measured by dihydroethidium staining. Only V-F treatment inhibited the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuated both gene and protein expressions of TNFR1. CONCLUSION V-F treatment ameliorated TNFα-induced endothelial inflammation and oxidative stress possibly via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Zihan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
25
|
Purification and Identification of a Novel Angiotensin Converting Enzyme Inhibitory Peptide from the Enzymatic Hydrolysate of Lepidotrigla microptera. Foods 2022; 11:foods11131889. [PMID: 35804705 PMCID: PMC9265830 DOI: 10.3390/foods11131889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, Lepidotrigla microptera were hydrolyzed with four different proteolytic enzymes (Papain, neutrase, flavourzyme, and alcalase), and their distribution of molecular weights and ACE-inhibitory activity were tested. The alcalase hydrolysates showed the maximum ACE-inhibitory activity. A novel ACE-inhibitory peptide was isolated and purified from Lepidotrigla microptera protein hydrolysate (LMPH) using ultrafiltration, gel filtration chromatography, and preparative high performance liquid chromatography (prep-HPLC). The amino acid sequence of the purified peptide was identified as Phe-Leu-Thr-Ala-Gly-Leu-Leu-Asp (DLTAGLLE), and the IC50 value was 0.13 mg/mL. The ACE-inhibitory activity of DLTAGLLE was stable across a range of temperatures (<100 °C) and pH values (3.0−11.0) and retained after gastrointestinal digestion. DLTAGLLE was further identified as a noncompetitive inhibitor by Lineweaver−Burk plot. The molecular docking simulation showed that DLTAGLLE showed a high binding affinity with ACE sites by seven short hydrogen bonds. As the first reported antihypertensive peptide extracted from alcalase hydrolysate of Lepidotrigla microptera, DLTAGLLE has the potential to develop functional food or novel ACE-inhibitor drugs.
Collapse
|
26
|
A Novel Antihypertensive Pentapeptide Identified in Quinoa Bran Globulin Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability against Different Food-Processing Conditions. Nutrients 2022; 14:nu14122420. [PMID: 35745149 PMCID: PMC9227351 DOI: 10.3390/nu14122420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
The addition of food derived antihypertensive peptides to the diet is considered a reasonable way to prevent and lower blood pressure. However, data about stability of antihypertensive peptides against different food-processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening, a novel ACE-inhibitory pentapeptide Ser-Ala-Pro-Pro-Pro (IC50: 915.03 μmol/L) was identified in quinoa bran globulin hydrolysate. The inhibition patterns on angiotensin-I-converting enzyme and safety of SAPPP were studied using molecular docking and in silico predication, respectively. Results demonstrated that SAPPP could noncompetitively bind to active sites PRO519 and SER461 of ACE through short hydrogen bonds. SAPPP was resistant to different pH values (2.0–10.0), pasteurization conditions, addition of Na+, Mg2+, Fe3+ or K+, and the simulated gastrointestinal digestion. In contrast, SAPPP was unstable against heating at 100 °C for more than 50 min and the treatment of Zn2+ (5 mmol/L). These results indicated that peptides derived from quinoa globulin hydrolysates can be added into foods for antihypertension.
Collapse
|
27
|
Li S, Du G, Shi J, Zhang L, Yue T, Yuan Y. Preparation of antihypertensive peptides from quinoa via fermentation with
Lactobacillus paracasei. EFOOD 2022. [DOI: 10.1002/efd2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shuai Li
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Jiajun Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Lin Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
- College of Food Science and Techonology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling China
| |
Collapse
|
28
|
Fan H, Liao W, Davidge ST, Wu J. Chicken Muscle-Derived ACE2 Upregulating Peptide VVHPKESF Inhibits Angiotensin II-Stimulated Inflammation in Vascular Smooth Muscle Cells via the ACE2/Ang (1-7)/MasR Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6397-6406. [PMID: 35584253 DOI: 10.1021/acs.jafc.1c07161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the modulatory effects of four chicken muscle-derived peptides [VRP, LKY, VRY, and VVHPKESF (V-F)] on angiotensin II (Ang II)-induced inflammation in rat vascular smooth muscle A7r5 cells. Only V-F could significantly attenuate Ang II-stimulated inflammation via the inhibition of NF-κB and p38 MAPK signaling, being dependent on the Mas receptor (MasR) not on the Ang II type 1 or type 2 receptor (AT1R or AT2R). V-F accelerated Ang II degradation by enhancing cellular ACE2 activity, which was due to ACE2 upregulation other than a direct ACE2 activation. These findings demonstrated that V-F ameliorated Ang II-induced inflammation in A7r5 cells via the ACE2/Ang (1-7)/MasR axis. Three peptide metabolites of V-F─VHPKESF, PKESF, and SF─were identified but were not considered major contributors to V-F's bioactivity. The regulation of peptide V-F on vascular inflammation supported its functional food or nutraceutical application in the prevention and treatment of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
29
|
Two Novel Antihypertensive Peptides Identified in Millet Bran Glutelin-2 Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability in Various Food Processing Conditions. Foods 2022; 11:foods11091355. [PMID: 35564079 PMCID: PMC9103660 DOI: 10.3390/foods11091355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
The addition of food-derived antihypertensive peptides to the diet is considered a reasonable antihypertension strategy. However, data about the stability of antihypertensive peptides in different food processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC–ESI–MS/MS analysis and in silico screening, two novel ACE-inhibitory peptides, Pro-Leu-Leu-Lys (IC50: 549.87 μmol/L) and Pro-Pro-Met-Trp-Pro-Phe-Val (IC50: 364.62 μmol/L), were identified in millet bran glutelin-2 hydrolysates. The inhibition of angiotensin-I converting enzyme and the potential safety of PLLK and PPMWPFV were studied using molecular docking and in silico prediction, respectively. The results demonstrated that PLLK and PPMWPFV could non-competitively bind to one and seven binding sites of ACE through short hydrogen bonds, respectively. Both PLLK and PPMWPFV were resistant to different pH values (2.0–10.0), pasteurization conditions, addition of Na+, Mg2+ or K+ and simulated gastrointestinal digestion. However, PLLK and PPMWPFV were unstable upon heat treatment at 100 °C for more than 20 min or treatment with Fe3+ or Zn2+. In fact, treatment with Fe3+ or Zn2+ induced the formation of PLLK–iron or PLLK–zinc chelates and reduced the ACE-inhibitory activity of PLLK. These results indicate that peptides derived from millet bran could be added to foods as antihypertension agents.
Collapse
|
30
|
Fan H, Wu J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. BIORESOUR BIOPROCESS 2022; 9:43. [PMID: 35463462 PMCID: PMC9015908 DOI: 10.1186/s40643-022-00529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
Spent hen are egg-laying hens reaching the end of their laying cycles; billions of spent hens are produced globally each year. Differences in people's attitudes towards spent hen as foods lead to their different fates among countries. While spent hens are consumed as raw or processed meat products in Asian countries such as China, India, Korea, and Thailand, they are treated as a byproduct or waste, not a food product, in the western society; they are instead disposed by burial, incineration, composting (as fertilizers), or rendering into animal feed and pet food, which either create little market value or cause animal welfare and environmental concerns. Despite being a waste, spent hen is a rich source of animal proteins and lipids, which are suitable starting materials for developing valorized products. This review discussed the conventional uses of spent hens, including food, animal feed, pet food, and compost, and the emerging uses, including biomaterials and functional food ingredients. These recent advances enable more sustainable utilization of spent hen, contributing to alternative solutions to its disposal while yielding residual value to the egg industry. Future research will continue to focus on the conversion of spent hen biomass into value-added products. Graphical abstract
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
31
|
Fan H, Liao W, Spaans F, Pasha M, Davidge ST, Wu J. Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. J Food Sci 2022; 87:1292-1305. [PMID: 35166385 DOI: 10.1111/1750-3841.16077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Spent hens are egg-laying chicken reaching the end of their egg-laying cycle and are seen as a by-product to the egg industry. A spent hen muscle protein hydrolysate prepared by food-grade thermoase PC10F (SPH-T) has previously shown antihypertensive potential. In the present work, we further investigated its antihypertensive effect and underlying mechanisms in spontaneously hypertensive rats. There are three groups: untreated, low dose (250 mg SPH-T/kg/day body weight), and high dose (1,000 mg SPH-T/kg/day body weight). Oral administration of SPH-T over a period of 20 days reduced systolic blood pressure by 25.7 mm Hg (p < 0.001) and 11.9 mm Hg (p < 0.05), respectively, for the high- and low-dose groups. The high-dose treatment decreased the circulating level of angiotensin II (from 25.0 to 5.7 pg/ml) while increased angiotensin-converting enzyme 2 (ACE2) (from 1.3 to 3.3 IU/ml) and angiotensin (1-7) (from 37.0 to 70.1 pg/ml) significantly (p < 0.05). Furthermore, the high-dose group doubled the aortic expression of ACE2 while reduced the expression of angiotensin (Ang) II type 1 receptor (by 35%). Circulating inflammatory cytokines including tumor necrosis factor alpha and monocyte chemoattractant protein-1 as well as vascular inflammatory proteins including inducible nitric oxide synthase and vascular cell adhesion molecule-1 were attenuated by ∼15%-50% by the treatment; nitrosative stress (35%) and type I collagen synthesis (50%) in the aorta were also attenuated significantly (p < 0.05). Moreover, SPH-T possessed an umami taste (no obvious bitter taste) as analyzed by electronic tongue. PRACTICAL APPLICATION: Hypertension is a global health concern, afflicting more than 20% of adults worldwide. Uncovering the antihypertensive effect of spent hen protein hydrolysate underpinned its functional food nutraceutical applications for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mazhar Pasha
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Zheng Y, Shi P, Li Y, Zhuang Y, Linzhang Y, Liu L, Wang W. A novel ACE-inhibitory hexapeptide from camellia glutelin-2 hydrolysates: Identification, characterization and stability profiles under different food processing conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Identification, Characterization and Antihypertensive Effect In Vivo of a Novel ACE-Inhibitory Heptapeptide from Defatted Areca Nut Kernel Globulin Hydrolysates. Molecules 2021; 26:molecules26113308. [PMID: 34072901 PMCID: PMC8199471 DOI: 10.3390/molecules26113308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The areca (Areca catechu L.) nut kernel (ANK) is a good potential protein source for its high protein content of 9.89-14.62 g/100 g and a high yield of around 300,000 tons per year in China. However, utilization of the areca nut kernel is limited. To expand the usage of ANK in pharmaceutical or foods industries, areca nut kernel globulin was extracted and angiotensin-I converting enzyme (ACE) inhibition peptides were prepared and identified using gel chromatography, reversed phase HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening. Finally, a novel ACE-inhibitory heptapeptide (Ala-Pro-Lys-Ile-Glu-Glu-Val) was identified and chemically synthesized. The combination pattern between APKIEEV and ACE, and the inhibition kinetics, antihypertensive effect and endothlein-1 inhibition activity of APKIEEV were studied. The results of the molecular docking demonstrated that APKIEEV could bind to four active sites (not the key active sites) of ACE via short hydrogen bonds and demonstrated high ACE-inhibitory activity (IC50: 550.41 μmol/L). Moreover, APKIEEV exhibited a significantly lowering effect on both the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats, and had considerable suppression ability on intracellular endothelin-1. These results highlight the potential usage of APKIEEV as ingredients of antihypertensive drugs or functional foods.
Collapse
|
34
|
Spent Hen Muscle Protein-Derived RAS Regulating Peptides Show Antioxidant Activity in Vascular Cells. Antioxidants (Basel) 2021; 10:antiox10020290. [PMID: 33671990 PMCID: PMC7919344 DOI: 10.3390/antiox10020290] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Spent hens are egg-laying hens reaching the end of their egg-laying cycles, being a major byproduct of the egg industry. Recent studies have been focusing on finding new value-added uses for spent hens. We have previously identified four bioactive peptides from spent hen muscle proteins, including three angiotensin-converting enzyme (ACE) inhibitory (ACEi) peptides (VRP, LKY, and VRY), and one ACE2 upregulating (ACE2u) peptide (VVHPKESF (V-F)). In the current study, we further assessed their antioxidant and cytoprotective activities in two vascular cell lines-vascular smooth muscle A7r5 cells (VSMCs) and endothelial EA.hy926 cells (ECs)-upon stimulation by tumor necrosis factor alpha (TNFα) and angiotensin (Ang) II, respectively. The results from our study revealed that all four peptides attenuated oxidative stress in both cells. None of the investigated peptides altered the expression of TNFα receptors in ECs; however, VRY and V-F downregulated Ang II type 1 receptor (AT1R), while V-F upregulated the Mas receptor (MasR) in VSMCs. Further, we found that the antioxidant effects of VRP, LKY, and VRY were likely through acting as direct radical scavengers, while that of V-F was at least partially ascribed to increased endogenous antioxidant enzymes (GPx4 and SOD2) in both cells. Besides, as an ACE2u peptide, V-F exerted antioxidant effect in a MasR-dependent manner, indicating a possible involvement of the upregulated ACE2-MasR axis underlying its antioxidant action. The antioxidant activities of VRP, LKY, VRY, and V-F in vascular cells indicated their multifunctional properties, in addition to their ACEi or ACE2u activity, which supports their potential use as functional food ingredients against hypertension.
Collapse
|