1
|
Fu R, Hai X, Lu Q, Li H, Niu J, Zhang Y, Ren T, Guo X, Di X. Molecularly imprinted polymer gel with superior recognition and adsorption capacity for amphenicol antibiotics in food matrices. Food Chem 2025; 463:141255. [PMID: 39303467 DOI: 10.1016/j.foodchem.2024.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized β-cyclodextrin (β-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and β-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9-9.4) and high adsorption capacity (28.9-75.4 mg g-1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5-10 μg L-1), good correlation (r2 > 0.9967), and respectable recovery (82.6-105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3-104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Collapse
Affiliation(s)
- Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Hasani R, Ehsani A, Hassanzadazar H, Aminzare M, Khezerlou A. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat. Food Chem X 2024; 23:101598. [PMID: 39071929 PMCID: PMC11283086 DOI: 10.1016/j.fochx.2024.101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Using a hydrothermal technique, a highly sensitive metal-organic Cu-MOFs sensor has been created to detect florfenicol (FFC) fluorescent in chicken meat. The sensor has demonstrated the ability to respond to the presence of FFC in an aqueous solution with accuracy and selectivity, as evidenced by an increase in fluorescence intensity. The interactions and adsorption mechanism based on hydrogen bonding, π- π, and n-π interactions demonstrate the high sensitivity and specificity of Cu-MOFs towards. FFC was detected quantitatively with a recovery of 96.48-98.79% in chicken meat samples. Within a broad linear range of 1-50 μM, the Cu-MOFs nanosensor exhibits a fast response time of 1 min, a low limit of detection (LOD) of 2.93 μM, and a limit of quantification (LOQ) of 8.80 μM. The potential applicability of the Cu-MOFs nanosensor for the detection of FFC in food matrices is confirmed by the results obtained with high-performance liquid chromatography (HPLC). Chemical compounds Copper (II) nitrate (PubChem CID: 18616); Terephthalic acid (PubChem CID: 7489); Polyvinyl pyrrolidone (PubChem CID: 486422059); N, N-dimethylformamide (PubChem CID: 6228); Ethyl alcohol (PubChem CID: 702); Hydrochloric acid (PubChem CID: 313); Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Trichloroacetic acid (PubChem CID: 6421); Florfenicol (PubChem CID: 114811).
Collapse
Affiliation(s)
- Roshanak Hasani
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhang D, Zhang Y, Li K, Wang S, Ma Y, Liao Y, Wang F, Liu H. A smartphone-combined ratiometric fluorescence molecularly imprinted probe based on biomass-derived carbon dots for determination of tyramine in fermented meat products. Food Chem 2024; 454:139759. [PMID: 38805926 DOI: 10.1016/j.foodchem.2024.139759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 μg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 μg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Kexin Li
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China..
| |
Collapse
|
4
|
He J, Wang L, Liu H, Sun B. Recent advances in molecularly imprinted polymers (MIPs) for visual recognition and inhibition of α-dicarbonyl compound-mediated Maillard reaction products. Food Chem 2024; 446:138839. [PMID: 38428083 DOI: 10.1016/j.foodchem.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.
Collapse
Affiliation(s)
- Jingbo He
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Lei Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
5
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Zhang L, Yin M, Wei X, Sun Y, Luo Y, Lin H, Shu R, Xu D. An aptamerelectrochemical sensor based on functional carbon nanofibers for tetracycline determination. Bioelectrochemistry 2024; 157:108668. [PMID: 38387209 DOI: 10.1016/j.bioelechem.2024.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Fe-Co@CNF was synthesized by electrospinning technology, and AuNPs was loaded onto Fe-Co@CNF by in-situ reduction to obtain Fe-Co@CNF@AuNPs composite material, which was used as the working electrode based on Au-S bond cooperation. The tetracycline electrochemical sensing interface Fe-Co@CNF@AuNPs@Apt was constructed by connecting mercaptoylated tetracycline (TC) aptamers on Fe-Co@CNF@AuNPs surface. The morphology and composition of Fe-Co@CNF@AuNPs composites were characterized by SEM, TEM, EDS, XRD and XPS, and the electrochemical properties of tetracycline were evaluated by CV and DPV. The results showed that the addition of Fe and Co did not destroy the structure of the original carbon nanofibers, and their synergistic effect enhanced the electrocatalytic performance, effective electrode area and electron transfer ability of carbon nanofibers. AuNPs are evenly distributed over the fibers, which effectively improves the electrical conductivity of the material. Under the optimal conditions, the theoretical detection limit of tetracycline was 0.213 nM, and the linear detection range was 5.12-10 mM, which could successfully detect tetracycline in milk.
Collapse
Affiliation(s)
- Li Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ming Yin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huaqing Lin
- Shanghai Tobacco Group Co. Ltd, Shanghai 200082, PR China
| | - Ruxin Shu
- Shanghai Tobacco Group Co. Ltd, Shanghai 200082, PR China.
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
7
|
Zhu F, Chai Q, Xiong D, Zhu N, Zhou J, Wu R, Zhang Z. Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. BIOSENSORS 2024; 14:273. [PMID: 38920577 PMCID: PMC11201970 DOI: 10.3390/bios14060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Metal-organic frameworks (MOFs) have gained significant prominence as sensing materials owing to their unique properties. However, understanding the correlation between the morphology, properties, and sensing performance in these MOF-based sensors remains a challenge, limiting their applications and potential for improvement. In this study, Zr-MOF was chosen as an ideal model to explore the impact of the MOF morphology on the sensing performance, given its remarkable stability and structural variability. Three luminescent MOFs (namely rod-like Zr-LMOF, prismoid-like Zr-LMOF, and ellipsoid-like Zr-LMOF) were synthesized by adjusting the quantities of the benzoic acid and the reaction time. More importantly, the sensing performance of these Zr-LMOFs in response to aflatoxin B1 (AFB1) was thoroughly examined. Notably, the ellipsoid-like Zr-LMOF exhibited significantly higher sensitivity compared to other Zr-LMOFs, attributed to its large specific surface area and pore volume. Additionally, an in-depth investigation into the detection mechanism of AFB1 by Zr-LMOFs was conducted. Building upon these insights, a ratiometric fluorescence sensor was developed by coordinating Eu3+ with ellipsoid-like Zr-LMOF, achieving a remarkably lower detection limit of 2.82 nM for AFB1. This study contributes to an improved comprehension of the relationship between the MOF morphology and the sensing characteristics while presenting an effective approach for AFB1 detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Zhang
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (F.Z.); (Q.C.); (D.X.); (N.Z.); (J.Z.); (R.W.)
| |
Collapse
|
8
|
Wang A, Wen Y, Zhu X, Zhou J, Chen Y, Liu H, Liang C, Liu E, Zhang Y, Ai G, Gaiping Z. Quantum dot-based fluorescence-linked immunosorbent assay for the rapid detection of lomefloxacin in animal-derived foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:513-524. [PMID: 38502862 DOI: 10.1080/19440049.2023.2267144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/01/2023] [Indexed: 03/21/2024]
Abstract
Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC50 and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Yihong Wen
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Guoping Ai
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
| | - Zhang Gaiping
- School of Life Sciences, Zhengzhou University, Zhengzhou, P.R. China
- Longhu Laboratory, Zhengzhou, P.R. China
- Henan Key Laboratory of Immunobiology, Zhengzhou, P.R. China
- School of Advanced Agricultural Sciences, Peking University, Beijing, P.R. China
| |
Collapse
|
9
|
Yang L, Hu W, Pei F, Liu Z, Wang J, Tong Z, Mu X, Du B, Xia M, Wang F, Liu B. A ratiometric fluorescence imprinted sensor based on N-CDs and metal-organic frameworks for visual smart detection of malathion. Food Chem 2024; 438:138068. [PMID: 38011790 DOI: 10.1016/j.foodchem.2023.138068] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Sensitive and rapid detection of pesticide residues in food is essential for human safety. A ratiometric imprinted fluorescence sensor N-CDs@Eu-MOF@MIP (BR@MIP) was constructed to sensitively detect malathion (Mal). Europium-based metal organic frameworks (Eu-MOF) were used as supporters to improve the sensitivity of the BR@MIP. N-doped carbon dots (N-CDs) were used as fluorescent source to produce fluorescent signal. A linear relationship between the concentration of Mal and the fluorescence response of the sensor was found in the Mal concentration range of 1-10 μM with a limit of detection (LOD) of 0.05 μM. Furthermore, the sensor was successfully applied for the detection of Mal in lettuce, tap water, and soil samples, with recoveries in the range of 93.0 % - 99.3 %. Additionally, smartphone-based sensors were used to detect Mal in simulated real samples. Thus, the construction of ratiometric imprinted fluorescence sensor has provided a good strategy for the detection of Mal.
Collapse
Affiliation(s)
- Lidong Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
10
|
Wu X, Tang K, Chen Y, Zhang Z. Smartphone-assisted colorimetric dual-mode sensing system based on europium-doped metal-organic frameworks for rapid on-site visual detection of Fe 3+ and doxycycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123705. [PMID: 38043290 DOI: 10.1016/j.saa.2023.123705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Exploring a rapid, sensitive, low-cost, in-situ intelligent monitoring multi-target fluorescence detection platform is important for food safety and environmental monitoring. A dual-mode ratiometric fluorescence sensing system integrated with a smartphone based on a luminescent metal-organic framework (NH2-MIL-53) and CdTe/Eu was developed for visual, in-situ analysis of Fe3+ and doxycycline (DOX) in this paper. Interestingly, with increasing Fe3+ concentration, the fluorescence sensing system exhibits dual-emission with CdTe QDs at 540 nM as the response signal and NH2-MIL-53 at 438 nm as the reference signal, resulting in a significant color shift of fluorescence color from blue-green to blue, with a linear range of 5--1550 nM and a detection limit of 1.08 nM. In the presence of DOX, the blue fluorescence of NH2-MIL-53 and the green fluorescence of CdTe QDs were quenched respectively by the internal filtering effect and the photoelectron transfer effect. While DOX enhances the red fluorescence of Eu3+ by the antenna effect, forming a triple-emission fluorescence sensor. The visual color of this fluorescent sensor shifted from blue green to grey to pink-white to pink to fuchsia to red as the DOX concentration increased with a detection limit of 0.11 nM. Furthermore, the developed intelligent sensing platform achieved real-time in-situ detection of Fe3+ and DOX with detection limit of 1.47 nM and 6.43 nM, respectively. The platform was applied to detection actual samples with satisfactory results, which proved a promising application for real-time on-site food safety monitoring and human health monitoring.
Collapse
Affiliation(s)
- Xiaodan Wu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China; College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Kangling Tang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China; College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China; College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, PR China; College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
11
|
Lu X, Yan L, Zhou X, Qu T. Highly selective colorimetric determination of glutathione based on sandwich-structured nanoenzymes composed of gold nanoparticle-coated molecular imprinted metal-organic frameworks. Mikrochim Acta 2024; 191:140. [PMID: 38363397 DOI: 10.1007/s00604-023-06167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
A sandwich-structured composite nanoenzyme (NH2-MIL-101(Fe)@Au@MIP) was prepared using molecularly imprinted polymers, metal-organic frameworks, and gold nanoparticles and a highly selective glutathione (GSH) colorimetric sensor was constructed. The inner part of the composite nanoenzymes is a metal-organic framework loaded with gold nanoparticles (AuNPs), NH2-MIL-101(Fe)@Au, which has superior peroxidase-like activity compared with NH2-MIL-101(Fe). This is due to the surface plasmon resonance effect of AuNPs. GSH can form strong Au-S bonds with AuNPs, which can significantly reduce the enzymatic activity of NH2-MIL-101(Fe)@Au, thereby changing the absorbance at 450 nm of the sensing system. The degree of change in absorbance is correlated with the concentration of GSH. In the outer part, the molecularly imprinted polymer with oxidized glutathione (GSSG) as a dummy template provided specific pores, which significantly improved the selectivity of the sensing system. The sensor showed good GSH sensing performance in the range 1 ~ 50 μM with a lower limit of detection (LOD) of 0.231 μM and good sensing performance in fetal bovine serum, indicating its high potential for clinical diagnostic applications.
Collapse
Affiliation(s)
- Xiaolin Lu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Liqiu Yan
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoxue Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingli Qu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024; 55:581-602. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
13
|
Yuan W, Li S, Ma X, Pang C, Wu Y, Wang M, Li B. MOF@Au NPs/aptamer fluorescent probe for the selective and sensitive detection of thiamethoxam. LUMINESCENCE 2023. [PMID: 38104966 DOI: 10.1002/bio.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
The luminescence performance of fluorescent reagents plays a crucial role in fluorescence analysis. Therefore, in this study, a novel bi-ligand Zn-based metal-organic framework, Au nanoparticle (NP) fluorescent material was synthesized using a hydrothermal method with Zn as the metal source. Simultaneously, a DNA aptamer was introduced as a molecular recognition element to develop a Zn-based MOF@Au NPs/DNA aptamer fluorescent probe for the ultra-trace detection of thiamethoxam residues in agricultural products. The probe captured different concentrations of the target molecule, thiamethoxam, through the DNA aptamer, causing a conformational change in the DNA aptamer and bursting the fluorescence of the probe, therefore establishing a fluorometric method for thiamethoxam detection. This method is highly sensitive due to the excellent luminescence properties of the Zn-based MOF@Au NPs, and the DNA aptamer can specifically recognize thiamethoxam, offering high selectivity. The linear range of the method was 2.5-6000 × 10-11 mol L-1 , with a detection limit of 8.33 × 10-12 mol L-1 . This method was applied to the determination of actual samples, such as bananas, and the spiked recovery rate was found to be in the range 84.05-109.07%. Overall, the proposed probe has high sensitivity, high selectivity, and easy operation for the detection of thiamethoxam residues in actual samples.
Collapse
Affiliation(s)
- Weiwei Yuan
- College of Food Science and Technology, and MOE, Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Xionghui Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Chaohai Pang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yuwei Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Mingyue Wang
- College of Food Science and Technology, and MOE, Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Bei Li
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| |
Collapse
|
14
|
Singh H, Thakur B, Bhardwaj SK, Khatri M, Kim KH, Bhardwaj N. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem 2023; 426:136657. [PMID: 37393822 DOI: 10.1016/j.foodchem.2023.136657] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics are widely used as bacteriostatic or bactericidal agents against various microbial infections in humans and animals. The excessive use of antibiotics has led to an accumulation of their residues in food products, which ultimately poses a threat to human health. In light of the shortcomings of conventional methods for antibiotic detection (primarily cost, proficiency, and time-consuming procedures), the development of robust, accurate, on-site, and sensitive technologies for antibiotic detection in foodstuffs is important. Nanomaterials with amazing optical properties are promising materials for developing the next generation of fluorescent sensors. In this article, advances in detecting antibiotics in food products are discussed with respect to their sensing applications, with a focus on fluorescent nanomaterials such as metallic nanoparticles, upconversion nanoparticles, quantum dots, carbon-based nanomaterials, and metal-organic frameworks. Furthermore, their performance is evaluated to promote the continuation of technical advances.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Bandana Thakur
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Sanjeev K Bhardwaj
- Advanced Research & Material Solutions (ARMS), Technology Business Incubator, IISER Mohali, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Wang X, Liu C, Cao Y, Cai L, Wang H, Fang G. A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal-Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk. Foods 2023; 12:foods12112255. [PMID: 37297499 DOI: 10.3390/foods12112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Developing sensitive and effective methods to monitor oxytetracycline residues in food is of great significance for maintaining public health. Herein, a fluorescent sensor (NH2-UIO-66 (Zr)@MIP) based on a molecularly imprinted polymer-coated amino-functionalized zirconium (IV) metal-organic framework was successfully constructed and first used for the ultrasensitive determination of oxytetracycline. NH2-UIO-66 (Zr), with a maximum emission wavelength of 455 nm under 350 nm excitation, was prepared using a microwave-assisted heating method. The NH2-UIO-66 (Zr)@MIP sensor with specific recognition sites for oxytetracycline was then acquired by modifying a molecularly imprinted polymer on the surface of NH2-UIO-66 (Zr). The introduction of NH2-UIO-66 (Zr) as both a signal tag and supporter can strengthen the sensitivity of the fluorescence sensor. Thanks to the combination of the unique characteristics of the molecularly imprinted polymer and NH2-UIO-66 (Zr), the prepared sensor not only exhibited a sensitive fluorescence response, specific identification capabilities and a high selectivity for oxytetracycline, but also showed good fluorescence stability, satisfactory precision and reproducibility. The fabricated sensor displayed a fluorescent linear quenching in the OTC concentration range of 0.05-40 μg mL-1, with a detection limit of 0.012 μg mL-1. More importantly, the fluorescence sensor was finally applied for the detection of oxytetracycline in milk, and the results were comparable to those obtained using the HPLC approach. Hence, the NH2-UIO-66 (Zr)@MIP sensor possesses great application potential for the accurate evaluation of trace oxytetracycline in dairy products.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
17
|
Zhou H, Zhang M, Chen Q, Shan Q, Liu S, Lin J, Ma L, Zheng G, Li L, Zhao C, Wei L, Dai X, Yin Y. Determination of amphenicol antibiotic residues in aquaculture products by response surface methodology modified QuEChERS method combined with UPLC-MS/MS. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
19
|
Wu X, Zhao P, Tang S, Chen Y, Tang K, Lei H, Yang Z, Zhang Z. Metal organic framework-based tricolor fluorescence imprinted sensor for rapid intelligent detection of homovanillic acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Hu X, Cao Y, Cai L, Wang H, Fang G, Wang S. A smartphone-assisted optosensing platform based on chromium-based metal-organic framework signal amplification for ultrasensitive and real-time determination of oxytetracycline. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130395. [PMID: 36402106 DOI: 10.1016/j.jhazmat.2022.130395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Ultrasensitive and onsite detection of oxytetracycline (OTC) is of vital significance for ensuring public health. Herein, a novel and versatile fluorescence biomimetic nanosensor, Mg,N-CDs@MIL-101@MIP, was elaborately tailored for the assay of OTC. MIL-101 with extraordinarily high surface area and porosity, as a favorable supporter, suppressed self-quenching of Mg,N-CDs and boosted mass transfer rate, realizing signal amplification. As an ultrasensitive signal transducer, high luminescent Mg,N-CDs yielded conspicuous fluorescence responses for OTC, enhancing the sensitivity of Mg,N-CDs@MIL-101@MIP. High-affinity imprinting sites further endowed Mg,N-CDs@MIL-101@MIP with superior anti-interference ability and reusability. Given prominent merits, Mg,N-CDs@MIL-101@MIP demonstrated a good linear range (0.05-40 μg mL-1) with a lower limit of detection (16.8 ng mL-1), supplying high accessibility to realize ultrasensitive and highly selective measurement of OTC in samples. Additionally, to attain precise onsite profiling of OTC, an intelligent sensing platform was developed by integrating Mg,N-CDs@MIL-101@MIP with a portable smartphone-assisted optical device. As both signal reader and analyzer, smartphone can instantly capture concentration-dependent fluorescent images and accurately digitize them, accomplishing quantitative analysis of OTC. More delightfully, the portable platform was utilized for visual determination of OTC in milk samples with satisfactory results, offering a promising tool for the high-performance onsite evaluation of food safety and environmental health.
Collapse
Affiliation(s)
- Xuelian Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Zhang H, Kang Z, Zhu H, Lin H, Yang DP. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160284. [PMID: 36403831 DOI: 10.1016/j.scitotenv.2022.160284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials-based photoelectrochemical (PEC) detection is becoming a rapidly-developing analytical technique in chemical and biological assays due to its unique advantages of easy miniaturization, high sensitivity, and rapid turnaround time. Herein, a molecularly imprinted polymer-assisted PEC sensor based on ZnO/C nanocomposite was successfully fabricated for the highly sensitive and selective determination of chloramphenicol (CAP). Benefiting from the hydrophilic functional groups (-OH, -COOH) and large surface area of bio-templated ZnO/C nanocomposite, the tight grafting of MIP with excellent recognition ability on substrate is easier and more stable than traditional PEC sensor, thus significantly increasing the performance. Under optimal conditions, the PEC sensor exhibited significant CAP detection performance in the range of 0.01-5000 ng mL-1 with a detection LOD of 5.08 pg mL-1 (S/N = 3) and successfully applied to the detection of CAP in milk sample. Our results show that ZnO/C nanocomposite and MIP can act as an efficient photo-responsible matrix to fabricate PEC sensor, providing important application potentials for pollutants control in food and environment.
Collapse
Affiliation(s)
- Huafang Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Zewen Kang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hu Zhu
- School of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Da-Peng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| |
Collapse
|
22
|
One-pot synthesis of ternary-emission molecularly imprinted fluorescence sensor based on metal–organic framework for visual detection of chloramphenicol. Food Chem 2023; 402:134256. [DOI: 10.1016/j.foodchem.2022.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
|
23
|
Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023; 11:1116524. [PMID: 36742039 PMCID: PMC9890379 DOI: 10.3389/fchem.2023.1116524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Metal-organic framework materials (MOFs) have been widely used in food contamination adsorption and detection due to their large specific surface area, specific pore structure and flexible post-modification. MOFs with specific pore size can be targeted for selective adsorption of some contaminants and can be used as pretreatment and pre-concentration steps to purify samples and enrich target analytes for food contamination detection to improve the detection efficiency. In addition, MOFs, as a new functional material, play an important role in developing new rapid detection methods that are simple, portable, inexpensive and with high sensitivity and accuracy. The aim of this paper is to summarize the latest and insightful research results on MOFs for the adsorption and detection of food contaminants. By summarizing Zn-based, Cu-based and Zr-based MOFs with low cost, easily available raw materials and convenient synthesis conditions, we describe their principles and discuss their applications in chemical and biological contaminant adsorption and sensing detection in terms of stability, adsorption capacity and sensitivity. Finally, we present the limitations and challenges of MOFs in food detection, hoping to provide some ideas for future development.
Collapse
|
24
|
Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010335. [PMID: 36615529 PMCID: PMC9822428 DOI: 10.3390/molecules28010335] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023]
Abstract
The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, β-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.
Collapse
|
25
|
Wu G, Zhao Y, Li X, Lu X, Qu T. Fluorescent probes based on the core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5034-5040. [PMID: 36468235 DOI: 10.1039/d2ay01363k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH) is a polypeptide with important physiological functions. Real-time and accurate detection of GSH is of great significance for clinical diagnosis, disease treatment and pathogen detection. A fluorescent nanosensor based on composite core-shell nanoparticles for the highly selective detection of GSH is reported. In the cores, the fluorescence of rhodamine b was quenched by using gold nanoparticles (AuNPs), and GSH could competitively combine with AuNPs to cause rhodamine b to fall off, thereby recovering the fluorescence. In the shell part, molecularly imprinted materials using oxidized glutathione (GSSG) as a pseudotemplate provide GSH/GSSG specific pores and improve the specificity and anti-interference ability of the sensor. The GSH sensor has a detection range of 0-100 μM and limit of detection (LOD) of 0.18 μM, and robust sensing performance in fetal bovine serum, indicating its great potential for clinical diagnosis.
Collapse
Affiliation(s)
- Guoli Wu
- Department of Pharmacy, Children's Hospital of Shanxi, Taiyuan 030013, China
| | - Yongdan Zhao
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Xiaofang Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Xiaolin Lu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Tingli Qu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| |
Collapse
|
26
|
Yao J, Zeng X. Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol. Mikrochim Acta 2022; 190:18. [PMID: 36495321 DOI: 10.1007/s00604-022-05573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Nanosheets of anatase TiO2 and CdS quantum dots modified with thioglycolic acid (TGA-CdS QDs) were prepared and hierarchically modified on the indium tin oxides (ITO) electrodes. The heterojunction structure is formed to improve the light capture ability and carrier migration, significantly enhancing the sensitivity of photoelectrochemical (PEC) biosensors. Specific DNA sequences labeled with TGA-CdS QDs were placed on the electrodes to prepare a biosensor for the detection of chloramphenicol with ultrahigh selectivity. In addition, the heterojunction structure and the principle of photocurrent signal amplification on the electrode are described in detail. Under the optimal conditions, the photoelectrochemical biosensors showed good reproducibility and stability for chloramphenicol with a linear response in the range 10-10,000 pM and a limit of detection (LOD) of 0.23 pM. Due to the specific recognition of base pairs, the sensor has excellent anti-interference ability in practical applications. An effective method was developed for the accurate detection of antibiotics with far reaching prospects.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Xiang Zeng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
27
|
Multiplex immunochromatographic platform based on crystal violet tag for simultaneous detection of streptomycin and chloramphenicol. Food Chem 2022; 393:133351. [PMID: 35689929 DOI: 10.1016/j.foodchem.2022.133351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/23/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Antibiotic abuse has caused serious health risks for human beings for long. To address the problem, novel and facile detection techniques are highly desired. Here, an effective multiplex immunochromatographic platform (MICP) with synthesis-free and cost-effective merits is established for simultaneous detection of antibiotics on a single immunochromatographic assay (ICA) strip. Adopting crystal violet (CV) as a signal tag for multiplex ICA allows for direct coupling with multiple antibodies in several minutes. By combining CV and ICA perfectly, this convenient strategy offers improvements in convenience, speed, flexibility, and portability, eventually ensuring the optimized effectiveness of this approach. As a result, the established platform is successfully used to detect streptomycin (STR) and chloramphenicol (CAP) with visual detection mode, and the obtained total recoveries of milk and honey real samples changed from 83.82 to 113.38% with total RSD values of 0.48 to 4.15%.
Collapse
|
28
|
|
29
|
Araújo R, González-González RB, Martinez-Ruiz M, Coronado-Apodaca KG, Reyes-Pardo H, Morreeuw ZP, Oyervides-Muñoz MA, Sosa-Hernández JE, Barceló D, Parra-Saldívar R, Iqbal HM. Expanding the Scope of Nanobiocatalysis and Nanosensing: Applications of Nanomaterial Constructs. ACS OMEGA 2022; 7:32863-32876. [PMID: 36157779 PMCID: PMC9494649 DOI: 10.1021/acsomega.2c03155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 05/25/2023]
Abstract
The synergistic interaction between advanced biotechnology and nanotechnology has allowed the development of innovative nanomaterials. Those nanomaterials can conveniently act as supports for enzymes to be employed as nanobiocatalysts and nanosensing constructs. These systems generate a great capacity to improve the biocatalytic potential of enzymes by improving their stability, efficiency, and product yield, as well as facilitating their purification and reuse for various bioprocessing operating cycles. The different specific physicochemical characteristics and the supramolecular nature of the nanocarriers obtained from different economical and abundant sources have allowed the continuous development of functional nanostructures for different industries such as food and agriculture. The remarkable biotechnological potential of nanobiocatalysts and nanosensors has generated applied research and use in different areas such as biofuels, medical diagnosis, medical therapies, environmental bioremediation, and the food industry. The objective of this work is to present the different manufacturing strategies of nanomaterials with various advantages in biocatalysis and nanosensing of various compounds in the industry, providing great benefits to society and the environment.
Collapse
Affiliation(s)
- Rafael
G. Araújo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martinez-Ruiz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Humberto Reyes-Pardo
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Zoé P. Morreeuw
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Damià Barceló
- Department
of Environmental Chemistry, Institute of
Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan
Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability
Cluster, School of Engineering, UPES, 248007 Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico
de Monterrey, School of Engineering
and Sciences, Monterrey 64849, Mexico
- Tecnologico
de Monterrey, Institute of Advanced Materials
for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
30
|
Shakeel A, Rizwan K, Farooq U, Iqbal S, Iqbal T, Awwad NS, Ibrahium HA. Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices. CHEMOSPHERE 2022; 303:134923. [PMID: 35568211 DOI: 10.1016/j.chemosphere.2022.134923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.
Collapse
Affiliation(s)
- Ahmad Shakeel
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, 79110, Germany; Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, 79104, Germany; Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan; Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Ujala Farooq
- Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629, HS, Delft, the Netherlands.
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| |
Collapse
|
31
|
Yuan Y, Zhu C, Hang Q, Zhao L, Xiong Z, Zhao J. Hydrophilic molecularly imprinted membranes based on GO-loading for simultaneously selective recognition and detection of three amphenicols drugs in pork and milk. Food Chem 2022; 384:132542. [DOI: 10.1016/j.foodchem.2022.132542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
|
32
|
Singhal A, Sadique MA, Kumar N, Yadav S, Ranjan P, Parihar A, Khan R, Kaushik AK. Multifunctional carbon nanomaterials decorated molecularly imprinted hybrid polymers for efficient electrochemical antibiotics sensing. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107703. [DOI: 10.1016/j.jece.2022.107703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
33
|
Liu L, Chen Q, Lv J, Li Y, Wang K, Li JR. Stable Metal-Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorg Chem 2022; 61:8015-8021. [PMID: 35544341 DOI: 10.1021/acs.inorgchem.2c00754] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid detection of antibiotics in agricultural products is of great significance. In this work, two stable fluorescent metal-organic frameworks (MOFs), BUT-178 and BUT-179, are synthesized and used to detect tetracycline antibiotics. Among them, BUT-179 exhibits better performance in the detection of different tetracycline antibiotics in water and eggs. The limits of detection of BUT-179 toward tetracycline, aureomycin, oxytetracycline, and doxycycline all reach the nanomolar level. Furthermore, the cycling tests confirm that BUT-179 can be easily recovered and repeatedly used without an obvious performance loss. This work demonstrates the excellent application potential of MOFs for food safety, especially the fluorescence detection of antibiotics in foods.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jie Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
34
|
Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal-Organic Frameworks in Agriculture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16983-17007. [PMID: 35393858 PMCID: PMC9026272 DOI: 10.1021/acsami.2c00615] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal-organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.
Collapse
Affiliation(s)
- Sara Rojas
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy, Av. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
35
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Dong J, Chen F, Xu L, Yan P, Qian J, Chen Y, Yang M, Li H. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
NH 2NH-MOF: a reaction matrix for the specific determination of small aldehydes by MALDI-MS. Mikrochim Acta 2022; 189:51. [PMID: 34994863 DOI: 10.1007/s00604-021-05143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Efficient determination of aldehydes by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is hampered mainly by the low mass and unstable nature of analytes. In the present work, we propose a combined strategy of a reactive metal-organic framework (MOF) matrix for the derivatization and detection of aldehydes. A novel reactive MOF matrix (NH2NH-MOF) was synthesized in two steps. First, NR3+-MOF was synthesized via Cu2+ and the quaternary amine ligand 4,4'-bipyridinium, 1,1″-(1,2-ethanediyl)bis-, dibromide (PyEtBr). Then, -NHNH2 was introduced to NR3+-MOF through electrostatic adsorption between the -NR3+ and -HSO3- of 4-hydrazinylbenzenesulfonic acid to synthesize NH2NH-MOF. The acid-base chemistry of NH2NH-MOF led to uniform cocrystallization of the aldehyde-matrix mixtures and helped to achieve the detection of low-weight aldehydes with good relative standard deviations (RSDs = 0.07-12.35%). It was confirmed that this strategy can accurately quantify formaldehyde, valeraldehyde, and benzaldehyde with good linearity (r > 0.97). Furthermore, this strategy was applied to quantitatively detect benzaldehyde in wastewater, thus showing potential applications in environmental pollutant detection.
Collapse
|
39
|
Hu X, Guo Y, Wang T, Liu C, Yang Y, Fang G. A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126748. [PMID: 34352525 DOI: 10.1016/j.jhazmat.2021.126748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 05/29/2023]
Abstract
Development of methods with high selectivity and sensitivity for detection of trace ribavirin (RBV) is of great importance for environmental protection and food safety. Herein, we proposed a simple yet valid strategy to construct the highly selective ratiometric fluorescence sensing platform (BA-LMOFs@MIP) for analysis of RBV based on boric acid-functionalized lanthanide metal-organic framework (BA-LMOFs) coupled with molecularly imprinted polymer (MIP). In this strategy, BA-LMOFs featured with dual-emission and pH-responsive behavior were first synthesized as supporter. Benefiting from boric acid group of BA-LMOFs, RBV was easily immobilized onto its surface, taking advantage of template immobilization-based surface imprinting means to fabricate BA-LMOFs@MIP with dual recognition sites for the first time. The synergistic effect of covalent boronate affinity-based recognition unit and non-covalent imprinting sites enabled BA-LMOFs@MIP to exhibit superior selectivity and binding efficiency to RBV. BA-LMOFs as signal tag endowed BA-LMOFs@MIP with desirable sensitivity, photostability and hydrophilicity. More importantly, BA-LMOFs@MIP-based sensor displayed a wide linear range for RBV from 25 to 1200 ng mL-1 with a detection limit down to 7.62 ng mL-1. The sensor was finally applied to RBV determination in real samples, and the obtained results revealed that BA-LMOFs@MIP would be a promising candidate for monitoring of RBV in complex systems.
Collapse
Affiliation(s)
- Xuelian Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
40
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
41
|
Zhang X, Tang B, Li Y, Liu C, Jiao P, Wei Y. Molecularly Imprinted Magnetic Fluorescent Nanocomposite-Based Sensor for Selective Detection of Lysozyme. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1575. [PMID: 34203859 PMCID: PMC8232576 DOI: 10.3390/nano11061575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
A new strategy for the design and construction of molecularly imprinted magnetic fluorescent nanocomposite-based-sensor is proposed. This multifunctional nanocomposite exhibits the necessary optics, magnetism and biocompatibility for use in the selective fluorescence detection of lysozyme. The magnetic fluorescent nanocomposites are prepared by combining carboxyl- functionalized Fe3O4 magnetic nanoparticles with l-cysteine-modified zinc sulfide quantum dots (MNP/QDs). Surface molecular imprinting technology was employed to coat the lysozyme molecularly imprinted polymer (MIP) layer on the MNP/QDs to form a core-shell structure. The molecularly imprinted MNP/QDs (MNP/QD@MIPs) can rapidly separate the target protein and then use fluorescence sensing to detect the protein; this reduces the background interference, and the selectivity and sensitivity of the detection are improved. The molecularly imprinted MNP/QDs sensor presented good linearity over a lysozyme concentration range from 0.2 to 2.0 μM and a detection limit of 4.53 × 10-3 μM for lysozyme. The imprinting factor of the MNP/QD@MIPs was 4.12, and the selectivity coefficient ranged from 3.19 to 3.85. Furthermore, the MNP/QD@MIPs sensor was applied to detect of lysozyme in human urine and egg white samples with recoveries of 95.40-103.33%. Experimental results showed that the prepared MNP/QD@MIPs has potential for selective magnetic separation and fluorescence sensing of target proteins in biological samples.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Bo Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Yansong Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Chengbin Liu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Pengfei Jiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| | - Yuping Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China; (Y.L.); (C.L.); (P.J.); (Y.W.)
| |
Collapse
|