1
|
Cao M, Yang F, Zhang Y, McClements DJ, Liu R, Chang M, Wang X, Zhu Y, Zhang H, Wei W, Wang X. Efficient method of synthesizing sn-2 eicosapentaenoic acid (EPA) monoacylglycerols using circular ethanolysis and glycerolysis. Food Chem 2025; 474:143047. [PMID: 39893725 DOI: 10.1016/j.foodchem.2025.143047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The sn-2 monoacylglycerol (MAG) of eicosapentaenoic acid (EPA) can be used as a health-promoting ingredient in functional foods. However, the lack of a good recovery method to prepare high-purity 2-EPA MAGs has limited their application. In this study, circular ethanolysis and glycerolysis were repeated three times to synthesize 2-EPA MAGs and obtain a high recovery of EPA in them. Ethanolysis was carried out using 12 % of Lipozyme 435 and an ethanol-to-triacylglycerol (TAG) ratio of 60, which led to a TAG conversion rate of 97.3 %. Glycerolysis was then carried out using 16 % of CL "Amano" IM and a substrate-to-glycerol ratio of 9 (under vacuum), which led to a conversion rate of ethyl ester to TAGs of 96.8 %. After three ethanolysis-glycerolysis cycles, a relatively high recovery of EPA in the 2-MAG (72.1 %) was obtained. After purification, a high purity 2-EPA MAG product (EPA: 92.2 ± 1.8 %; 2-MAG: 91.50 ± 0.14 %) was obtained.
Collapse
Affiliation(s)
- Minjie Cao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Fangwei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, China
| | - Yu Zhang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, Beijing Forestry University, Beijing, China
| | | | - Ruijie Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaosan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yun Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Dai H, Liu Y, Zheng X, Hu X, Ma L, Wang H, Chen H, Zhang Y. Fabrication and characterization of non-diary whipped creams: Influence of oleogel. Food Chem 2025; 471:142858. [PMID: 39808981 DOI: 10.1016/j.foodchem.2025.142858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Non-dairy whipped creams (NDWC) are a typical food emulsion system and are gaining popularity among consumers. Oleogels as reasonable alternatives to trans and saturated fats in foods show great potential application in NDWC. Effects of different proportions of oleogel (30 %-70 %) as base oil on the crystallization behavior, appearance, interface and rheological properties of NDWC were evaluated. The base oil made of oleogel and sunflower oil can crystallize at 0-10 °C, showing needle-liked β-crystal crystal structure. A higher oleogel proportion increased solid fat index, fat crystals and fractal dimension. The fat coalescence rate in NDWC gradually increased from 205.88 % to 465.96 % as oleogel ratio increased from 30 % to 70 %, which was beneficial to the network structure formation of NDWC. The increase of oleogel ratio effectively reduced interfacial tension and increased the elastic modulus as well as promoted partial fat coalescence, thus facilitated the formation and stabilization of the NDWC system.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yingjie Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xi Zheng
- Chongqing Food Industry Research Institute Co., Ltd, Chongqing 400010, China
| | - Xiyue Hu
- Hanhong College, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
3
|
Rondou K, Dewettinck A, Dewettinck K, Van Bockstaele F. Structural Build-Up and Stability of Hybrid Monoglyceride-Triglyceride Oleogels. Gels 2024; 10:650. [PMID: 39451303 PMCID: PMC11507350 DOI: 10.3390/gels10100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Oleogelation is an alternative oil structuring route to formulate (semi-)solid fats with a reduced amount of saturated fats. Monoglycerides have been identified as effective gelators; however, their application potential can be limited due to challenges regarding mechanical strength and long-term stability. Therefore, the formulation of hybrid fat blends is a promising way to improve the functionality of oleogels. This research focuses on the interaction between mono- and triglycerides (MAGs and TAGs) in hybrid oleogels. A total gelator concentration of 10% (w/w) with changing MAGs-TAGs ratios (increase by 25% on a molar basis; M0-T100, M25-T75, M50-T50, M75-T25, M100-T0) was used. First, the oleogels were produced without shear to unravel the crystallization behavior (DSC, SAXS, WAXS). Next, the oleogels were crystallized with shear to assess the interactions between MAGs and TAGs on macroscale properties (rigidity, oil binding capacity) during storage of 1 day, 1 week, and 4 weeks. A clear distinction could be made between the MAG crystals and TAG crystals in the blends M50-T50 and M75-T25 based on WAXS, SAXS, and phase contrast microscopy. This indicates that both gelators crystallize separately. During the follow-up study of the dynamically produced samples, a synergistic effect was found for Dy-M50-T50 and Dy-M75-T25; however, it was not maintained upon storage. The initial rigidity of 2.4 × 104 Pa and 2.0 × 104 Pa decreased to 1.5 × 104 Pa and 1.0 × 104 Pa for Dy-M50-T50 and Dy-M75-T25, respectively.
Collapse
Affiliation(s)
- Kato Rondou
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Antonia Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Vandemoortele Centre ‘Lipid Science and Technology’, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Vandemoortele Centre ‘Lipid Science and Technology’, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Narvaez LEM, Carrillo MP, Cardona-Jaramillo JEC, Vallejo BM, Ferreira LMDMC, Silva-Júnior JOC, Ribeiro-Costa RM. Novel Organogels from Mauritia flexuosa L.f and Caryodendron orinocense Karst.: A Topical Alternative. Pharmaceutics 2023; 15:2681. [PMID: 38140024 PMCID: PMC10747660 DOI: 10.3390/pharmaceutics15122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/24/2023] Open
Abstract
Organogels have importance for topical applications because they can be used to deliver drugs in a controlled and prolonged fashion. These are materials consisting of a three-dimensional network of organic molecules dispersed in a solvent. Recent studies have demonstrated that the solvent could be replaced by oils from non-conventional biologic sources. There is a diversity of not-explored species in the Amazon that are promising sources of vegetable oils with a promising composition. This study developed an organogel with buriti (Mauritia flexuosa L.f) and cacay (Caryodendron orinocense Karst.) oils, using cetostearyl alcohol as an organogelator due to its compatibility, stability, security, affordability, and it is readily available. The oils were characterized, and the organogels were synthesized by studying their crystal evolution and oil-binding capacity. The microstructure was evaluated with polarized light microscopy, fractal dimension, FTIR spectroscopy, XRD, and thermal and rheological analyses. It was found that the critical gelation concentration was higher for cacay oil as it possessed a higher amount of polyunsaturated triacylglycerols. The crystals of the buriti organogel had a smaller lamellar shape, a greater surface area, and physical and thermal stability; although, it presented a slower crystal evolution due to the low number of minor compounds and a greater number of saturated triacylglycerols. The polar fraction of the organogelators as well as triacylglycerol and minor polar compounds are important in forming crystallization nuclei. The study showed that Amazonian oils in crystallization processes form microstructures with differentiating physicochemical properties.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (J.O.C.S.-J.)
- Sinchi Amazon Research Institute, Bogotá 110311, Colombia; (M.P.C.); (J.E.C.C.-J.)
| | - Marcela P. Carrillo
- Sinchi Amazon Research Institute, Bogotá 110311, Colombia; (M.P.C.); (J.E.C.C.-J.)
| | | | | | | | | | - Roseane Maria Ribeiro-Costa
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (J.O.C.S.-J.)
| |
Collapse
|
5
|
Dimakopoulou-Papazoglou D, Giannakaki F, Katsanidis E. Structural and Physical Characteristics of Mixed-Component Oleogels: Natural Wax and Monoglyceride Interactions in Different Edible Oils. Gels 2023; 9:627. [PMID: 37623082 PMCID: PMC10454151 DOI: 10.3390/gels9080627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Waxes and monoglycerides (MGs) added in edible oils form oleogels that can be used as an alternative structured fat, providing healthier substitutes to saturated and trans fats in foods. This study aimed to investigate the properties of oleogels formed by the interaction between monoglycerides and different waxes in various edible oils. For this purpose, waxes, namely rice bran (RBW), candelilla (CDW), sunflower (SW), and beeswax (BW), together with MGs in a total concentration level of 15% (w/w) were dissolved in several edible oils (olive, sunflower, sesame, and soybean). The structure and physical properties of oleogels were investigated using texture analysis, polarized light microscopy, melting point measurements, and Fourier-transform infrared spectroscopy (FTIR). The hardest structure was produced by SW/MG (5.18 N), followed by CDW (2.87 N), RBW (2.34 N), BW (2.24 N) and plain MG (1.92 N). Furthermore, RBW and SW led to a higher melting point (69.2 and 67.3 °C) than the plain MG oleogels (64.5 °C). Different crystallization structures, i.e., needle-like crystals and spherulites, were observed depending on the type of wax, its concentration, and the oil used. These results can be used to control the properties of oleogels by adjusting the gelator composition for a variety of potential food applications.
Collapse
Affiliation(s)
| | | | - Eugenios Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.D.-P.); (F.G.)
| |
Collapse
|
6
|
Construction of hemp seed protein isolate-phosphatidylcholine stablized oleogel-in-water gel system and its effect on structural properties and oxidation stability. Food Chem 2023; 404:134520. [DOI: 10.1016/j.foodchem.2022.134520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
7
|
Pang M, Kang S, Liu L, Ma T, Zheng Z, Cao L. Physicochemical Properties and Cookie-Making Performance as Fat Replacer of Wax-Based Rice Bran Oil Oleogels. Gels 2022; 9:gels9010013. [PMID: 36661781 PMCID: PMC9858516 DOI: 10.3390/gels9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Reducing the intake of trans and saturated fatty acids is a trend in healthy eating. In this study, the oleogels were prepared from rice bran oil (RBO), candle wax (CDW), beeswax (BW), rice bran wax (RBW), and carnauba wax (CRW), respectively, and the results based on their physicochemical properties and crystal structures at critical concentrations, 6 wt.%, 8 wt.%, and 10 wt.%, were determined to further investigate the oleogels as a shortening substitute in cookie recipes. Oleogel has a smooth, spreadable β' crystal shape which creates excellent sensory properties and improves the texture, but also has some economic benefits. A comparison between the oleogels formed at critical concentrations and those with improved mass fractions was performed in several analyses such as PLM and texture, and the oleogels with higher mass fractions had a greater hardness and stickiness and denser crystal structures. This study was used to optimize the cookie recipe by partially replacing shortening with oleogel and preparing the cookies according to the 0:1, 3:7, 1:1, 7:3, 1:0 oleogel shortening mixture, respectively. Based on the results of the textural analysis, a colorimetric and sensory evaluation of the optimized formulation of oleogels in cookies, it was evident that BW and RBW oleogels have more potential to replace shortening in cookies than CDW and CRW oleogels. In particular, oleogels with a concentration of 6 wt.% RBW (RBW-6) and at a 7:3 (oleogel:shortening) shortening replacement exhibited a hardness and crispness of 15.75 N and 97.73 g, respectively, with an L* value of 66.66 and a sensory score of 22.32 ± 0.09. The value for the color perception difference (dE) between the cookies and the control group was -3.73, which allowed us to obtain a good product with a quality and characteristics similar to shortening. This supports the feasibility of new solid fats to replace traditional plastic fats in baked goods.
Collapse
Affiliation(s)
- Min Pang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Shengmei Kang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lin Liu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Tengfei Ma
- Anhui Tianxiang Grain & Oil Food Co., Ltd., Fuyang 236000, China
| | - Zhi Zheng
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lili Cao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
- Correspondence:
| |
Collapse
|
8
|
Li S, Zhu L, Li X, Wu G, Liu T, Qi X, Jin Q, Wang X, Zhang H. Determination of characteristic evaluation indexes for novel cookies prepared with wax oleogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5544-5553. [PMID: 35368108 DOI: 10.1002/jsfa.11909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wax-based oleogels showed better performance as a substitute for shortening in cookies, but the relationship between the structure and physical properties of wax oleogels and cookies quality has not been elucidated, which limit its further application. In this regard, the effect of structure and physical properties of wax oleogels on the quality of cookies was investigated, and the characteristic indexes for evaluating the quality of novel cookies prepared with wax oleogels were determined. RESULTS The results showed that oleogels with 5-9% proportion of rice bran wax (RBX) and candelilla wax (CDW) produced soft cookies with porous structure, desired spread and color. Compared with shortening, wax oleogels with lower solid fat content (SFC, 4.5-11%, 25 °C) and higher β' crystals (2795.7-11 671.3) produced cookies with similar hardness to that of shortening. Besides, the hardness of wax oleogel-based cookies depends more on the amount of crystals than crystal size. In the results, SFC, β' crystals, viscosity and elastic modulus (G') were determined to be the characteristic evaluation indexes for the quality of cookies prepared with wax oleogels. Cookies with wax oleogels with higher SFC, β' crystal, viscosity and G' are softer. CONCLUSION The quality of novel cookies prepared with wax oleogels can be controlled by the SFC and β' crystal of wax oleogels. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyi Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Soy oil and SPI based-oleogels structuring with glycerol monolaurate by emulsion-templated approach: Preparation, characterization and potential application. Food Chem 2022; 397:133767. [PMID: 35905623 DOI: 10.1016/j.foodchem.2022.133767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
|
10
|
Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels 2022; 8:gels8060330. [PMID: 35735674 PMCID: PMC9222693 DOI: 10.3390/gels8060330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.
Collapse
|
11
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Palla CA, Dominguez M, Carrín ME. An overview of structure engineering to tailor the functionality of monoglyceride oleogels. Compr Rev Food Sci Food Saf 2022; 21:2587-2614. [DOI: 10.1111/1541-4337.12930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Martina Dominguez
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - María Elena Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
13
|
Lee WJ, Qiu C, Li J, Wang Y. Sustainable oil-based ingredients with health benefits for food colloids and products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yu Y, Wang T, Gong Y, Wang W, Wang X, Yu D, Wu F, Wang L. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine. ULTRASONICS SONOCHEMISTRY 2022; 83:105945. [PMID: 35149379 PMCID: PMC8841881 DOI: 10.1016/j.ultsonch.2022.105945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/24/2023]
Abstract
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β' crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Gong
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weining Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Wu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
15
|
Structure–antioxidant activity relationships of gallic acid and phloroglucinol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Moon K, Choi KO, Jeong S, Kim YW, Lee S. Solid Fat Replacement with Canola Oil-Carnauba Wax Oleogels for Dairy-Free Imitation Cheese Low in Saturated Fat. Foods 2021; 10:foods10061351. [PMID: 34208054 PMCID: PMC8230639 DOI: 10.3390/foods10061351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Canola oil was structured into oleogels with different amounts of carnauba wax, and their processing performances were assessed as an alternative to solid fat for imitation cheese low in saturated fat. The contents of solid fat in the oleogels were less vulnerable to the change in temperature than the palm oil. The replacement of palm oil with oleogels produced cheese samples with harder and more cohesive/chewy textures. Dynamic and transient viscoelastic measurements demonstrated that the use of oleogels was effective in increasing the elastic nature of the cheeses. Two distinct components with different proton mobilities were observed in the imitation cheeses, and longer T2 relaxation times were detected in the oleogel samples. The meltability of the cheese with palm oil was not significantly different from those with 3% and 6% oleogels. The saturated fat level of the oleogel cheese was significantly reduced from 45.70 to 5.20%. The application of canola oil-carnauba wax oleogels could successfully produce imitation cheese high in unsaturated fat and low in saturated fat. This study thus demonstrated that the health-functional properties of imitation cheese could be enhanced by using oleogels.
Collapse
Affiliation(s)
- Kyungwon Moon
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
| | - Kyeong-Ok Choi
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea;
| | - Sungmin Jeong
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
| | - Young-Wan Kim
- Department of Food Science and Biotechnology, Korea University (Sejong), Sejong 30019, Korea;
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea; (K.M.); (S.J.)
- Correspondence: ; Tel.: +82-2-3408-3227
| |
Collapse
|