1
|
Hao L, Han Y, Zhang S, Luo Y, Luo K. Bioavailability of selenium and the influence of trace elements in crops grown in selenium-rich areas. Food Chem 2025; 476:143463. [PMID: 39986080 DOI: 10.1016/j.foodchem.2025.143463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Trace elements in crops can affect the bioavailability of Se. To investigate the effect of trace element on Se bioavailability, trace element concentrations and Se bioavailability in crops from Se-rich area (Langao County, China) were analyzed using the physiologically-based extraction test (PBET) digestion model. Vegetables (rapes, radishes, and potatoes) had higher concentrations of total and bioavailable Se compared to grains (corn, rice, and sweet potatoes), suggesting they are more effective for Se supplementation. The bioavailability of Se was higher in the intestinal phase than in the gastric phase. Trace elements were positively correlated with the increased bioavailability of Se in corn, potato, and rape. Fe was a key element in increased bioavailability of Se in the gut model. Therefore, trace elements, particularly Fe, in crop can enhance Se bioavailability, suggesting their potential use in Se supplementation. The findings of this study provide valuable insights for dietary interventions to Se deficiencies.
Collapse
Affiliation(s)
- Litao Hao
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yangchun Han
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shixi Zhang
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China.
| | - Yingjie Luo
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| |
Collapse
|
2
|
Xiong Y, Fan B, Li L, Liu Y, Wang X, Fei C, Tong L, Wang F, Huang Y. Effects of different drying methods on the structure, bioaccessibility, and bioavailability of selenium-enriched peptides from soybean sprouts. Food Chem 2025; 468:142442. [PMID: 39671918 DOI: 10.1016/j.foodchem.2024.142442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Selenium-enriched peptides (SePPs) were isolated from Se-enriched soybean sprouts as the selenium (Se) supplement. The preparation of SePPs was optimised, and their Se content, stability during drying, and absorption properties, were examined. The maximum in vitro antioxidant activity of SePPs was achieved after 5 h of alcalase, at 50 °C, pH 9, 3 % substrate concentration, and 5 % enzyme concentration. 58 peptides containing SeMet or SeCsy were found. Following different drying methods, the Se content dropped, and the cross-linked SePPs produced by freeze-drying had higher hydrophobicity, reduced free sulfhydryl concentration, and more potent in vitro antioxidant activity. In the Caco-2 monolayer cellular transport model, the transport efficiency of SePPs were significantly higher than those of selenite, and the binding of peptides enhanced the bioaccessibility and bioavailability of Se. The study elucidated the structure, composition, morphology bioaccessibility and bioavailabilityand of SePPs, providing support for SePPs functional food development.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
3
|
Zhang Y, Qi W, Cong X, Huang D, Yu R, Chen S, Zhu S. Digestive characteristics of Se-enriched proteins with different Se species and its effects on gut microbiota during in vitro APP/PS1 mice colonic fermentation. Food Res Int 2025; 204:115949. [PMID: 39986791 DOI: 10.1016/j.foodres.2025.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Cardamine violifolia, cabbage, and soybeans have a strong ability to accumulate selenium (Se), primarily in the forms of SeCys2, Se (VI), and SeMet, respectively. This study aims to investigate the digestive characteristics of Se-enriched proteins with different Se species, and its effects on gut microbiota during in vitro APP/PS1 mice colonic fermentation. The results showed that SeCys2 had the highest bioaccessibility (90.65 %) in Se-enriched C. violifolia protein (H-CVP), followed by SeMet at 84.53 %. In Se-enriched soybean protein (H-SBP), SeMet displayed the highest bioaccessibility at 82.98 %. Conversely, the bioaccessibility of Se (VI) in Se-enriched cabbage protein (H-CBP) was below 20 %, likely due to its conversion to Se (IV). Previous research indicated that, although the bioaccessibility of these Se species was relatively high, their bioavailability remained low. Unabsorbed Se may undergo fermentation in the colon. Consequently, we performed in vitro fermentation using feces from APP/PS1 mice to assess its effects on the gut microbiota of Alzheimer's disease (AD) mice. The results showed that H-CVP had a prebiotic effect on Bacteroidetes strain, while H-SBP significantly increased the abundance of Firmicutes and Lactobacillaceae in family level. H-CBP had weaker effects on gut microbiota health with the abundance of Enterobacteriaceae. Functional gene prediction of 16S rDNA sequencing data inferred that H-CVP may regulate intestinal health through the metabolism of cofactors and vitamins, while H-SBP could enhance carbohydrate metabolism. Overall, these findings emphasized the role of H-CVP and H-SBP in maintaining gut health in APP/PS1 mice, and demonstrated their potential to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wendong Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, Hubei 445000, China; National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Ruipeng Yu
- Analysis & Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shangwei Chen
- Analysis & Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 4122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
An F, Zhuang K, Shangguan L, Yao L, Dai J. Effects of exogenous selenium application on quality characteristics, selenium speciation, and in vitro bioaccessibility of rice pancakes. Food Chem X 2025; 25:102064. [PMID: 39758055 PMCID: PMC11696765 DOI: 10.1016/j.fochx.2024.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
Selenium is an essential trace element for human health. To date, a hotspot of functional foods is strengthening the content of organic Se in food using biological Se enrichment. Herein, Se-enriched rice pancakes were produced by directly adding different sodium selenite concentrations into the fermentation process. The effects of sodium selenite addition on the texture properties, structure, and Se species of rice pancakes were investigated. Meanwhile, the bioaccessibility of Se and the changes of Se species in Se-enriched rice pancakes were determined by digestion experiments in vitro. The results showed significant differences in hardness, adhesiveness, chewiness, porosity, and flavor substances of Se-enriched rice pancakes after adding sodium selenite (p < 0.05). In Se-enriched rice pancakes, selenocystine (SeCys2) and methylselenocysteine (MeSeCys) are the main Se species. When sodium selenite was added at 3.3 μg/mL, the maximum values of SeCys2 and MeSeCys were 328.35 ± 33.43 and 311.11 ± 49.48 μg/kg, respectively. Se bioaccessibility was negatively correlated with sodium selenite content. The electronic nose results of Se-enriched rice pancakes showed that the sulfur compounds, nitrogen substances, alcohol substances, alkane substances, alcohols, aldehydes, and ketones in rice pancakes significantly increased following sodium selenite addition. The results can provide a significant basis for developing high efficiency Se-enriched fermented food and the processing of Se-enriched rice pancakes.
Collapse
Affiliation(s)
- Feiran An
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Kun Zhuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lingling Shangguan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| |
Collapse
|
5
|
Hu J, Hu J, Duan S, Zeng F, Zhang S, Li G. Impact of Cooking on Tuber Color, Texture, and Metabolites in Different Potato Varieties. Foods 2024; 13:3786. [PMID: 39682857 DOI: 10.3390/foods13233786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Potatoes are a globally important crop with high nutritional value. Different potato varieties display notable variations in color, texture, and nutrient composition. However, the influence of cooking on tuber color, texture, and metabolites has not been comprehensively explored. This study evaluated the color and texture of five potato varieties before and after cooking. Cooking significantly altered tuber color, decreased hardness and adhesiveness, and increased springiness, particularly after steaming. The metabolomic analysis of Zhongshu 49 (ZS49) and Shishu 3 (SH3) tubers was conducted using gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography (UHPLC)-MS/MS. GC-MS identified 122 volatile metabolites, with 42 significantly varying between cooking treatments, while UHPLC-MS/MS detected 755 nonvolatile metabolites, 445 of which showed significant differences. Compared to ZS49, SH3 exhibited a marked increase in umami- and flavor-related metabolites, especially after cooking. This study provides new insights into how cooking affects the quality, texture, and metabolite profiles of potato tubers.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinxue Hu
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
| | - Shaoguang Duan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fankui Zeng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuqing Zhang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
| | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Farooq MR, Zhang Z, Liu X, Chen Y, Wu G, Niu S, Song J, Chen D, Yin X. Selenium loss during boiling processes and its bioaccessibility in different crops: Estimated daily intake. Food Chem 2024; 443:138607. [PMID: 38301552 DOI: 10.1016/j.foodchem.2024.138607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Food crops provide a good selenium (Se) source for Se-deficient populations. This study assessed how boiling affects Se concentration, speciation, and bioaccessibility in common food crops to determine human Se intake. Boiling rice resulted in an 11.9% decrease in minimum Se content, while sorghum experienced a maximum (34.9%) reduction. Boiled vegetables showed a 21% - 40% Se loss. Cereals showed notable decreases in selenomethionine (SeMet) and selenocysteine (SeCys2), while most vegetables exhibited a significant reduction in Se-methylselenocysteine (SeMeCys). Boiling significantly reduced the Se bioaccessibility in all food crops, except cabbage and potato. Cereal crops were more efficacious in meeting the recommended daily intake (RDI) of Se compared to vegetables. Rice exceeds other crops and provides up to 39.2% of the WHO/FAO-recommended target minimum daily intake of 60 μg/day. This study provides insight into a substantial dissonance between the estimated daily intake (EDI) of Se and the bioaccessible Se in both raw and boiled crops. Consequently, revising EDI standards is imperative.
Collapse
Affiliation(s)
- Muhammad Raza Farooq
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Zezhou Zhang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, China; Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China.
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Youtao Chen
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China; College of Agriculture, Anhui Science and Technology University, Chuzhou 239200, China
| | - Gege Wu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shanshan Niu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jiaping Song
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, China; Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Dong Chen
- Ningxia Selenium Industry Development Co., LTD, Ningxia 755000, China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China.
| |
Collapse
|
7
|
Oladeji OM, Magoro K, Mugivhisa LL, Olowoyo JO. Selenium and other heavy metal levels in different rice brands commonly consumed in Pretoria, South Africa. Heliyon 2024; 10:e29757. [PMID: 38707293 PMCID: PMC11066335 DOI: 10.1016/j.heliyon.2024.e29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
For centuries, rice has been a dietary staple food partially due to its accessibility, affordability, and nutritional content. However, it has been documented that plants can bioaccumulate trace elements from soil and store them in their tissues therefore necessitating monitoring of its nutritional quality. The current study investigated the Selenium and heavy metal contents of various brands of rice obtained from different retail stores in Pretoria, South Africa. The analysis was carried out using different rice samples and different methods/stages of cooking rice including the analysis of rinsed rice water (RW), raw rice (RR), cooked rice (CR), and cooked rice water (CW), for trace elements content using the Inductive Couple Plasma Mass Spectrometry. The results revealed that the Se content ranged from 0.013 ± 0.01 mg/kg - 0.089 ± 0.06 mg/kg in RR, 0.013 ± 0.01 mg/kg - 0.046 ± 0.01 mg/kg in CR, 0.01 ± 0.01mg/kg- 0.028 ± 0.00 mg/kg in RW and 0.01 ± 0.01 mg/kg - 0.048 ± 0.01 mg/kg in CW. The calculated estimated dietary intake (EDI) of Se was recorded as follows; raw rice (7.06 × 10-5 mg/day), cooked rice (5.01 × 10-5 mg/day), water from cooked rice (4.54 × 10-5 mg/day) and rinsed water of raw rice (3.97 × 10-5 mg/day). The concentrations of all other heavy metals measured were within the WHO-recommended limits. The HQ for all the trace metals in all the samples did not exceed one, implying that there is no health risk from trace metals analysed in this study from the consumption of the rice brands used in this study. The results of this study demonstrated that reliance on rice alone for the supply of Se may be inadequate owing to the values obtained in our study. Constant monitoring of the nutritional contents of food products may be required to improve the overall nutritional well-being of the consumers.
Collapse
Affiliation(s)
- Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Kgomotso Magoro
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Liziwe Lizbeth Mugivhisa
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Joshua Oluwole Olowoyo
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
- Department of Health Science and The Water School, Florida Gulf Coast University, Fort Myers, USA
| |
Collapse
|
8
|
Qi Z, Duan A, Ng K. Selenosugar, selenopolysaccharide, and putative selenoflavonoid in plants. Compr Rev Food Sci Food Saf 2024; 23:e13329. [PMID: 38551194 DOI: 10.1111/1541-4337.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Farooq MR, Zhang Z, Yuan L, Liu X, Li M, Song J, Wang Z, Yin X. Characterization of Selenium Speciation in Se-Enriched Crops: Crop Selection Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3388-3396. [PMID: 38343309 DOI: 10.1021/acs.jafc.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.
Collapse
Affiliation(s)
- Muhammad Raza Farooq
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Zezhou Zhang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Mengqi Li
- Zhejiang Institute of Geosciences, Hangzhou, Zhejiang 310000, P. R. China
| | - Jiaping Song
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 239200, P. R. China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, P. R. China
| |
Collapse
|
10
|
Liang S, Li Y, Zhang M, Gao X, Feng S, Wang Z. Influence of nutritional components on colour, texture characteristics and sensory properties of cooked potatoes. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2168762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Shan Liang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiaoxue Gao
- School of Food and Health, Beijing Technology and Business University, Beijing, China
- Research and Development Centre, Beijing Zimeitang Biotechnology, Beijing, China
| | - Sensen Feng
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zikang Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
12
|
Zhang S, Cheng L, Gong W, Huang J, Peng Z, Meng K, Zhang L, Shu X, Wu D. Comparative studies on physicochemical properties of three potato varieties different in RS2 and RS3 contents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7712-7720. [PMID: 37439262 DOI: 10.1002/jsfa.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND At present, increasing importance has been attracted to healthy food enriched in resistant starch (RS), which has great benefits in health-promoting. Raw potato has rich RS2, whereas most RS2 may become digestible after gelatinization, resulting in few RS being left in processed potato. Breeding potatoes with high RS2 or RS3 or both can meet the demand for various healthy potato products. RESULTS There were apparent discrepancies among three potatoes with contrast RS2 and RS3 content in thermal properties, viscosity and digestibility. ZS-5 had the highest RS2 with 50.17% but the lowest RS3 with 3.31%. Meanwhile, ZS-5 had the largest starch granule, the highest proportion of B3, viscosity and hardness, and the highest digestibility. DN303 with the highest content of RS3 (5.08%) had the lowest hardness and fracturability. MG56-42 with both higher RS2 and RS3 content showed the highest resistance to digestion and moderate hardness and fracturability. CONCLUSION The present study enriches the potential resources and provides a reliable scientific basis for high RS potatoes breeding. The various features of different potatoes make it possible to screen potatoes according to different demands. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Linrun Cheng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jie Huang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Zhangchi Peng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Kaiwei Meng
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liang Zhang
- Institute of Cop Science, Jinhua Academy of Agriculture and Sciences, Jinhua, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
He P, Zhang M, Zhang Y, Wu H, Zhang X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker's Yeast. Foods 2023; 12:2343. [PMID: 37372553 DOI: 10.3390/foods12122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
In this research, the effect of selenium (Se) enrichment on dough fermentation characteristics of yeast and the possible mechanisms was investigated. Then, the Se-enriched yeast was used as starter to make Se-enriched bread, and the difference between Se-enriched bread and common bread was investigated. It was found Se enrichment increased CO2 production and sugar consumption rate of Saccharomyces cerevisiae (S. cerevisiae) in dough fermentation, and had positive impacts on final volume and rheological index of dough. The mechanism is possibly related to higher activity and protein expression of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), isocitrate dehydrogenase (ICD), and α-ketoglutarate dehydrogenase (α-KGDHC) in Se-enriched yeast. Moreover, Se-enriched bread (Se content: 11.29 μg/g) prepared by using Se-enriched yeast as starter exhibited higher overall acceptability on sensory, cell density in stomatal morphology, and better elasticity and cohesiveness on texture properties than common bread, which may be due to effect of higher CO2 production on dough quality. These results indicate Se-enriched yeast could be used as both Se-supplements and starter in baked-foods making.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaoyuan Zhang
- Industrial Technology Research Institute, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
14
|
Okada M, Nagayama Y, Saiki H, Ito K, Yatsuga S, Nagamitsu S. Selenium deficiency and scurvy due to an imbalanced diet of snacks and lacto-fermenting drinks: a case report of a 7-year-old boy with autism spectrum disorder. BMC Nutr 2023; 9:41. [PMID: 36890584 PMCID: PMC9993612 DOI: 10.1186/s40795-023-00703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND There have been reports of isolated trace elements or vitamin deficiencies due to imbalanced diets, but no cases of selenium deficiency combined with scurvy have been reported. CASE PRESENTATION A 7 year-old boy diagnosed with autistic spectrum disorder and mild psychomotor retardation, started an imbalanced diet including specific snacks and lacto-fermenting drinks from 5 years of age. Gingival hemorrhage and perioral erosions occurred at 6 years and 8 months of age, and he was referred to our hospital at 7 years of age. Slight tachycardia was found. Serum vitamin C level was 1.1 µg/dL (reference range (rr): 5-17.5 µg/dL), and selenium level was 2.8 µg/dL (rr: 7.7-14.8 µg/dL). He was diagnosed with both selenium deficiency and scurvy. Multivitamins and sodium selenate were administered for 12 days during admission, and symptoms of selenium deficiency and scurvy improved. After discharge, symptoms abated following the administration of multivitamins and regular administration of sodium selenate every 3 months. CONCLUSIONS We report a complicated case of both selenium deficiency and scurvy due to an imbalanced diet of snacks and lacto-fermenting drinks in a 7-year-old boy with autism spectrum disorder. In patients with imbalanced diet, regular blood tests including trace elements and vitamins are necessary.
Collapse
Affiliation(s)
- Makoto Okada
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yugo Nagayama
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hitomi Saiki
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kazutoshi Ito
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shuichi Yatsuga
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Shinichiro Nagamitsu
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
15
|
Wang P, Li Y, Yu R, Huang D, Chen S, Zhu S. Effects of Different Drying Methods on the Selenium Bioaccessibility and Antioxidant Activity of Cardamine violifolia. Foods 2023; 12:foods12040758. [PMID: 36832833 PMCID: PMC9955862 DOI: 10.3390/foods12040758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Understanding the effects of drying on the selenium (Se) content and Se bioaccessibility of Se-rich plants is critical to dietary supplementation of Se. The effects of five common drying methods (far-infrared drying (FIRD), vacuum drying (VD), microwave vacuum drying (MVD), hot air drying (HD), and freeze vacuum drying (FD)) on the content and bioaccessibility of Se and Se species in Cardamine violifolia leaves (CVLs) were studied. The content of SeCys2 in fresh CVLs was the highest (5060.50 μg/g of dry weight (DW)); after FIRD, it had the lowest selenium loss, with a loss rate of less than 19%. Among all of the drying processes, FD and VD samples had the lowest Se retention and bioaccessibility. FIRD, VD, and FD samples have similar effects on antioxidant activity.
Collapse
Affiliation(s)
- Peiyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruipeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85197876
| |
Collapse
|
16
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Xiong Y, Huang Y, Li L, Liu Y, Liu L, Wang L, Tong L, Wang F, Fan B. A Review of Plant Selenium-Enriched Proteins/Peptides: Extraction, Detection, Bioavailability, and Effects of Processing. Molecules 2023; 28:1223. [PMID: 36770890 PMCID: PMC9919150 DOI: 10.3390/molecules28031223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
As an essential trace element in the human body, selenium (Se) has various physiological activities, such as antioxidant and anticancer activity. Selenium-enriched proteins/peptides (SePs/SePPs) are the primary forms of Se in plants and animals, and they are the vital carriers of its physiological activities. On the basis of current research, this review systematically describes the extraction methods (aqueous, alkaline, enzymatic, auxiliary, etc.) and detection methods (HPLC-MS/MS, GC-ICP-MS, etc.) for SePs/SePPs in plants. Their bioavailability and bioactivity, and the effect of processing are also included. Our review provides a comprehensive understanding and theoretical guidance for the utilization of selenium-enriched proteins/peptides.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
18
|
Silambarasan S, Logeswari P, Vangnai AS, Cornejo P. Rhodotorula mucilaginosa CAM4 improved selenium uptake in Spinacia oleracea L. and soil enzymatic activities under abiotic stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89943-89953. [PMID: 35859235 DOI: 10.1007/s11356-022-21935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to examine selenium (Se) acquisition by spinach (Spinacia oleracea L.) plants growing under salinity and drought stress through the inoculation of Rhodotorula mucilaginosa strain CAM4. Under abiotic stress conditions, strain CAM4 with Se inoculation increased the shoot length, root length, shoot dry weight and root dry weight by 75.8-93.7%, 47.7-80.9%, 101.9-109.8% and 130.5-270.2%, respectively compared to uninoculated Se-treated plants grown under the same conditions. Under abiotic stresses, the Se-treated CAM4 inoculated plants showed a significant increase in Se concentration in the edible leaves of spinach, which was 227.3-234.5% higher than uninoculated Se-treated control plants. Likewise, strain CAM4 treatment significantly enhanced the plant nutrition of both micro and macro-nutrients. Under normal and abiotic stresses, CAM4 inoculation enhanced soil activities of acid phosphatase, alkaline phosphatase, dehydrogenase, β-glucosidase and urease in the post harvested soil up to 28-47.5%, 62.6-121.8%, 69-177.1%, 16.2-37.9% and 19.8-41.2%, respectively over corresponding uninoculated soil.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, Temuco, 01145, Chile.
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, Temuco, 01145, Chile
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok , 10330, Thailand
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| |
Collapse
|
19
|
In Vitro Bioaccessibility of Selenium from Commonly Consumed Fish in Thailand. Foods 2022; 11:foods11213312. [PMID: 36359924 PMCID: PMC9656991 DOI: 10.3390/foods11213312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se), abundantly obtained in fish, is a crucial trace element for human health. Since there are no data on Se bioaccessibility from commonly consumed fish in Thailand, this study assessed the in vitro bioaccessibility of Se using the equilibrium dialyzability method. The five fish species most commonly consumed in Thailand were selected to determine total Se content using several preparation methods (fresh, boiling, and frying). Equilibrium dialyzability was used to perform in vitro bioaccessibility using enzymatic treatment to simulate gastrointestinal digestion for all boiled and fried fish as well as measuring Se using inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Two-way ANOVA with interaction followed by Tukey’s honestly significant difference (HSD) post hoc test revealed that boiled Indo-Pacific Spanish mackerel, longtail tuna, and short-bodied mackerel were significantly higher in Se content than striped snakehead and giant sea perch (p < 0.05). For fried fish, longtail tuna showed the highest Se content (262.4 µg/100 g of product) and was significantly different compared to the other fish (p < 0.05, estimated marginal means was 43.8−115.6 µg/100 g of product). Se bioaccessibilities from striped snakehead (70.0%) and Indo-Pacific Spanish mackerel (64.6%) were significantly higher than for longtail tuna (p < 0.05). No significant difference in bioaccessibility was found in terms of preparation method (i.e., boiling and frying). In conclusion, the fish included in this study, either boiled or fried, have high Se content and are good sources of Se due to high bioaccessibility.
Collapse
|
20
|
Renna M, D’Imperio M, Maggi S, Serio F. Soilless biofortification, bioaccessibility, and bioavailability: Signposts on the path to personalized nutrition. Front Nutr 2022; 9:966018. [PMID: 36267903 PMCID: PMC9576840 DOI: 10.3389/fnut.2022.966018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Propelled by an ever-growing awareness about the importance of following dietary recommendations meeting specific biological requirements linked to a person health status, interest in personalized nutrition is on the rise. Soilless biofortification of vegetables has opened the door to the potential for adapting vegetable production to specific dietary requirements. The evolution of vegetables biofortification toward tailored food is examined focusing on some specific categories of people in a context of personalized nutrition instead to simple describe developments in vegetables biofortification with reference to the single element or compound not adequately present in the daily diet. The concepts of bioavailability and bioaccessibility as a useful support tool for the precision biofortification were detailed. Key prospects for challenges ahead aiming to combine product quality and sustainable are also highlighted. Hydroponically cultivation of vegetables with low potassium content may be effective to obtain tailored leafy and fruit vegetable products for people with impaired kidney function. Simultaneous biofortification of calcium, silicon, and boron in the same vegetable to obtain vegetable products useful for bone health deserve further attention. The right dosage of the lithium in the nutrient solution appears essential to obtain tailored vegetables able to positively influence mental health in groups of people susceptible to mental illness. Modulate nitrogen fertilization may reduce or enhance nitrate in vegetables to obtain tailored products, respectively, for children and athletes. Future research are needed to produce nickel-free vegetable products for individuals sensitized to nickel. The multidisciplinary approach toward tailored foods is a winning one and must increasingly include a synergy between agronomic, biological, and medical skills.
Collapse
Affiliation(s)
- Massimiliano Renna
- Department of Soil and Food Science, University of Bari Aldo Moro, Bari, Italy
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Massimiliano D’Imperio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Stefania Maggi
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
21
|
Wang M, Zhou F, Cheng N, Chen P, Ma Y, Zhai H, Qi M, Liu N, Liu Y, Meng L, Bañuelos GS, Liang D. Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:988627. [PMID: 36186067 PMCID: PMC9516304 DOI: 10.3389/fpls.2022.988627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhai
- Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Center of Regional Watershed Environment Comprehensive Control Technology in Jiangsu Province, Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Meng
- School of Arts, Ankang University, Ankang, Shaanxi, China
| | - Gary S. Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Lyu C, Chen J, Li L, Zhao Z, Liu X. Characteristics of Se in water-soil-plant system and threshold of soil Se in seleniferous areas in Enshi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154372. [PMID: 35259387 DOI: 10.1016/j.scitotenv.2022.154372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Se-enrichment characteristics in water-soil-plant system and dietary Se status of local residents in seleniferous areas were investigated. Results showed that Se in well water might mainly derived from Se-enriched shales and coals, and Se mobility in seleniferous soils was relatively low with less than 6.7% bioavailable forms in high-Se areas. Soil Se with irrigation, precipitation and fertilization sources contributed more to soil Se than Se-enriched shales and coals in low-Se areas, resulting in slightly higher mobility of Se in low-Se soils. Se concentration in edible parts of main crops ranged from 0.005 mg kg-1 to 4.17 mg kg-1, and cereal plants had a higher Se-enrichment ability than tuber plants. The probable dietary Se intake (PDI) in high-Se areas was decreased to 959.3 μg d-1 in recent years, which might be attributed to tap water as drinking water in recent year rather than well water-dependent and changes in dietary structure, but still far above the permissible value of 400 μg d-1. Reducing cereal-derived dietary Se intake is an important strategy to better Se nutrition status in high-Se areas. After synthesis considerations on soil Se bioavailability and PDI of Se, the soil total Se of 4 mg kg-1 and the soil available Se content of 0.32 mg kg-1 were proposed to be the reference threshold values of soil Se excess in high-Se areas in Enshi, respectively.
Collapse
Affiliation(s)
- Chenhao Lyu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Jiawei Chen
- Agriculture and Rural Bureau of Jianshi County, Jianshi 445300, Hubei, China
| | - Lei Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
23
|
Singhato A, Judprasong K, Sridonpai P, Laitip N, Ornthai N, Yafa C, Chimkerd C. Effect of Different Cooking Methods on Selenium Content of Fish Commonly Consumed in Thailand. Foods 2022; 11:foods11121808. [PMID: 35742006 PMCID: PMC9222360 DOI: 10.3390/foods11121808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Although fish are good sources of selenium (Se), an essential trace element for the human body, very limited data exist on Se content in commonly consumed fish in Thailand. Consequently, this study investigated selenium content and the effect of cooking among 10 fish species (5 freshwater and 5 marine) most-commonly consumed by the Thai people. The fish were purchased from three representative wholesale markets within or nearby to Bangkok. All fish species were prepared to determine their edible portions (EP) and moisture contents. Total Se in fresh, boiled, and fried fish were analysed using Inductively Coupled Plasma-Triple Quadrupole-Mass Spectrometry (ICP-QQQ-MS). In general, higher levels of Se were found in marine fish (37.1−198.5 µg/100 g EP in fresh fish, 48.0−154.4 µg/100 g EP in boiled fish, and 52.9−262.4 µg/100 g EP in fried fish) compared to freshwater fish (6.9−29.4 µg/100 g EP in fresh fish, 10.1−26.5 µg/100 g EP in boiled fish, and 13.7−43.8 µg/100 g EP in fried fish). While Longtail tuna showed significantly higher Se content than other fish (p < 0.05), boiled Longtail tuna had significantly lower true retention of Se than the other fish (p < 0.05). Most fish species retained a high level of selenium (ranged 64.1−100.0% true retention in boiling and frying). Longtail tuna, Short-bodied mackerel, Indo-pacific Spanish mackerel, Nile tilapia, and red Nile tilapia−cooked by boiling and frying−are recommended for consumption as excellent sources of selenium.
Collapse
Affiliation(s)
- Alongkote Singhato
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Kunchit Judprasong
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
- Correspondence: ; Tel.: +66-2800-2380
| | - Piyanut Sridonpai
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
| | - Nunnapus Laitip
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Nattikarn Ornthai
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Charun Yafa
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Chanika Chimkerd
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
| |
Collapse
|
24
|
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11020251. [PMID: 35204134 PMCID: PMC8868242 DOI: 10.3390/antiox11020251] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Selenium is an essential microelement required for a number of biological functions. Selenium—and more specifically the amino acid selenocysteine—is present in at least 25 human selenoproteins involved in a wide variety of essential biological functions, ranging from the regulation of reactive oxygen species (ROS) concentration to the biosynthesis of hormones. These processes also play a central role in preventing and modulating the clinical outcome of several diseases, including cancer, diabetes, Alzheimer’s disease, mental disorders, cardiovascular disorders, fertility impairments, inflammation, and infections (including SARS-CoV-2). Over the past years, a number of studies focusing on the relationship between selenium and such pathologies have been reported. Generally, an adequate selenium nutritional state—and in some cases selenium supplementation—have been related to improved prognostic outcome and reduced risk of developing several diseases. On the other hand, supra-nutritional levels might have adverse effects. The results of recent studies focusing on these topics are summarized and discussed in this review, with particular emphasis on advances achieved in the last decade.
Collapse
|
25
|
Dong Z, Dong G, Lai F, Wu H, Zhan Q. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia. Int J Biol Macromol 2021; 190:101-112. [PMID: 34478790 DOI: 10.1016/j.ijbiomac.2021.08.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
The development of selenized polysaccharides is a promising strategy for the dietary selenium supplementation. The purpose of this research is to determine the influence of selenium on the structure and bioactivity of a polysaccharide fraction (MPN) isolated from Ganoderma lucidum mycelia. After biological selenium enrichment, the selenium content in the selenized polysaccharide (SeMPN) was 18.91 ± 1.8 μg/g. SeMPN had a slightly lower molecular weight than MPN, but the carbohydrate content and monosaccharide composition remained identical. Additionally, the band at 606 cm-1 in MPN changed to 615 cm-1 in SeMPN as revealed by FT-IR spectra. No significant changes were observed in the types and ratios of glycosidic linkages, as determined by NMR spectroscopy. Extracellular and intracellular antioxidant assays demonstrated that SeMPN was more effective than MPN in scavenging free radicals, inhibiting AAPH-induced erythrocyte hemolysis, and protecting catalase (CAT) and glutathione peroxidase (GSH-Px) activity in H2O2-injured PC12 cells. Additionally, SeMPN had a higher increase effect on RAW 264.7 cells's pinocytic and phagocytic capacity, as well as their production of NO, TNF-α, and IL-6. SeMPN could be as potential functional selenium supplementation.
Collapse
Affiliation(s)
- Zhou Dong
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Gang Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Furao Lai
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Qiping Zhan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|