1
|
Charkiewicz AE, Omeljaniuk WJ, Garley M, Nikliński J. Mercury Exposure and Health Effects: What Do We Really Know? Int J Mol Sci 2025; 26:2326. [PMID: 40076945 PMCID: PMC11899758 DOI: 10.3390/ijms26052326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mercury is widely used in medicine, agriculture, and industry. Meanwhile, according to the World Health Organization, it has been ranked as one of the ten most hazardous substances in the world, with the Agency for Toxic Substances and Disease Registry ranking it third. It has no known positive functionality in the human body, and even at low concentrations, it can have harmful long-term health effects, seriously affecting the healthcare system as well as posing a serious public health threat. This review focuses on the health effects of mercury and its major sources in the environment. We highlight its major toxic role in almost every possible aspect. Mercury and its forms, even in the smallest doses, cause numerous disorders to the body, including to the nervous system, the respiratory system, and the cardiovascular system. It can cause disorders such as various cancers; endothelial dysfunction; gastric and vascular disorders; liver, kidney, and brain damage; hormonal imbalances, miscarriages, and reproductive disorders; skin lesions; vision damage; and even death. The fact of such widespread use as well as its toxicity to the human body prompts further and in-depth research in populations of both low and moderate exposure. The constant controlling and monitoring of mercury use is a serious public health problem, requiring urgent attention and attentiveness from the governments of all countries and, in the long run, a rapid and concerted response. Thus, it is important to analyze in depth the impact of this highly toxic metal on the human body and to prepare the most precisely targeted public health interventions among all decision- and policy-makers.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Suhaimi A, Jawad AH, Yusoff MZM, Wilson LD, ALOthman ZA. Design of composite chitosan/algae/zeolite by freeze- or air-drying: A comparative adsorbent analysis for optimized removal of brilliant green dye. Int J Biol Macromol 2025; 288:138650. [PMID: 39674466 DOI: 10.1016/j.ijbiomac.2024.138650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
A bio-composite material was developed that contains chitosan, food-grade algae, and zeolite for the removal of brilliant green (BG) dye. The synthesized bio-composite was dried via two different methods (air-drying; AD, and freeze-drying; FD). The physicochemical characterization of air-dried chitosan-algae-zeolite (Cs-Alg-Zl-AD) and freeze-dried chitosan-algae-zeolite (Cs-Alg-Zl-FD) were investigated by spectroscopy (FTIR, SEM-EDX, and XPS), diffraction (XRD), surface charge via pHpzc, specific surface area (SSA) and elemental analyses. The utilization of Box-Behnken Design (BBD) was intended to optimize the three input variables, which are adsorbent dosage, pH of medium, and contact time. The adsorption optimization process yielded optimal conditions, which were verified through a desirability test and implemented in batch-mode equilibrium experiments. The Cs-Alg-Zl-FD has a higher specific surface area (SSA = 3.29 m2/g) compared to Cs-Alg-Zl-AD (SSA = 1.79 m2/g). The Cs-Alg-Zl-FD shows greater adsorptive removal of BG (98.6 %) over Cs-Alg-Zl-AD (88.6 %), in parallel agreement with differences in the SSA. Moreover, the maximum BG dye adsorption capacities of Cs-Alg-Zl-FD (119.5 mg/g) and Cs-Alg-Zl-AD (108 mg/g) at pH = 8.1 and 25 °C. The Freundlich model fits best with Cs-Alg-Zl-AD while Langmuir and Temkin models account for the Cs-Alg-Zl-FD dye adsorption. The Cs-Alg-Zl-FD shows greater dye adsorption over four adsorption cycles, as compared with the Cs-Alg-Zl-AD.
Collapse
Affiliation(s)
- Aiman Suhaimi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Mohd Zaki Mohd Yusoff
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Hearst S, Selby T, Kazery J, Everman S, Feng M, Sisson L, Nwaiwu C, Cevallos A, Lock J, Sinclair M. Fish as environmental sentinels for metal contaminants of human health concern in the Lower Mississippi River Basin. J Trace Elem Med Biol 2025; 87:127593. [PMID: 39827526 PMCID: PMC11795509 DOI: 10.1016/j.jtemb.2025.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Industrial expansion and population growth have lowered water quality, polluting aquatic ecosystems world-wide. Metal pollution in the rivers across the United States are a major health concern. The level of metal contamination in fish from the Lower Mississippi River Basin and their threat to public health were last evaluated 20 years ago. The goals of this study were to measure metal contamination in various fish species from the Lower Mississippi River Basin, evaluate the human consumption risk, and estimate bioindicator potential of these species for monitoring toxic metals on a larger scale. Various fish species (n = 203) were analyzed for 15 metal contaminants (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, and Zn). Species included: blue catfish (Ictalurus furcatus), channel catfish (Ictalurus punctatus), flathead catfish (Pylodictis olivaris), bigmouth buffalo (Ictiobus cyprinellus), smallmouth buffalo (Ictiobus bubalus), alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus), American gizzard shad (Dorosoma cepedianum), freshwater drum, (Aplodinotus grunniens), and white crappie (Pomoxis annularis). Fish consumption safety revealed toxic metals (As, Cd, Cr, Hg, and Pb) are a major human health concern in the Lower Mississippi River. Non-cancerous health hazard assessments indicated blue catfish, flathead catfish, gar species, and freshwater drum as species of concern. Consumption of all species posed human cancer risks. Computational modeling, with an accuracy of 98.5 %, identified Hg, Pb, Zn, Cr, Co, As, and Cd as major drivers of fish consumption safety. Using bioaccumulation factor analysis, we estimated the bioindicator potential of toxic metals for each fish species, finding Hg and Cd to be greatly bioaccumulative in predatory gar species. Overall, our data indicated that gar can serve as select environmental sentinels useful for monitoring toxic metal pollutants of public health concerns providing valuable insight to research scientist and monitoring agencies throughout the Lower Mississippi River Basin.
Collapse
Affiliation(s)
- Scoty Hearst
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States.
| | - Trent Selby
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Joseph Kazery
- The Department of Biology, Mississippi College, Clinton, MS, United States
| | - Steven Everman
- The Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Manliang Feng
- The Department of Chemistry, Tougaloo College, Tougaloo, MS, United States
| | - Lillian Sisson
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Chinaza Nwaiwu
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Alison Cevallos
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - James Lock
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Matthew Sinclair
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| |
Collapse
|
4
|
Li Q, Ruan B, Yu Y, Ye L, Dai A, You S, Zhao B, Ren L. Green and Mild Fabrication of Magnetic Poly(trithiocyanuric acid) Polymers for Rapid and Selective Separation of Mercury(II) Ions in Aqueous Samples. Polymers (Basel) 2024; 16:3067. [PMID: 39518280 PMCID: PMC11548154 DOI: 10.3390/polym16213067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex synthetic process and inconvenient phase separation steps limit their application. Hence, a combination of POPs and magnetic nanomaterials was proposed and a new magnetic porous organic polymer adsorbent was fabricated by a green and mild redox reaction in the aqueous phase with trithiocyanuric acid (TA) and its sodium salts acting as reductive monomers and iodine acting as an oxidant. In the preparation steps, no additional harmful organic solvent is required and the byproducts of sodium iodine are generally considered to be non-toxic. The resulting magnetic poly(trithiocyanuric acid) polymers (MPTAPs) are highly porous, have large surface areas, are rich in sulfhydryl groups and show easy magnetic separation ability. The experimental results show that MPTAPs exhibit good adsorption affinity toward Hg2+ with high selectivity, rapid adsorption kinetics (10 min), a large adsorption capacity (211 mg g-1) and wide adsorption applicability under various pH environments (pH 2~8). Additionally, MPTAPs can be reused for up to 10 cycles, and the magnetic separation step of MPTAPs is fast and convenient, reducing energy consumption compared to centrifugation and filtration steps required for non-magnetic adsorbents. These results demonstrate the promising capability of MPTAPs as superior adsorbents for effective adsorption and separation of Hg2+. Based on this, the prepared MPTAPs were adopted as magnetic solid-phase extraction (MSPE) materials for isolation of trace Hg2+ from aqueous samples. Under optimized conditions, the extraction and quantification of trace Hg2+ in water samples were accomplished using inductively coupled plasma mass spectrometry (ICP-MS) detection after MSPE procedures. The proposed MPTAPs-based MSPE-ICP-MS method is efficient, rapid, sensitive and selective for the determination of trace Hg2+, and was successfully employed for the accurate analysis of trace Hg2+ in tap water, wastewater, lake water and river water samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bingshan Zhao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Department of Chemistry, Huanggang Normal University, Huangzhou 438000, China; (Q.L.)
| | - Limin Ren
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Department of Chemistry, Huanggang Normal University, Huangzhou 438000, China; (Q.L.)
| |
Collapse
|
5
|
Chen H, Peng B, Zhang P, Yang Y, Hu X. "Turn-on" fluorescence sensing for sensitively detecting Cr(VI) via a guest exchange process in Cu NCs@MIL-101 composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4835-4842. [PMID: 38967373 DOI: 10.1039/d4ay00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Copper nanoclusters (Cu NCs) are a new fluorescent material that is often used for determining metal ions, but most sensing systems are based on the "turn-off" model. Here, a "turn-on" model of fluorescence sensing for the detection of Cr(VI) was developed based on Cu NCs@MIL-101 composites. The Cu NCs@MIL-101 composites were synthesized from a simple mixture of Cu NCs and MIL-101(Cr), in which the Cu NCs were uniformly distributed in MIL-101(Cr). Notably, the fluorescence intensity of Cu NCs@MIL-101 was significantly weakened due to the internal filtration effect (IFE) of MIL-101. When Cr(VI) was introduced, the fluorescence of Cu NCs@MIL-101 was recovered by the guest exchange process between Cr(VI) and the Cu NCs, which overcame the IFE of Cu NCs@MIL-101. Based on this, a "turn-on" fluorescence probe was successfully constructed for the quantitative detection of Cr(VI) with two linear ranges of 0.05-1 μM and 1-20 μM, and a low detection limit of 0.05 μM. The proposed fluorescence probe possessed excellent selectivity and anti-interference ability, and was successfully applied for the detection of Cr(VI) in real water samples with satisfactory results. This study provides a new approach for the analytical application of Cu NCs.
Collapse
Affiliation(s)
- Huijing Chen
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Bo Peng
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ping Zhang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ying Yang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xue Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
6
|
Dai X, Song C, Ma S, Cao F, Dong D. Rapid Determination of Cr 3+ and Mn 2+ in Water Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with Gold Nanoclusters. BIOSENSORS 2024; 14:267. [PMID: 38920571 PMCID: PMC11202032 DOI: 10.3390/bios14060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Excessive emissions of heavy metals not only cause environmental pollution but also pose a direct threat to human health. Therefore, rapid and accurate detection of heavy metals in the environment is of great significance. Herein, we propose a method based on laser-induced breakdown spectroscopy (LIBS) combined with filter paper modified with bovine serum albumin-protected gold nanoclusters (LIBS-FP-AuNCs) for the rapid and sensitive detection of Cr3+ and Mn2+. The filter paper modified with AuNCs was used to selectively enrich Cr3+ and Mn2+. Combined with the multi-element detection capability of LIBS, this method achieved the simultaneous rapid detection of Cr3+ and Mn2+. Both elements showed linear ranges for concentrations of 10-1000 μg L-1, with limits of detection of 7.5 and 9.0 μg L-1 for Cr3+ and Mn2+, respectively. This method was successfully applied to the determination of Cr3+ and Mn2+ in real water samples, with satisfactory recoveries ranging from 94.6% to 105.1%. This method has potential application in the analysis of heavy metal pollution.
Collapse
Affiliation(s)
- Xuan Dai
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Changbo Song
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Shixiang Ma
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Fengjing Cao
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| | - Daming Dong
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China; (X.D.); (D.D.)
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.S.); (S.M.)
| |
Collapse
|
7
|
Rostami M, Jahed-Khaniki G, Molaee-Aghaee E, Shariatifar N, Sani MA, Azami M, Rezvantalab S, Ramezani S, Ghorbani M. Polycaprolactone/polyacrylic acid/graphene oxide composite nanofibers as a highly efficient sorbent to remove lead toxic metal from drinking water and apple juice. Sci Rep 2024; 14:4372. [PMID: 38388664 PMCID: PMC10884409 DOI: 10.1038/s41598-024-54969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the characteristics of electrospun nanofibers (NFs), they are considered a suitable substrate for the adsorption and removal of heavy metals. Electrospun nanofibers are prepared based on optimized polycaprolactone (PCL, 12 wt%) and polyacrylic acid (PAA, 1 wt%) polymers loaded with graphene oxide nanoparticles (GO NPs, 1 wt%). The morphological, molecular interactions, crystallinity, thermal, hydrophobicity, and biocompatibility properties of NFs are characterized by spectroscopy (scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Thermogravimetric analysis), contact angle, and MTT tests. Finally, the adsorption efficacy of NFs to remove lead (Pb2+) from water and apple juice samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). The average diameter for PCL, PCL/PAA, and PCL/PAA/GO NFs was 137, 500, and 216 nm, respectively. Additionally, the contact angle for PCL, PCL/PAA, and PCL/PAA/GO NFs was obtained at 74.32º, 91.98º, and 94.59º, respectively. The cytotoxicity test has shown non-toxicity for fabricated NFs against the HUVEC endothelial cell line by more than 80% survival during 72 h. Under optimum conditions including pH (= 6), temperature (25 °C), Pb concentration (25 to 50 mg/L), and time (15 to 30 min), the adsorption efficiency was generally between 80 and 97%. The adsorption isotherm model of PCL/PAA/GO NFs in the adsorption of lead metal follows the Langmuir model, and the reaction kinetics follow the pseudo-second-order. PCL/PA/GO NFs have shown adsorption of over 80% in four consecutive cycles. The adsorption efficacy of NFs to remove Pb in apple juice has reached 76%. It is appropriate and useful to use these nanofibers as a high-efficiency adsorbent in water and food systems based on an analysis of their adsorption properties and how well they work.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nabi Shariatifar
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran
| | - Soghra Ramezani
- Faculty of Textile Engineering, Urmia University of Technology, 5716693188, Urmia, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wang C, Li S, Sun P, Yu Z, Yang X. Vortex-assisted hydrophobic natural deep eutectic solvent liquid-liquid microextraction for the removal of silver ions from environmental water. Anal Bioanal Chem 2024; 416:873-882. [PMID: 38062196 DOI: 10.1007/s00216-023-05073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
This study presents a novel approach for the quantification of silver ions in environmental water through the utilization of liquid-liquid microextraction, employing natural deep eutectic solvents in conjunction with inductively coupled plasma emission spectroscopy. The extracted solvent was characterized by Fourier transform infrared spectroscopy (FT-IR). The impact of various extractant types, extractant molar ratio, extractant volume, extraction time, and salt concentration on the efficacy of silver ion extraction was investigated. The findings indicate that the optimal extraction efficiency was attained by utilizing a 5-mL aqueous solution volume, containing 1000 μL thymol/lactic acid NADES 1:3, a salt concentration of 1 mg mL-1, a pH value of 4, and a vortex time of 4 min. Upon implementing the optimized experimental conditions, the recovery of target metal ions was from 96.9 to 101.0%. The relative standard deviations were observed to be within the range of 1.5 to 2.7%. The present study demonstrates the reproducibility, accuracy, and reliability of the method for detecting silver ions in environmental water, with linear range of 5~1000 ng mL-1 and limits of detection (LOD) and limits of quantification (LOQ) of 1.52 ng mL-1 and 5.02 ng mL-1, respectively.
Collapse
Affiliation(s)
- Chao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
| | - Shuo Li
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Peng Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
| | - Zhao Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
| | - Xue Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| |
Collapse
|
9
|
Tokalıoğlu Ş, Demirişler MS, Şahan H, Patat Ş. Environmentally friendly nanoflower Al 2O 3@carbon spheres as adsorbent for dispersive solid-phase microextraction of copper and lead in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5846-5854. [PMID: 37874290 DOI: 10.1039/d3ay01579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A fast and simple dispersive solid-phase microextraction method (d-SPμE) was described for the determination of copper and lead in food, water, and sediments using FAAS. Firstly, nanoflower Al2O3@carbon spheres composite (NF Al2O3@CSs) was synthesized and then characterized. The obtained NF Al2O3@CSs was used for the d-SPμE of copper and lead in aqueous solutions. The influence of important parameters like pH, contact time, eluent conditions, volume of sample, and competing ion effects on the d-SPμE efficiency of copper and lead was investigated. They were pH, 7; eluent, 2 mol L-1 HCl (2 mL); sample volume, 250 mL for copper and 150 mL for lead with recoveries ≥90%. The adsorption and elution of analytes on NF Al2O3@CSs were realized quickly without vortexing. The LODs of the d-SPμE for copper and lead were found to be 0.69 μg L-1 and 2.8 μg L-1, respectively, while its PF was 125 for copper and 75 for lead. The intra-day precision and inter-day repeatability (RSD%, n = 7) were 1.3% and 1.6% for Cu(II) and 2.3% and 3.2% for Pb(II), respectively. Finally, the accuracy of the d-SPμE was investigated by determination of the analytes in four certified reference materials (TMDA-53.3 Lake water, NW-TMDA-54.6 Lake water, NIST 1573a Tomato leaves, and NIST RM 8704 Buffalo River Sediment). The analyte recoveries together with analyses of dam water, river water, wastewater, sea water, sumac, tea, chocolate, and lentils were studied. The results indicate that recoveries ranged from 90 to 103% in water samples and 91 to 110% in food samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Halil Şahan
- Kayseri University, Department of Basic Sciences of Engineering, 38280, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| |
Collapse
|
10
|
Jabbari S, Sorouraddin SM, Farajzadeh MA, Fathi AA. Determination of copper(II) and lead(II) ions in dairy products by an efficient and green method of heat-induced homogeneous liquid-liquid microextraction based on a deep eutectic solvent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4321-4330. [PMID: 37606547 DOI: 10.1039/d3ay01010d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In this study, a new homogeneous liquid-liquid microextraction method using a deep eutectic solvent has been developed for the extraction of Cu(II) and Pb(II) ions in dairy products. Initially, the deep eutectic solvent was synthesized using choline chloride and p-chlorophenol and used as the extraction solvent. The synthesized solvent was soluble in milk at 70 °C and its separation from the sample was performed by decreasing the temperature. By cooling, a cloudy solution was formed due to the low solubility of the solvent at low temperatures. On centrifugation, the fine droplets of the solvent containing the analytes settled at the bottom of the tube by sedimentation. The enriched analytes were determined by flame atomic absorption spectrometry. The effect of some important parameters such as the amount of protein precipitating agent , complexing agent amount, extraction solvent volume, salt addition, pH, and temperature on the extraction efficiency of the method was studied and optimized. Under the optimal conditions, the linear ranges of the method for Cu(II) and Pb(II) ions were obtained in the ranges of 0.10-50 and 0.50-50 μg L-1 with detection limits of 0.04 and 0.18 μg L-1, respectively. The repeatability of the developed method, expressed as relative standard deviation, was determined to be 3.2 and 3.9% for Cu(II) and Pb(II) ions, respectively. Finally, by determining the concentration of Cu(II) and Pb(II) ions in milk, doogh, and cheese samples, the feasibility of the method was successfully confirmed with the extraction recoveries of 95.9 and 92.1% for Cu(II) and Pb(II) ions, respectively.
Collapse
Affiliation(s)
- Servin Jabbari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Nicosia 99138, Mersin 10, North Cyprus, Turkey
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
11
|
Hanifar K, Almajidi YQ, Sanaan Jabbar H, Alexis Ramírez-Coronel A, Altalbawy FMA, Almulla AF, Turki Jalil A, Awad SA, Andres Barboza-Arenas L. An Environmental-friendly Procedure Based on Deep Eutectic Solvent for Extraction and Determination of Toxic Elements in Fish Species from Different Regions of Iraq. J Food Prot 2023; 86:100102. [PMID: 37172905 DOI: 10.1016/j.jfp.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
In this study, an eco-friendly procedure was established by vortex-assisted liquid-phase microextraction based on deep eutectic solvent (VA-LPME-DES) combined with graphite furnace atomic absorption spectroscopy (GFAAS). The performance of this method was demonstrated by the extraction and analysis of lead (Pb), cadmium (Cd), and mercury (Hg) in fish samples. The hydrophobic DES is considered as a green extractant (environmentally friendly and less toxic than common organic solvents) and is a suitable alternative to common toxic organic solvents and is made of l-menthol and ethylene glycol (EG) with a molar ratio of 1:1. Under optimized conditions, the method linearity was in the ranges of 0.15-150 µg kg-1 with the coefficient of determinations (r2) higher than 0.996. Accordingly, the detection limits for Pb, Cd, and Hg were 0.05, 0.05, and 0.10 µg kg-1, respectively. The analysis of fish samples showed that the concentration of toxic elements in fish caught from the Tigris and Euphrates Rivers is much higher than the concentration of these elements in locally farmed trout fish. Also, the analysis of fish-certified reference materials with presented procedure produced results that were in good agreement with the certified values. The results showed that VA-LPME-DES is a very cheap, fast, and environmental-friendly procedure for the analysis of toxic elements in different types of fish species.
Collapse
Affiliation(s)
- Kalinaki Hanifar
- Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia
| | - Yasir Q Almajidi
- Department of pharmaceutics, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq.
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Sameer A Awad
- Department of medical laboratory techniques, Al-Maarif University College, Al-Anbar-Ramadi 31001, Iraq
| | | |
Collapse
|
12
|
Xia T, Yang X, Zhang R, Huang A, Hu K, Hao F, Liu Y, Deng Q, Yang S, Wen X. Simultaneous determination of Co and Pb in P. polyphylla var. yunnanensis by ICP-OES after GO-TiO 2-DES-based dispersive micro solid phase extraction. Talanta 2023; 256:124316. [PMID: 36758504 DOI: 10.1016/j.talanta.2023.124316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this work, deep eutectic solvent (DES) was used to modify GO-TiO2 to synthesize new adsorption material GO-TiO2-DES nanocomposites. It was first used for dispersive micro solid phase extraction (DMSPE) and combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for simultaneous determination of trace cobalt (Co) and lead (Pb) in natural medicine P. polyphylla var. yunnanensis. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and the Brunauer-Emmett-Teller (BET) specific surface area were used to characterize. The results showed that GO-TiO2-DES nanocomposites were successfully prepared and had better adsorption effect on metal ions. The factors affecting the extraction and elution of Co and Pb were optimized, including the type of DES, pH, adsorption time, amount of adsorbent, adsorption temperature, and elution time. Under the optimum conditions, the enhancement factors (EFs) of Co and Pb were 31 and 28, the limits of detection (LODs) were 0.11 and 0.24 μg L-1, and the limits of quantification (LOQs) were 0.36 and 0.82 μg L-1, respectively. The results of Co and Pb determined by the established method were in good agreement with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method.
Collapse
Affiliation(s)
- Ting Xia
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Zhang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Anqi Huang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
13
|
Ingrassia EB, Fiorentini EF, Escudero LB. Hybrid biomaterials to preconcentrate and determine toxic metals and metalloids: a review. Anal Bioanal Chem 2023:10.1007/s00216-023-04683-x. [PMID: 37085739 DOI: 10.1007/s00216-023-04683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Toxic elements represent a serious threat to the environment and cause harmful effects on different environmental components, even at trace levels. These toxic elements are often difficult to detect through the typical instrumentation of an analytical laboratory because they are found at very low concentrations in matrices such as food and water. Therefore, preconcentration plays a fundamental role since it allows the effects of the matrix to be minimized, thus reaching lower detection limits and greater sensitivity of detection techniques. In recent years, solid-phase extraction has been successfully used for the preconcentration of metals as an environmentally friendly technique due to the fact that it eliminates or minimizes the use of reagents and solvents and offers reduced analysis times and low generation of waste in the laboratory. Hybrid biomaterials are low-cost, eco-friendly, and useful as efficient solid phases for the preconcentration of elements. In this review, recent investigations based on the use of hybrid biomaterials for the preconcentration and determination of toxic metals are presented and discussed, given special attention to bionanomaterials. A brief description of hybrid biomaterials often used for analytical purposes, as well as analytical techniques mostly used to characterize the hybrid biomaterials, is explained. Finally, the future prospects that encourage the search for new hybrid biomaterials are commented upon.
Collapse
Affiliation(s)
- Estefanía B Ingrassia
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Emiliano F Fiorentini
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina
| | - Leticia B Escudero
- Laboratory of Environmental Biotechnology (BioTA), Faculty of Exact and Natural Sciences, National University of Cuyo/Interdisciplinary Institute of Basic Sciences (ICB), CONICET UNCUYO, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| |
Collapse
|
14
|
Amini S, Kandeh SH, Ebrahimzadeh H, Khodayari P. Electrospun composite nanofibers modified with silver nanoparticles for extraction of trace heavy metals from water and rice samples: An highly efficient and reproducible sorbent. Food Chem 2023; 420:136122. [PMID: 37059019 DOI: 10.1016/j.foodchem.2023.136122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Herein, a composite of polyacrylonitrile (PAN)/agar/silver nanoparticles (AgNPs) electrospun nanofibers was fabricated and applied as an efficient sorbent for thin-film micro-extraction (TFME) of five metal ions followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Incorporating agar into the nanofibers followed by in situ photo-reductive reaction under UV-lamp resulted in highly uniform dispersion of AgNPs in the nanofibers. Under the optimized conditions, agreeable linearity was acquired in the range of 0.5-250.0 ng mL-1 (R2 ≥ 0.9985). The LODs (based on S/N = 3) were attained in the range of 0.2 to 0.5 ng mL-1. The relative standard deviations (RSDs) were between 4.5% and 5.6% (intra-day, n = 5) and 5.3%-5.9% (inter-day, n = 3) for three sequential days. The developed method was investigated with water and rice samples, and recoveries (93.9-98.0%) indicated that the PAN/agar/AgNPs could be a promising film for the adsorption of heavy metal ions in varied samples.
Collapse
Affiliation(s)
- Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Baghaei PAM, Mogaddam MRA, Farajzadeh MA, Mohebbi A, Sorouraddin SM. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Eivazzadeh-Keihan R, Pourakbari B, Jahani Z, Aghamirza Moghim Aliabadi H, Kashtiaray A, Rahmati S, Pouri S, Ghafuri H, Maleki A, Mahdavi M. Biological investigation of a novel nanocomposite based on functionalized graphene oxide nanosheets with pectin, silk fibroin and zinc chromite nanoparticles. J Biotechnol 2022; 358:55-63. [PMID: 36087782 DOI: 10.1016/j.jbiotec.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
For biotechnology applications, a novel nanobiocomposite was synthesized based on modification of graphene oxide (GO) by extracted silk fibroin (SF), natural polymer pectin (Pec) and zinc chromite (ZnCr2O4) nanoparticles (NPs). The structure and properties of hybrid nanobiocomposite GO-Pec/SF/ZnCr2O4 such as thermal stability, less toxicity, biocompatibility, antibacterial, and biodegradable were proved by using field emission scanning electron microscope (FE-SEM), Fourier-transformed infrared (FT-IR), Energy dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and X-Ray diffraction (XRD). According to the biological features of substances, the GO-Pec/SF/ZnCr2O4 nanobiocomposite shows perfect results in MTT (83.71 %) and Hemolysis (16.52 %) assays. accordingly, mentioned properties of this nanobiocomposite can be used as a scaffold for medical applications.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| | - Bahareh Pourakbari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| | - Zohreh Jahani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran; Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Islamic Republic of Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| | - Saman Rahmati
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Saeedeh Pouri
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Islamic Republic of Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
17
|
Zhai H, Wang Y, Yin J, Zhang Y, Guo Q, Sun X, Guo Y, Yang Q, Li F, Zhang Y. Electrochemiluminescence biosensor for determination of lead(II) ions using signal amplification by Au@SiO 2 and tripropylamine-endonuclease assisted cycling process. Mikrochim Acta 2022; 189:317. [PMID: 35930068 DOI: 10.1007/s00604-022-05429-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023]
Abstract
MXene@Au as the base and Au@SiO2 as signal amplification factor were used for constructing an ultrasensitive "on-off" electrochemiluminescence (ECL) biosensor for the detection of Pb2+ in water. The use of MXene@Au composite provided a good interface environment for the loading of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) on the electrode. Based on resonance energy transfer, the Au (core) SiO2 (shell) (Au@SiO2) nanoparticles stimulate electron transport and promote tripropylamine (TPrA) oxidation. The luminescence effect of Au@SiO2 was five times that of AuNPs and SiO2 nanomaterials alone, and the ECL intensity was greatly improved. In addition, Pb2+ activated the aptamer to exert its endonuclease activity, which realized the signal cycle amplification in the process of Pb2+ detection. When Pb2+ was added, the ECL signal weakened, and the Pb2+ concentration was detected according to the decreased ECL intensity. Under optimized experimental conditions, this aptamer sensor for Pb2+ has a wide detection range (0.1 to 1 × 106 ng L-1) and a low detection limit (0.059 ng L-1). The relative standard deviation (RSD) of the sensor is 0.39-0.99%, and the recovery of spiked standard is between 90.00 and 125.70%. The sensor shows good selectivity and high sensitivity in actual water sample analysis. This signal amplification strategy possibly provides a new method for the detection of other heavy metal ions and small molecules.
Collapse
Affiliation(s)
- Hongguo Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Jiaqi Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China. .,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China. .,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.
| |
Collapse
|
18
|
Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Biosens Bioelectron 2022; 209:114280. [DOI: 10.1016/j.bios.2022.114280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
|
19
|
Determination of cobalt in P. polyphylla var. yunnanensis and S. yunnanensis by micro UV–vis spectrophotometry after deep eutectic solvent-based rapidly synergistic cloud point extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Shen R, Xu X, Shuai Q, Huang L. Fast and efficient extract oseltamivir from aquatic products using magnetic covalent organic frameworks/graphene oxide composite prior to liquid chromatography-tandem mass spectrometry analysis. Food Chem 2022; 396:133646. [PMID: 35839718 DOI: 10.1016/j.foodchem.2022.133646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
In this work, a magnetic covalent organic framework/graphene oxide composite (MCOF/GO) was rapidly synthesized and developed as a promising candidate for the magnetic solid-phase extraction (MSPE). Combined with HPLC-MS, an efficient and rapid analytical method was established for the determination of oseltamivir (OS) in aquatic products. The resultant composite not only exhibited superior extraction efficiency, but also possessed fast mass transfer kinetic, reducing the pretreatment time greatly. Under optimal conditions, the linear range of the proposed method for OS determination was found to be 0.1-10 μg/kg along with a satisfactory correlation coefficient (R2 = 0.997) and a low limit of detection (LOD, 0.035 μg/kg). Furthermore, the established method was utilized to determine OS in Carp, Yellow croaker, and Shrimp, where the recoveries ranged from 87% to 116%. These results demonstrate the splendid application potential of this method to detect antiviral drugs in actual aquatic products.
Collapse
Affiliation(s)
- Rujia Shen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China; Nanjing Geological Survey Center, China Geological Survey, No. 534, East Zhongshan Road, Nanjing 210016, Jiangsu Province, PR China
| | - Xuejiao Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
21
|
Amico D, Tassone A, Pirrone N, Sprovieri F, Naccarato A. Recent applications and novel strategies for mercury determination in environmental samples using microextraction-based approaches: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128823. [PMID: 35405590 DOI: 10.1016/j.jhazmat.2022.128823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The growing need to monitor Hg levels in the environment to control its emissions and evaluate the effectiveness of reduction policies is driving the scientific community to focus efforts on creating analytical methods that are simpler, lower cost, more performing, and environmentally sustainable. In this context, an important contribution is provided by microextraction techniques, which have long proven to be simple, reliable, and to ensure an environmentally responsible sample preparation. This manuscript reviews the recent progress in the determination of environmental Hg using microextraction techniques. The considered studies involve all environmental compartments (i.e., air, water, soil, and biota) and have been discussed by grouping them according to the employed technique while pointing out the main advances achieved and the most important limitations. The ultimate goal is to provide an up-to-date overview of the analytical potential of microextraction techniques that can be exploited in various investigation fields and to highlight the most important knowledge gaps that should be addressed in the coming years, such as in-situ sampling, the use of natural materials, and the value of metrological support to obtain data SI-traceable and comparable.
Collapse
Affiliation(s)
- Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy; Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende, Italy.
| |
Collapse
|
22
|
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153844. [PMID: 35176366 DOI: 10.1016/j.scitotenv.2022.153844] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Water resources have long been of interest to humans and have become a serious issue in all aspects of human life. The disposal of hazardous pollutants in water resources is one of the biggest global concerns and poses many risks to human health and aquatic life. Therefore, the control of hazardous pollutants in water resources plays an important role, when it comes to evaluating water quality. Due to low toxicity, good electrical conductivity, facile functionalization, and easy preparation, magnetic materials have become a good alternative in recent years to control hazardous pollutants in water resources. In the present study, the idea of using magnetic sensors in controlling and monitoring of pharmaceuticals, pesticides, heavy metals, and organic pollutants have been reviewed. The water pollutants in drinking water, groundwater, surface water, and seawater have been discussed. The toxicology of water hazardous pollutants has also been reviewed. Then, the magnetic materials were discussed as sensors for controlling and monitoring pollutants. Finally, future remarks and perspectives on magnetic nanosensors for controlling hazardous pollutants in water resources and environmental applications were explained.
Collapse
Affiliation(s)
- Akbar Hojjati-Najafabadi
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi 341000, PR China
| | - Khashayar Shahin
- Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, South Africa.
| |
Collapse
|
23
|
Goel A, Tomer N, Bhalla P, Malhotra R. Pyranone based probe for the selective and specific recognition of zinc ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Dong X, Wang M, Tang Y. Green synthesis of fluorescent carbon nanospheres from chrysanthemum as a multifunctional sensor for permanganate, Hg(II), and captopril. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120886. [PMID: 35063823 DOI: 10.1016/j.saa.2022.120886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
A simple and green method for the synthesis of fluorescent carbon nanospheres (CNs) was proposed using chrysanthemum as a natural precursor and ethylenediamine as the co-reagent. The prepared CNs show strong blue fluorescence in water with quantum yield of 13.7 %, and distinguished fluorescent stability against photobleaching and ion strength. Meanwhile, the fluorescence signal of CNs is reversible and sensitive to temperature in the range of 20-80 °C, which makes CNs useful as a temperature sensor. More importantly, the CNs can serve as excellent fluorescent sensors for detecting MnO4- and Hg2+ with the detection limit of 0.72 and 0.26 μM, respectively. MnO4- quenches the fluorescence of CNs through inner filter effect and static quenching mechanism, while Hg2+ forms a stable complex with the amino group on the surface of CNs, resulting in the fluorescence quenching of CNs. However, the stronger affinity between Hg2+ and captopril (Cap) results in the fluorescence quenched by Hg2+ recovery after the addition of Cap. Thus, the CNs-Hg2+ system is employed as a novel sensitive and selective fluorescence "turn-on" sensor for Cap in the range of 0-75 μM. Inspired by the sensing results, the developed sensors were successfully used for the determination of MnO4-, Hg2+ in river water samples and Cap in the pharmaceutical and urine samples.
Collapse
Affiliation(s)
- Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| |
Collapse
|
25
|
Simultaneous electro-determination of trace copper, lead, and cadmium in tap water by using silver nanoparticles and graphene nanoplates as nanocomposite modified graphite electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Li WK, Xue YJ, Fu XY, Ma ZQ, Feng JT. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Chen S, Liu J, Yan J, Wang C, Lu D. Dual In-Syringe Microextraction with Electrothermal Vaporization (ETV) Inductively Coupled Plasma–Mass Spectrometry (ICP–MS) for Determination of Rare Earth Elements (REEs) in Food. ANAL LETT 2022. [DOI: 10.1080/00032719.2021.2018595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shizhong Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jinhong Liu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Yan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chunlei Wang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dengbo Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
28
|
Gu YX, Yan TC, Yue ZX, Li MH, Zheng H, Wang SL, Cao J. Dispersive Micro-solid-Phase Extraction of Acaricides from Fruit Juice and Functional Food Using Cucurbituril as Sorbent. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Geng F, Wang D, Shao C, Li G, Xu M, Feng L. Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum. Anal Bioanal Chem 2022; 414:2021-2028. [DOI: 10.1007/s00216-021-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
|
30
|
Ahmad H, Koo BH, Khan RA. Preconcentration and determination of trace Hg(ii) using ultrasound-assisted dispersive solid phase microextraction. RSC Adv 2022; 12:53-61. [PMID: 35424482 PMCID: PMC8978612 DOI: 10.1039/d1ra07898d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Defect rich molybdenum disulfide (MoS2) nanosheets were hydrothermally synthesized and their potential for ultrasound assisted dispersive solid phase microextraction of trace Hg(ii) ions was assessed. Ultrasonic dispersion allows the MoS2 nanosheets to chelate rapidly and evenly with Hg(ii) ions and results in improving the precision and minimizing the extraction time. The multiple defect rich surface was characterized by X-ray diffraction and high-resolution transmission electron microscopy. The surface charge of intrinsically sulfur rich MoS2 nanosheets and their elemental composition was characterized by zeta potential measurements, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The cracks and holes on the basal planes of MoS2 led to diffusion of the Hg(ii) ions into the interior channels. Inner-sphere chelation along with outer-sphere electrostatic interaction were the proposed mechanism for the Hg(ii) adsorption onto the MoS2 surface. The experimental data showed good selectivity of MoS2 nanosheets towards Hg(ii) adsorption. The systematic and constant errors of the proposed method were ruled out by the analysis of the Standard Reference Material (>95% recovery with <5% RSD). The Student's t-test values for the analyzed Standard Reference Material were found to be less than the critical Student's t value at 95% confidence level. The limit of detection (3S) was found to be 0.01 ng mL−1. The MoS2 nanosheets were successfully employed for the analysis of Hg(ii) in environmental water samples. Hg(ii) ion adsorption onto an MoS2 surface.![]()
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongnam, South Korea
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Fathabad AE, Tajik H, Najafi ML, Jafari K, Mousavi Khaneghah A, Fakhri Y, Thai VN, Oliveri Conti G, Miri M. The concentration of the potentially toxic elements (PTEs) in the muscle of fishes collected from Caspian Sea: A health risk assessment study. Food Chem Toxicol 2021; 154:112349. [PMID: 34144100 DOI: 10.1016/j.fct.2021.112349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
In the present study, the concentration of (potentially toxic element) PTEs in the five fish species from the Caspian Sea (from five coastal areas) was measured and compared. The target hazard quotient (THQ) and total THQ (TTHQ) were calculated using Monte Carlo simulations to determine the non-carcinogenic risk in both children and adults consumers. The highest concentration of PTEs was associated with chromium (Cr) measured in Cyprinus carpio, sampled from Bandar Anzali (1.56 ± 0.14 μg/g dw), and the minimum PTEs level was nickel (Ni) in Vimba from Astara (0.02 ± 0.01 μg/g d w). The rank order for PTEs based on THQ was mercury (Hg) > cadmium (Cd) > lead (Pb)> Ni > tin (Sn) > Total Cr. For adults, the fishes rank order based on TTHQ was: Cyprinus carpio (3.268) > Chelon saliens (2.89) > Rutilus frisii kutum kanesky (2.28) > Oncorhynchus mykis (1.39) > Vimba (0.25); and for children was Cyprinus carpio (15.25) > Chelon saliens (13.47) > Rutilus frisii kutum kanesky (10.63) > Oncorhynchus mykis (6.48) > Vimba (1.16). Overall this study showed that the levels of PTEs in investigated fish species had a potential non-carcinogenic risk for both children and adults (TTHQ>1).
Collapse
Affiliation(s)
- Ayub Ebadi Fathabad
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Science, Birjand, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Jafari
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health Engineering, Faculty of Health, Sabzevar University of Medical Sciences & Health Services, Sabzevar, Iran.
| |
Collapse
|