1
|
Dong Y, Wang Y, Zhang M, Gao M, Wang S, Wang Y, Wang Z. Electrostatic induced Rana chensinensis ovum protein isolates/xanthan gum complex particles stabilized HIPPE for β-carotene loading and dysphagia. Food Chem 2025; 478:143520. [PMID: 40058263 DOI: 10.1016/j.foodchem.2025.143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 04/06/2025]
Abstract
Rana chensinensis ovum protein isolates and xanthan gum complex particles were constructed through electrostatic induced aggregation and their ability as an emulsifier for high internal phase Pickering emulsions (HIPPE) was explored. The complex particles showed a clear aggregated structure as the xanthan gum content increased. It also impacted the particle size of the HIPPE droplets, which decreased to 35 μm with a zeta potential of -41.6 ± 1.23 mV. Rheological tests showed that the oscillatory frequency G' increased with increasing xanthan gum. It was higher than G" and appeared to be shear-thinning. In addition, the prepared HIPPE showed impressive stability under freeze-thaw reversible, centrifugal, and heating conditions. The HIPPE also showed notable β-carotene delivery potential with an encapsulation rate of achieved 90.9 %, while improving stability and bioaccessibility. Meanwhile, The HIPPE met the dietary criteria of International Dysphagia Diet Standardization Initiative (IDDSI) Class 4 viscous/extremely dense foods.
Collapse
Affiliation(s)
- Yuying Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuezhen Wang
- Department of Pharmacy, Changchun Medical College, Changchun, Jilin 130031, China
| | - Meiru Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Min Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shihan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Han D, Ji L, Lu M, Li D, Sheng X, Zhang J, Wang C. Pickering emulsion stabilized by egg derived reconstituted lipid nanoparticles for encapsulation and oral delivery of curcumin. Food Chem 2025; 472:142912. [PMID: 39827552 DOI: 10.1016/j.foodchem.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The demand for high-quality, nutritious, and sustainable food products has led to a significant interest in the development of durable and effective emulsions. Pickering emulsions are promising candidates but the currently adopted stabilizers still have limitations. Here in this study, we introduce a novel egg derived reconstituted lipid nanoparticles (E-rLNPs) as stabilizer for Pickering emulsions. The lipids extraction from de-oiled egg yolk powder was firstly optimized using response surface methodology by Box-Behnken Design and then prepared into E-rLNPs by a straightforward solvent-diffusion method. The E-rLNPs were found to form stable Pickering emulsions that can resist to various environmental stresses. Moreover, the optimal Pickering emulsion offers excellent protection and significantly improves the oral availability of curcumin. This research presents a promising approach for the development of functional foods and nutraceuticals, showcasing the potential of natural food-derived rLNPs as stabilizers for Pickering emulsions, thereby advancing delivery technologies in the food science.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Mingzhou Lu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangling Sheng
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ma J, He R, Chai Y, Long X, Shi W, Chen H, Pan C, Zhao Y. Stable emulsion produced by thermal modified coconut (Cocos nucifera L.) globulins-xanthan gum for protection of curcumin. Int J Biol Macromol 2025; 302:140653. [PMID: 39909253 DOI: 10.1016/j.ijbiomac.2025.140653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
In order to explore the potential applications of thermal modified (90 and 120 °C, 20 min) coconut globulins (CG) in encapsulation systems, the long-term emulsion stability was improved by adding xanthan gum (XG). Subsequently, the protection effect of thermal modified CG-XG emulsion on curcumin (Cur) was demonstrated. The results showed that the XG decreased the interfacial adsorption of heated-CG. When 0.1 % XG was added, the Kr value and interfacial viscoelasticity of 90 °C-CG were significantly increased. However, when the concentration of XG increased to 0.2 %, the Kr value and interfacial viscoelasticity showed significant decrease. The interfacial viscoelasticity of 120 °C-CG decreased with the increase of XG. However, the emulsion prepared by 120 °C-CG-XG had a higher viscosity and a more compacted three-dimensional gel network structure, which led to the higher long-term stability. The heated-CG-XG emulsion system showed an excellent encapsulation effect on Cur, especially for the 120 °C-CG-0.2XG encapsulation system, which could improve the bioaccessibility of Cur from 18.21 % to 36.23 % (p < 0.05). Our work indicated that the 120 °C-CG emulsion system have the potential use in Cur encapsulation delivery, which is of great significance for the commercial application of thermal modified CG.
Collapse
Affiliation(s)
- Jingrong Ma
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Yuan Chai
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoshan Long
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - WenZheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
4
|
Muhammad Z, Ramzan R, Abdullah, Abbas HMK, Sun W, Zhang G. Integrating the modified amphiphilic Eleocharis tuberosa starch to stabilize curcuminoid-enriched Pickering emulsions for enhanced bioavailability, thermal stability, and retention of the hydrophobic bioactive compound. Carbohydr Polym 2025; 352:123199. [PMID: 39843101 DOI: 10.1016/j.carbpol.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability. The research investigated Pickering emulsions' encapsulation efficiency, curcumin retention, emulsifying properties, micromorphology, temperature stability, and bioaccessibility. Results showed that CWCS-OSA, with an OSA concentration between 3 % and 9 %, exhibited a degree of substitution (DS) ranging from 0.017 to 0.031 and an expansion in contact angle from 68.36o to 85.45o. CWCS-9%OSA showed the highest encapsulation efficiency at 89.4 % and maintained an emulsification index above 80 % during a 10-day storage period. A significantly higher bio-accessibility (41.26 ± 1.34 %) of curcumin in Pickering emulsions stabilized with CWCS-9%OSA than in the bulk oil system (19.53 ± 1.62 %). This study highlights the potential of chemically modified amphiphilic starch from an underutilized variety of CWCS (Eleocharis tuberosa) to produce the stabilized Pickering emulsion gels as a stable and effective carrier for unstable hydrophobic polyphenolic compounds by enhancing their bioavailability in the foods and pharmaceutics.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China
| | - Rabia Ramzan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | | | - Wu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China.
| |
Collapse
|
5
|
Sun Y, Liang J, Ma J, Su W, Cheng S. Curcumin-loaded Pickering emulsions stabilized by Spanish mackerel protein-pectin for ameliorating ulcerative colitis through barrier repair and anti-inflammatory effects. Int J Biol Macromol 2025; 307:141934. [PMID: 40068742 DOI: 10.1016/j.ijbiomac.2025.141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Curcumin (Cur) has gained considerable recognition because of its anti-inflammatory and antioxidant effects as a bioactive compound, but its water insolubility and low bioaccessibility limit its application in food industry. In this study, Pickering emulsion stabilized by Spanish mackerel protein and pectin complex (SMP/PEC) was prepared to deliver curcumin, and its alleviating effects on DSS-induced ulcerative colitis (UC) were investigated. The emulsions stabilized by SMP/PEC 1:1 inhibited phase separation, had good rheological properties and the emulsions were stable at high temperatures, centrifugation, salt ions, and pH conditions. Meanwhile, the bioaccessibility of Cur loaded in the emulsion was 2.6 times higher than that of free Cur in corn oil. Furthermore, in vivo experiments have demonstrated that Cur loaded Pickering emulsion stabilized by SMP/PEC could enhance the proliferation of goblet cells and the expression of tight junction proteins, and restore the structural integrity of colonic tissues. Additionally, it has been shown to downregulate pro-inflammatory cytokines, such as serum IL-6 and TNF-α, and reduce the levels of MPO, NO, and other biomarkers in colonic tissues. Concurrently, gut microbiota demonstrated that emulsion stabilized by SMP/PEC could regulate the relative abundance of intestinal microorganisms, facilitating the increase of beneficial bacteria and reducing the level of harmful bacteria in the gut. In conclusion, the findings of this study indicated that SPECPE might be a potentially beneficial dietary supplement for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayue Liang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiale Ma
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shasha Cheng
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
6
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Zhong Y, Wang B, Li B, Zhao D, Lv W, Xiao H. Octenyl succinic anhydride starch enhanced 3D printability of corn starch-based emulsion-filled gels incorporating egg yolk. Int J Biol Macromol 2025; 284:138110. [PMID: 39608524 DOI: 10.1016/j.ijbiomac.2024.138110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This work investigated the effect of octenyl succinic anhydride starch (OSAS) on the 3D printing performance of corn starch-based emulsion-filled gels containing egg yolk. The influence of OSA-S concentration on emulsion droplet size, ζ-potential and stability, as well as the printing performance, rheological properties and microstructure of gel were discussed. The results indicated that the addition of OSA-S significantly improved the accuracy of the printed objects, with the best accuracy of the models printed using OSA-1.6 and OSA-2.0 inks. Emulsion tests showed that increasing the OSA-S content reduced the droplet size, increased its ζ-potential, and enhanced the stability of the emulsion. Rheological analyses showed that the energy storage modulus, loss modulus, and apparent viscosity of the gels were slightly enhanced with increasing OSA-S content. Microstructural analysis showed that OSA-S increased the density of the gel microstructural network. In addition, the addition of OSA-S enhanced the thermal stability of the gels and facilitated the transition of water molecule states from free water to bound water. The melting temperature of the gel gradually increased from 135.72 °C to 147.52 °C with the increase of OSA content. This study aims to develop promising 3D printing ink to facilitate its industrial applications.
Collapse
Affiliation(s)
- Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Bingzheng Li
- Guangxi Key laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dan Zhao
- Chinese Academy of Agricultural Mechanization Sciences Group Co., Ltd, Beijing 100083, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Wang H, Wang J, Zhang H, Wang X, Rao X. Quercetin encapsulation and release using rapid CO 2-responsive rosin-based surfactants in Pickering emulsions. Food Chem 2024; 458:140528. [PMID: 39047322 DOI: 10.1016/j.foodchem.2024.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Jiawei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Xinyang Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
9
|
Cao J, Shi T, Wang Y, Wang J, Cao F, Yu P, Su E. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts as an emerging source of protein: extraction, physicochemical and functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8756-8768. [PMID: 38940359 DOI: 10.1002/jsfa.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The increasing demand for sustainable alternatives to traditional protein sources, driven by population growth, underscores the importance of protein in a healthy diet. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts are currently underutilized as plant-based proteins but hold great potential in the food industry. However, there is insufficient information available on pecan protein, particularly its protein fractions. This study aimed to explore the physicochemical and functional properties of protein isolate and the main protein fraction glutelin extracted from pecan nuts. RESULTS The results revealed that glutelin (820.67 ± 69.42 g kg-1) had a higher crude protein content compared to the protein isolate (618.43 ± 27.35 g kg-1), while both proteins exhibited amino acid profiles sufficient for adult requirements. The isoelectric points of protein isolate and glutelin were determined to be pH 4.0 and pH 5.0, respectively. The denaturation temperature of the protein isolate (90.23 °C) was higher than that of glutelin (87.43 °C), indicating a more organized and stable conformation. This is further supported by the fact that the protein isolate had a more stable main secondary structure than glutelin. Both proteins demonstrated improved solubility, emulsifying, and foaming properties at pH levels deviating from their isoelectric points in U-shaped curves. Compared to the protein isolate, glutelin displayed superior water and oil absorption capacity along with enhanced gelling ability. CONCLUSION The protein isolate and glutelin from pecan nuts exhibited improved stability and competitive functional properties, respectively. The appropriate utilization of these two proteins will support their potential as natural ingredients in various food systems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Tingting Shi
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahong Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengfei Yu
- Suining County Runqi Investment Co., Ltd, Xuzhou, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Wu S, Wang C, Liu C, He Q, Zhang Z, Ma T. Synergistic effects of xanthan gum and β-cyclodextrin on properties and stability of vegetable oil-based whipped cream. Int J Biol Macromol 2024; 279:135379. [PMID: 39244122 DOI: 10.1016/j.ijbiomac.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The synergistic effects between xanthan gum (XG) and β-cyclodextrin (β-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to β-CD in the XG-β-CD complex was appropriate, the hydrogen bonding effect between β-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of β-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-β-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of β-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.
Collapse
Affiliation(s)
- Sisi Wu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Share Group Co., Ltd, Korla City, Xinjiang 841000, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuqiu He
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Zifan Zhang
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Lazăr AR, Pușcaș A, Tanislav AE, Mureșan V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr Rev Food Sci Food Saf 2024; 23:e70020. [PMID: 39437192 DOI: 10.1111/1541-4337.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The health benefits of bioactive compounds are dependent on the amount of intake as well as on the amount of these compounds that become bioavailable and bioaccessible. Various systems have been developed to deliver and increase the bioaccessibility of bioactive compounds. This review explores the impact of gelled (oleogels, bigels, emulgels, emulsions, hydrogels, and hydrogel beads), micro-(gels, particles, spheres, capsules, emulsions, and solid lipid microparticles) and nanoencapsulated systems (nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, liposomes, and nanoliposomes) on the digestibility and bioavailability of lipophilic and hydrophilic bioactives. Structurant molecules, the oil type, antioxidants, emulsifiers, and coatings in delivery systems with promising potential in food applications are critically discussed. The release and bio-accessibility of bioactive compounds in gelled systems are influenced by various factors, such as the type and concentration of gelators, the gelator-to-oil ratio, the type of antioxidant, the network of the system, and its hydrophobicity. The stability, bioaccessibility, and controlled release of bioactives were improved in structured emulsions. Several variables, including wall material, oil/water ratios, encapsulation process, and pH conditions, can affect the bioactives release in microencapsulated systems. Factors like coating type and core-to-wall ratio impact the stability and release of core components. The encapsulating material, the encapsulation technology, and the nature of the nanomaterials all have an impact on the bioaccessibility of nanoencapsulated systems. Nanoliposomes provide enhanced stability and absorption. In general, all encapsulated systems have shown great potential in improving the distribution and availability of bioactive compounds.
Collapse
Affiliation(s)
- Alexandra Raluca Lazăr
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Pokorski P, He R, Kurek MA. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques - A comprehensive review. Food Res Int 2024; 196:115012. [PMID: 39614470 DOI: 10.1016/j.foodres.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 12/01/2024]
Abstract
Phytosterols represent a diverse and complex category of lipophilic bioactive compounds, exhibiting excellent pro-healthy properties. However, their consumption in daily diets is insufficient, and their application in food production is hindered by challenges such as low water solubility, high reactivity, and rapid degradation. The adoption of different protein or their structural modification as hydrolysates as wall material into microencapsulation techniques can be associated with improved solubility, enhanced bioaccessibility, increased bioavailability, and an extension of shelf life. This contribution provides an overview of advancements in modifying functional properties through various protein isolation methods and structural changes resulting from enzymatic hydrolysis. Additionally, the paper considers the state of the art in the utilization of various techniques and the composition of wall material in the encapsulation of phytosterols and other common lipophilic phytochemicals incorporated into delivery systems. Protein isolates obtained through novel methods of extraction may be characterized by an enhancement of their functional properties, which is crucial for the microencapsulation process. It entails not only recognizing their role as protective barriers for core materials against environmental conditions but also acknowledging their potential health-promoting attributes. These attributes encompass antioxidant properties and enhanced functional characteristics compared to native proteins. Moreover, the exploration of protein hydrolysates as versatile wall materials holds significant promise. These hydrolysates offer exceptional protective features for core materials, extending beyond mere environmental shielding. The envisioned impact extends beyond conventional delivery systems, offering transformative potential for the future of drug delivery and nutraceutical formulations.
Collapse
Affiliation(s)
- Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ronghai He
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
13
|
Charles APR, Fang B, Ohm JB, Chen B, Rao J. Novel high internal phase emulsion gels stabilized solely by hemp protein isolate: Enhancement of cannabidiol chemical stability and bioaccessibility. Int J Biol Macromol 2024; 279:135395. [PMID: 39245105 DOI: 10.1016/j.ijbiomac.2024.135395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
This study aims to fabricate high internal phase emulsion gels (HIPEGs) using modified hemp protein isolates for microencapsulating cannabidiol (CBD) to enhance their chemical stability and bioaccessibility. Importantly, the combined effect of CBD concentrations (0.1 vs 0.5 wt%) and post gel storage conditions (before-refrigeration (BR) vs after-refrigeration (AR)) on the properties of HIPEGs were investigated. The results showed that the CBD concentration above 0.4 % is necessary to fabricate a stable HIPEG. The rheological properties of HIPEGs were influenced by CBD concentration and refrigeration. The AR gels with 0.5 % CBD showed the highest gel strength (up to 91.7 Pa) and solid-like structures. These properties allowed to HIPEGs maintain good physical stability during storage at 4, 25, and 37 °C for 14 days due to the interconnected polyhedral protein matrices and thick interfacial protein layers. These unique protein architectures offered superior protection against CBD degradation (<2 % of initial added amount) for 100 days during exposure to light and temperature (25 or 37 °C). The INFOGEST digestion results showed the BR gels effectively protected CBD during digestion and consequently improved their stability and bioaccessibility up to 95 % and 74 %, respectively. Overall, the fabricated HIPEGs could be valuable for nutraceutical delivery.
Collapse
Affiliation(s)
- Anto Pradeep Raja Charles
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, United States; Department of Food Science and Technology, Food Innovation Center, University of Nebraska, Lincoln, NE 68508, United States
| | - Baochen Fang
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, United States
| | - Jae-Bom Ohm
- Edward T. Schafer Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab, USDA-ARS, Fargo, ND 58108, United States
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, United States
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, United States.
| |
Collapse
|
14
|
Liu Z, Zheng K, Yan R, Tang H, Jia Z, Zhang Z, Yang C, Wang J. Effects of different solid particle sizes on oat protein isolate and pectin particle-stabilized Pickering emulsions and their use as delivery systems. Food Chem 2024; 454:139681. [PMID: 38820636 DOI: 10.1016/j.foodchem.2024.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Oat protein isolate (OPI)/high methoxyl pectin (HMP) complexes (OPP) were prepared to stabilized Pickering emulsions and applied as nutraceutical delivery systems. The different mass ratios and pH changed the interactions between OPI and HMP that caused the different size of OPP. Specifically, smaller particle size of OPP (125.7-297.6 nm) were formed when hydrophobic interactions along with electrostatic forces predominant in OPP (OPI:HMP = 3:1, pH 4, 5). Among these particles, OPP-2 could stabilize Pickering emulsion efficiently through formation of dense interfacial film, which exhibited the highest apparent viscosity and the smallest average droplet size (23.39 μm). Moreover, OPP-2 stabilized Pickering emulsions with superior stability not only exhibited higher encapsulation efficiency of 85.63%, but also could control curcumin release in simulated gastrointestinal fluids to improve curcumin's bioaccessibility. These results verified the possibility of OPP to be a Pickering emulsions stabilizer, and also identified its potential to be a stable delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruizhe Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huihuang Tang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zengyan Jia
- Tianjin Huikang Biotechnology Co., LTD, Tianjin 300304, China
| | - Zhiqiang Zhang
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
15
|
Zhao X, Jiang F, Fang J, Xu X, Chen F, Weng H, Xiao Q, Yang Q, Lin Y, Xiao A. Structure, characterization, and application of a novel thermoreversible emulsion gel fabricated by citrate agar. Int J Biol Macromol 2024; 277:134181. [PMID: 39074711 DOI: 10.1016/j.ijbiomac.2024.134181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
A novel thermoreversible emulsion gel was successfully prepared with citrate agar (CA) as the sole emulsifier. Compared with native agar gel emulsion, CA gel emulsion (CAGE) formed a stable emulsion gel when the CA concentration was increased to 1.25 % (w/w). Results of time-temperature scanning experiments showed that the emulsion gel rapidly transformed into liquid emulsion when heated to 40-50 °C and then solidified into emulsion gel after cooling to the critical temperature of solidification. The emulsion gel had stable sol-gel transformation ability after seven cycles repeated heating-cooling treatment (HCT) at 85 °C and 4 °C. However, the stability of emulsion gels gradually decreased because of the large-droplet formation during heating, which affected the CA molecular-reconfiguration network structure in cooling. The conjunction analysis of microstructure and properties of the emulsion gel indicated that its stability depended primarily on the spatial repulsion and electrostatic repulsion provided by CA gel, and the main factor driving thermal reversibility was the temperature-responsive gelation performance of CA. The retention of quercetin was >90.23 % after seven HCTs because CAGEG enhanced the homogeneity and stability of the droplets.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jingjing Fang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xinwei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yan Lin
- Chengyi College, Jimei University, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
16
|
Fang F, Tian Z, Huang L, Cai Y, Van der Meeren P, Wang J. A novel Pickering emulsion gels stabilized by cellulose nanofiber/dihydromyricetin composite particles: Microstructure, rheological behavior and oxidative stability. Int J Biol Macromol 2024; 278:135281. [PMID: 39256126 DOI: 10.1016/j.ijbiomac.2024.135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Particle concentrations (w) and oil content (Φ) are crucial factors influencing the gel stability of Pickering emulsions. To understand the stabilization mechanism comprehensively, we prepared emulsion gels stabilized by CNF/DMY composite particles at various w (0.5-1.5 wt%) and Φ (0.2-0.6, v/v). The microstructure revealed the adsorption of these particles at the oil-water interface, with excess particles forming a three-dimensional network structure in the continuous phase. Rheological studies showed that the network structure of Pickering emulsions was significantly influenced by w and Φ, resulting in improved emulsion gel strength that hindered the movement of oil droplets and oxygen in the continuous phase, thereby enhancing emulsion stability. Three scenarios for the critical strain (γco) were observed: at Φ = 0.2, γco decreased with increasing w, while at Φ = 0.4, γco increased with increasing w. At Φ = 0.6, γco remained relatively constant regardless of w. In conclusion, adjusting particle concentration and oil content enabled the control of microstructure, rheological properties, and antioxidant capacity of emulsion gels. These findings could be a valuable resource for formulating and ensuring the quality of emulsion gel-based products in the food industry.
Collapse
Affiliation(s)
- Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zijing Tian
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Lihua Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent University, B-9000 Gent, Belgium
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
17
|
Li B, Li H, Su S, Shi M, Qin S, Zeng C. Enhanced bioaccessibility of interfacial delivered oleanolic acid through self-constructed Pickering emulsion: Effects of oil types. Food Res Int 2024; 191:114708. [PMID: 39059961 DOI: 10.1016/j.foodres.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Pentacyclic triterpenes have attracted much attention because of their many bioactivities, but their bioaccessibility is low. Oleanolic acid (OA) was used in this study as a typical edible pentacyclic triterpene. In this work, we proposed an OA interfacial delivery model based on W/O Pickering emulsion, and investigated the effects of different oil types on the emulsion properties and OA bioaccessibility of the OA W/O Pickering emulsion interfacial delivery system (EIDS). Medium chain triglyceride (MCT), long chain triglycerides (LCT) and MCT/LCT (1:1, w/w) were selected as carrier oils for the preparation of emulsions, respectively. The results showed that the emulsions formed from LCT had smaller particle sizes, which increased the deformation resistance of the emulsions and exhibited good stability during the simulated in vitro digestion. The extent of free fatty acid (FFA) release during oil digestion was MCT (103.32 ± 3.74 %) > M/L (97.89 ± 2.89 %) > LCT (71.41 ± 6.64 %). Of interest, the bioaccessibility of OA was influenced by the carrier oil: LCT (59.34 ± 2.55 %) > M/L (47.35 ± 6.25 %) > MCT (13.11 ± 1.40 %) > PBS (7.11 ± 1.74 %), and such a difference was mainly attributed to the greater solubilisation of OA in mixed micelles consisting of long-chain fatty acids. In summary, the size of hydrophobic domains in the mixed micelles produced a greater effect than the effect of FFA release on OA bioaccessibility. This study provides a theoretical basis for the interfacial delivery of OA and the enhancement of OA bioaccessibility based on W/O Pickering emulsions with different oil types.
Collapse
Affiliation(s)
- Benyang Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Haiyan Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Shuxian Su
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
18
|
Wen L, Dai H, Li S, Liang H, Li B, Li J. Improvement of processable properties of plant-based high internal phase emulsions by mung bean protein isolate based on pH shift treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6966-6976. [PMID: 38619073 DOI: 10.1002/jsfa.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
19
|
Yang H, Zhang M, Wang J, Wang S, Wang S, Yang L, Wang P, Song H, Liu H, He Y. An investigation of a strengthening polysaccharide interfacial membrane strategy utilizing an anionic polysaccharide-alkaline ligand interfacial assembly for all-liquid printing. Int J Biol Macromol 2024; 274:133487. [PMID: 38944093 DOI: 10.1016/j.ijbiomac.2024.133487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The applications of polysaccharides as emulsifiers are limited due to the lack of hydrophobicity. However, traditional hydrophobic modification methods used for polysaccharides are complicated and involve significant mechanical and thermal losses. In this study, soy hull polysaccharide (SHP) and terminally aminopropylated polydimethylsiloxane (NPN) were selected to investigate the feasibility of a simple and green interfacial membrane strengthening strategy based on the interfacial polymerization of anionic polysaccharides and fat-soluble alkaline ligands. Our results show that deprotonated SHP and protonated NPN can be complexed at the water/oil (W/O) interface, reduce interfacial tension, and form a strong membrane structure. Moreover, they can quickly form a membrane at the W/O interface upon the moment of contact to produce stable all-liquid printing products with complex patterns. However, the molecular weight of NPN affects the complexation reaction. Consequently, this study has long-term implications to expanding the areas of application for anionic polysaccharides.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China.
| | - Minghao Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| | - Junting Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
20
|
Hou J, Tan G, Wei A, Gao S, Zhang H, Zhang W, Liu Y, Zhao R, Ma Y. Carboxymethylcellulose-induced depletion attraction to stabilize high internal phase Pickering emulsions for the elderly: 3D printing and β-carotene delivery. Food Chem 2024; 447:139028. [PMID: 38513483 DOI: 10.1016/j.foodchem.2024.139028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In this study, a carboxymethylcellulose (CMC) induced depletion attraction was developed to stabilize high internal phase Pickering emulsions (HIPPEs) as age-friendly 3D printing inks. The results demonstrated that depletion force induced the adsorption of yolk particles at the droplet interface and the formation of osmotic droplet clusters, thereby increasing the stability of HIPPEs. In addition, the rheological properties and nutrient delivery properties of HIPPEs could be adjusted by the mass ratio of yolk/CMC. The HIPPEs stabilized at yolk/CMC mass ratio 20:7.5 showed optimal printability, viscoelastic, structural recovery, and swallowability. HIPPEs have been applied to 3D printing, International Dysphagia Dietary Standardization Initiative (IDDSI) test, and in vitro digestive simulation in the elderly, indicating their attractive appearance, safe swallowability, and enhanced bioaccessibility of β-carotene. Our work provides new ideas for developing age-friendly foods with plasticity and nutrient delivery capacity by depletion attraction stabilizing HIPPEs.
Collapse
Affiliation(s)
- Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guixin Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Afeng Wei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shan Gao
- Heilongjiang Green Food Scientific Research Institute, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yujia Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rui Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunze Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
21
|
Yu Z, Zhou L, Chen Z, Chen L, Hong K, He D, Lei F. Fabrication and Characterization of Docosahexaenoic Acid Algal Oil Pickering Emulsions Stabilized Using the Whey Protein Isolate-High-Methoxyl Pectin Complex. Foods 2024; 13:2159. [PMID: 38998664 PMCID: PMC11240950 DOI: 10.3390/foods13132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, the whey protein isolate-high-methoxyl pectin (WPI-HMP) complex prepared by electrostatic interaction was utilized as an emulsifier in the preparation of docosahexaenoic acid (DHA) algal oils in order to improve their physicochemical properties and oxidation stability. The results showed that the emulsions stabilized using the WPI-HMP complex across varying oil-phase volume fractions (30-70%) exhibited consistent particle size and enhanced stability compared to emulsions stabilized solely using WPI or HMP at different ionic concentrations and heating temperatures. Furthermore, DHA algal oil emulsions stabilized using the WPI-HMP complex also showed superior storage stability, as they exhibited no discernible emulsification or oil droplet overflow and the particle size variation remained relatively minor throughout the storage at 25 °C for 30 days. The accelerated oxidation of the emulsions was assessed by measuring the rate of DHA loss, lipid hydroperoxide levels, and malondialdehyde levels. Emulsions stabilized using the WPI-HMP complex exhibited a lower rate of DHA loss and reduced levels of lipid hydroperoxides and malondialdehyde. This indicated that WPI-HMP-stabilized Pickering emulsions exhibit a greater rate of DHA retention. The excellent stability of these emulsions could prove valuable in food processing for DHA nutritional enhancement.
Collapse
Affiliation(s)
- Zhe Yu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Li Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430023, China
| | - Ling Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
| | - Kunqiang Hong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| | - Fenfen Lei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Z.Y.); (L.Z.); (L.C.); (K.H.); (D.H.)
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430023, China;
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
22
|
Han C, Ren X, Shen X, Yang X, Li L. Improvement of physicochemical properties and quercetin delivery ability of fermentation-induced soy protein isolate emulsion gel processed by ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 107:106902. [PMID: 38797128 PMCID: PMC11139769 DOI: 10.1016/j.ultsonch.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to investigate the effects of ultrasonic treatment at different powers on the physicochemical properties, microstructure and quercetin delivery capacity of fermentation-induced soy protein isolate emulsion gel (FSEG). The FSEG was prepared by subjecting soy protein isolate (SPI) emulsion to ultrasonic treatment at various powers (0, 100, 200, 300, and 400 W), followed by lactic acid bacteria fermentation. Compared with the control group (0 W), the FSEG treated with ultrasound had higher hardness, water holding capacity (WHC) and rheological parameters. Particularly, at an ultrasonic power of 300 W, the FSEG had the highest hardness (101.69 ± 4.67 g) and WHC (75.20 ± 1.07%) (p < 0.05). Analysis of frequency sweep and strain scanning revealed that the storage modulus (G') and yield strains of FSEG increased after 300 W ultrasonic treatment. Additionally, the recovery rate after creep recovery test significantly increased from 18.70 ± 0.49% (0 W) to 58.05 ± 0.54% (300 W) (p < 0.05). Ultrasound treatment also resulted in an increased β-sheet content and the formation of a more compact micro-network structure. This led to a more uniform distribution of oil droplets and reduced mobility of water within the gel. Moreover, ultrasonic treatment significantly enhanced the encapsulation efficiency of quercetin in FSEG from 81.25 ± 0.62 % (0 W) to 90.04 ± 1.54% (300 W). The bioaccessibility of quercetin also increased significantly from 28.90 ± 0.40% (0 W) to 42.58 ± 1.60% (300 W) (p < 0.05). This study enriches the induction method of soy protein emulsion gels and provides some references for the preparation of fermented emulsion gels loaded with active substances.
Collapse
Affiliation(s)
- Chunpeng Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Huang M, Tian M, Tan C, Ying R, Ahmad M, Hao G, Liao Q. Thermal stability, antioxidant activity and bioavailability of pea protein-naringin Pickering emulsion for enhanced delivery applications. Food Res Int 2024; 188:114393. [PMID: 38823852 DOI: 10.1016/j.foodres.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
After successfully addressing to mitigate bitterness of naringin through construction Pickering emulsion using pea protein (PP) and naringin (NG) in our previous study, we now probed thermal stability, antioxidant efficacy, and bioavailability. FTIR analysis and UV-vis spectroscopy indicated predominant interactions between PP and NG were hydrogen and hydrophobic bonds. TGA and DSC analyses demonstrated that PP-NG complexes exhibited superior heat-resistance compared to pure PP and NG. Thermal stability assessments indicated a significant retention of NG in the PP-NG Pickering emulsion than the control NG across varied temperatures (4 °C, 25 °C, 37 °C, and 65 °C). Moreover, the antioxidant activity of PP-NG emulsion was dependent on the concentration of NG, as evidenced by DPPH and ABTS free radicals scavenging abilities, ferric reducing power, and lipid peroxidation resistance. Additionally, PP-NG Pickering emulsion exhibited substantially high bioavailability (92.01 ± 3.91%). These results suggest a promising avenue for the application of NG with improved characteristics.
Collapse
Affiliation(s)
- Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Mengwei Tian
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ruifeng Ying
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gang Hao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610041, China.
| |
Collapse
|
24
|
Liang B, Feng S, Zhang X, Ye Y, Sun C, Ji C, Li X. Physicochemical properties and in vitro digestion behavior of emulsion micro-gels stabilized by κ-carrageenan and whey protein: Effects of sodium alginate addition. Int J Biol Macromol 2024; 271:132512. [PMID: 38795879 DOI: 10.1016/j.ijbiomac.2024.132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Emulsion micro-gels exhibit significant potential as functional ingredients for modifying food texture, replacing saturated fats, or serving as templates for the controlled release of bioactive compounds. Structural design principles are being applied more frequently to develop innovative emulsion micro-gels. In this paper, whey protein concentrate (WPC), κ-carrageenan and sodium alginate (SA) were utilized for preparing emulsion micro-gels. To reveal the regulation mechanism of the structural and physicochemical properties of emulsion micro-gels on lipid digestion, the influence of SA additions on the structural, physicochemical properties and in vitro digestion behavior of κ-carrageenan/WPC-based emulsion micro-gel were explored. The FTIR results suggest that the emulsion micro-gels are formed through non-covalent interactions. With the increase of SA addition (from 0.7 g/100 mL to 1.0 g/100 mL), the decreased mean droplet size, the increased hardness, elasticity indexes, and water holding capacity, the reduced the related peak times all indicated that the emulsion micro-gels exhibit enhanced rheological, stability, and mechanical properties. It can be concluded from the microstructure, particle size distribution of the emulsion micro-gels during simulated digestion and free fatty acid release that both κ-carrageenan/WPC-based emulsion micro-gel and κ-carrageenan/WPC/SA-based emulsion micro-gel can inhibit lipid digestion due to the ability to maintain structural stability and hindering the penetration of bile salts and lipase through the hydrogel networks. And the ability is regulated by the binding properties the gel matrix and oil droplets, which determine the structure and physicochemical properties of emulsion micro-gels. The research suggested that the structure of emulsion micro-gels can be modified to produce various lipid digestion profiles. It may be significant for certain practical application in the design of low-fat food and controlled release of bioactive agents.
Collapse
Affiliation(s)
- Bin Liang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China.
| | - Sisi Feng
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China
| | - Xirui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Ying Ye
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China.
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu normal university, Jinan, Shandong 250200, PR China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
25
|
Shen S, Liu X, Tang D, Yang H, Cheng J. Digestive characteristics of astaxanthin oil in water emulsion stabilized by a casein-caffeic acid-glucose ternary conjugate. Food Chem 2024; 438:138054. [PMID: 38006699 DOI: 10.1016/j.foodchem.2023.138054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
To overcome the barrier of poor oral bioavailability of astaxanthin, a stable oil-in-water emulsion was constructed using casein-caffeic acid-glucose ternary conjugates (CSC) to deliver astaxanthin, and its gastrointestinal behavior was evaluated in vitro with sodium caseinate (CSN) as a control. Results showed that, CSC-stabilized emulsion shower better resistance to the adverse conditions of the gastric environment than CSN-stabilized emulsion, and exhibited lower average particle size and aggregation (4972.33 nm, -5.93 mv) after simulated gastric digestion. Besides, after simulated intestinal digestion, the reducing capacity and astaxanthin transfer efficiency of CSC emulsion into the micellar phase were 686.74 μmol Trolox/100 mL and 26.2 %, which were 2.6 and 4.05-fold higher than that of CSN emulsion. The above results suggest that CSC can be used for better delivery of astaxanthin, which could be useful in designing foods such as functional beverages, pharmaceuticals and nutritional supplements for delivery of lipophilic bioactives.
Collapse
Affiliation(s)
- Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
26
|
Hwang W, Lee J, Choi MJ. Optimization and characterization of high internal phase double emulsion (HIPDE) stabilized by with soybean protein isolate, gallic acid and xanthan gum. Int J Biol Macromol 2024; 264:130562. [PMID: 38431022 DOI: 10.1016/j.ijbiomac.2024.130562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This study aims to formulate a stable high internal phase double emulsion (HIPDE) using soybean protein isolate (SPI), gallic acid (GA), and xanthan gum (XG). To prepare HIPDE, W1/O was formulated with the water phase dispersed in the oil phase using polyglycerol polyricinoleate (PGPR) as a stabilizer. Thereafter, W1/O dispersed in W2 (SPI solution) was used. To stabilize the HIPDE, GA was added in W1 (0 or 1 %), XG was added in W2 (0 or 1 %), and the pH of the W phases was adjusted to acidic, neutral, and basic. The samples containing GA in W1 and XG in W2 did not phase out during the storage periods and maintained a higher ζ-potential value, a higher apparent viscosity, and a more sustainable droplet compared to others. These results were derived by the interaction between SPI and XG, SPI and GA, or GA and PGPR. Physicochemical crosslinks were formed, such as gallate-derived groups, SPI-GA complexation (Michael addition, Shiff base reaction), and hydrogen bonding. In conclusion, applying the SPI, GA, and XG to HIPDE would contribute to various industries such as food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Woongjun Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, South Korea
| | - Jiseon Lee
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
27
|
Jiang Z, Luo H, Huangfu Y, Gao Y, Zhang M, Bao Y, Ma W. High internal phase emulsions stabilized by whey protein covalently modified with carboxymethyl cellulose: Enhanced environmental stability, storage stability and bioaccessibility. Food Chem 2024; 436:137634. [PMID: 37847963 DOI: 10.1016/j.foodchem.2023.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
In this work, the effects of whey protein-carboxymethyl cellulose (WP-CMC) conjugates on the environmental stability, in vitro digestion stability, storage stability and bioaccessibility of high internal phase emulsions (HIPEs) were investigated. Compared to the HIPEs stabilized by the mixture of WP and CMC, the HIPEs stabilized by WP-CMC were less sensitive to environmental changes by particle size and zeta-potential, and showed better stability and bioavailability of pine nut oil as well as β-carotene during simulated gastrointestinal digestion. In addition, the inclusion function and pine nut oil oxidative stability of the HIPEs stabilized by WP-CMC were better during 16 days of storage than those of the pine nut oil and HIPEs stabilized by the mixture of WP and CMC, and also expressed higher storage stability of β-carotene. These results suggested that the conjugate-stabilized emulsions developed in this study have potential applications as protectors and carriers of liposoluble active ingredients.
Collapse
Affiliation(s)
- Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yunpeng Huangfu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Meiqi Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
28
|
Yang S, Jin Y, Li F, Shi J, Liang J, Mei X. Pickering Emulsion Stabilized by Hordein-Whey Protein Isolate Complex: Delivery System of Quercetin. Foods 2024; 13:665. [PMID: 38472777 DOI: 10.3390/foods13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
As a lipophilic flavonol, quercetin has low bioavailability, which limits its application in foods. This work aimed to prepare a hordein-based system to deliver quercetin. We constructed hordein-whey isolate protein fibril (WPIF) complexes (H-Ws) by anti-solvent precipitation method at pH 2.5. The TEM results of the complexes showed that spherical-like hordein particles were wrapped in WPIF clusters to form an interconnected network structure. FTIR spectra revealed that hydrogen bonds and hydrophobic interactions were the main driving forces for the complex formation. H-W1 (the mass ratio of hordein to WPIF was 1:1) with a three-phase contact angle of 70.2° was chosen to stabilize Pickering emulsions with oil volume fractions (φ) of 40-70%. CLSM images confirmed that the oil droplets were gradually embedded in the three-dimensional network structure of H-W1 with the increase in oil volume fraction. The emulsion with φ = 70% showed a tight gel structure. Furthermore, this emulsion exhibited high encapsulation efficiency (97.8%) and a loading capacity of 0.2%, demonstrating the potential to deliver hydrophobic bioactive substances. Compared with free quercetin, the bioaccessibility of the encapsulated quercetin (35%) was significantly improved. This study effectively promoted the application of hordein-based delivery systems in the food industry.
Collapse
Affiliation(s)
- Songqi Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Yunan Jin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Feifan Li
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Jinfeng Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Jiahui Liang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Xiaohong Mei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
- Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
29
|
Li Y, Wang J, Ying R, Huang M, Hayat K. Protein-stabilized Pickering emulsion interacting with inulin, xanthan gum and chitosan: Rheological behavior and 3D printing. Carbohydr Polym 2024; 326:121658. [PMID: 38142086 DOI: 10.1016/j.carbpol.2023.121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Physical stability and lipid digestion of protein-stabilized Pickering emulsions interacting with polysaccharides have been emphasized in our previous investigation. However, the polysaccharide coating and micelle protection of protein-based stable Pickering emulsion and its three-dimensional (3D) printing properties have not been thoroughly studied. The rheological properties and 3D printing properties of gelatin-catechin nanoparticles (GCNPs) stabilized Pickering emulsion were studied by using different charged polysaccharides, such as inulin (neutral), Xanthan gum (XG, anion), and chitosan (cation) as stable materials. The microstructure analysis of polysaccharide-stabilized Pickering emulsion (PSPE) showed that the order of pore wall thickness was GC-Chitosan > GC-XG > GC-Inulin. The network structure of GC-Chitosan was thickened, allowing the 3D printed product to have a good surface texture and adequate support. Rheological analysis showed that PSPEs in extrusion (shear thinning), self-support (rigid structure), and recovery (the outstanding thixotropy) of the three stages exhibited good potential of 3D printing. 3D printing results also showed that GC-Chitosan had the best printing performance. Therefore, polysaccharide-stabilized Pickering emulsions can provide a basis for the development of 3D printed food products.
Collapse
Affiliation(s)
- Yonghong Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, PR China.
| | - Khizar Hayat
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
30
|
Zhong W, Wang Q, Shen X. Quinoa protein/polysaccharide electrostatic complex stabilized vegan high internal phase emulsions for 3D printing: Role of complex state and gelling-type polysaccharides. Food Chem 2024; 434:137447. [PMID: 37716139 DOI: 10.1016/j.foodchem.2023.137447] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Rational selection of the complex state and polysaccharide type may enhance the performance of electrostatic complex stabilized high internal phase emulsions (HIPEs). Herein, quinoa proteins were extracted to form electrostatic complexes separately with three gelling-type polysaccharides to fabricate HIPEs. Results showed that the complexes in soluble state (pH 8.4-5.6) exhibited moderate size, high negative potential and enhanced protein hydrophobicity, and could achieve HIPEs with 84% oil phase upon acidification to pH 6 at low concentrations. Its excellent interfacial structure enhanced stability during heating, freeze-thawing and long-term storage, and exhibited promising 3D printing potential. Furthermore, the complexes formed by sulfated polysaccharide carrageenan had higher amphiphilicity than those formed by carboxylated polysaccharide pectin or sodium alginate, and their stabilized HIPE had preferable droplet size, stability and 3D printing resolution than its counterparts. This study may provide new insights into the performance enhancement of protein/polysaccharide electrostatic complex stabilized HIPEs.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Qi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
31
|
Zhong X, Wang K, Chen Z, Fei S, Li J, Tan M, Su W. Incorporation of fucoxanthin into 3D printed Pickering emulsion gels stabilized by salmon by-product protein/pectin complexes. Food Funct 2024; 15:1323-1339. [PMID: 38205590 DOI: 10.1039/d3fo04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.
Collapse
Affiliation(s)
- Xu Zhong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zhejin Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China.
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| |
Collapse
|
32
|
Keum DH, Han JH, Kwon HC, Kothuri V, Hong SJ, Kim YJ, Han SG. Physicochemical properties of Pickering emulsion fabricated with polysaccharides/pea protein isolate complex and its application in plant-based patty. Int J Biol Macromol 2024; 257:128664. [PMID: 38065458 DOI: 10.1016/j.ijbiomac.2023.128664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Incorporation of structured liquid oil within plant-based patties can be achieved through the utilization of food-grade Pickering emulsion (PE). Therefore, the aim of this study was to evaluate the quality characteristics of PE and its application in plant-based patty. The PEs were formulated using sunflower oil (SO), polysaccharides and protein, and the specific ratios employed were as following: methylcellulose (MC) 2 % only (MP0); MC 1.5 % + pea protein isolate (PPI) 0.5 % (MP1); MC 1 % + PPI 1 % (MP2); xanthan gum (XG) 2 % only (XP0); XG 1.5 % + PPI 0.5 % (XP1); XG 1 % + PPI 1 % (XP2). MP0 and MP1 were unstable as PEs, whereas MP2 and XP groups (XP0, XP1, and XP2) exhibited stability as a PE. In addition, MP2 and all XP groups showed increased oil binding capacity, hydrophobic interaction, thermal stability, crystallization, rheological properties, and oxidative stability, compared to MP0 and MP1. In PE-applied plant-based patties, MP2 and all XP groups had significantly lower cooking loss and higher emulsion stability than SO. Particularly, MP2-employed plant-based patties exhibited significantly improved textural and sensory properties. Therefore, our data suggest that PEs with methylcellulose and pea protein isolate could be an effective replacement of plant oil in plant-based meat analogs.
Collapse
Affiliation(s)
- Dong Hyun Keum
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jong Hyeon Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Seong Joon Hong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Yea Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
33
|
Zheng XQ, Wang DD, Xue S, Cui ZY, Yu HY, Wei JT, Chen HH, Mu HY, Chen R. Composite formation of whey protein isolate and OSA starch for fabricating high internal phase emulsion: A comparative study at different pH and their application in biscuits. Int J Biol Macromol 2024; 259:129094. [PMID: 38159690 DOI: 10.1016/j.ijbiomac.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The composites formed by whey protein isolate (WPI) and octenyl succinate anhydride (OSA)-modified starch were characterized with a focus on the effect of pH, and their potential in fabricating high internal phase emulsions (HIPEs) as fat substitutes was evaluated. The particles obtained at pH 3.0, 6.0, 7.0, and 8.0 presented a nanosized distribution (122.04 ± 0.84 nm-163.24 ± 4.12 nm) while those prepared at pH 4.0 and 5.0 were remarkably larger. Results from the shielding agent reaction and Fourier transform infrared spectroscopy (FT-IR) showed that the interaction between WPI and OSA starch was mainly hydrophobic at pH 3.0-5.0, while there was a strong electrostatic repulsion at pH 6.0-8.0. A quartz crystal microbalance with dissipation (QCM-D) study showed that remarkably higher ΔD and lower Δf/n were observed at pH 3.0-5.0 after successive deposition of WPI and OSA starch, whereas slight changes were noted for those made at higher pH values. The WPI-OSA starch (W-O) composite-based HIPEs made at pH 3.0 and 6.0-8.0 were physically stable after long-term storage, thermal treatment, or centrifugation. Incorporation of HIPE into the biscuit formula yielded products with a desirable sensory quality.
Collapse
Affiliation(s)
- Xiao-Qing Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - De-Da Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Zi-Yan Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Yang Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jian-Teng Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong-Yan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| | - Run Chen
- Think Ingredients Inc., Burlington, Canada
| |
Collapse
|
34
|
Hu S, Xiao F, Du M, Pan J, Song L, Wu C, Zhu B, Xu X. Synergistic effect of residual sugar on freeze-thaw stability of high internal phase emulsions using glycosylated cod protein as interface stabilizer. Food Chem 2024; 432:137134. [PMID: 37639890 DOI: 10.1016/j.foodchem.2023.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Nowadays, glycosylated protein seems to be one of the most effective stabilizers for preparing freeze-thaw stabile emulsion; nevertheless, few papers mentioned the relationship between the residual free sugars after the glycosylation reaction and the freeze-thaw stability of high internal phase emulsions (HIPEs). Herein, glucose was used to prepare glycosylated cod proteins (GCPs). The synergistic effect was related to the grafting degree of GCP, and the amount of glucose added to prepare freeze-thaw stable HIPEs was reduced from 20% to 4% when the grafting degree of GCP increased from 0% to 31.58% (i.e. 12% GCP). This might be due to fewer ice crystals forming in water phase or less destruction of emulsion droplets by ice crystals. The obtained results in this study will allow developing freeze-thaw stable HIPEs or new frozen ingredients.
Collapse
Affiliation(s)
- Sijie Hu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Feng Xiao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinfeng Pan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
35
|
Iannuzzo F, Cicatiello AG, Sagliocchi S, Schiano E, Nappi A, Miro C, Stornaiuolo M, Mollica A, Tenore GC, Dentice M, Novellino E. Therapeutic Effect of an Ursolic Acid-Based Nutraceutical on Neuronal Regeneration after Sciatic Nerve Injury. Int J Mol Sci 2024; 25:902. [PMID: 38255977 PMCID: PMC10815361 DOI: 10.3390/ijms25020902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Elisabetta Schiano
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.I.); (A.M.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Napoli, Italy; (M.S.); (G.C.T.)
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy; (A.G.C.); (S.S.); (A.N.); (C.M.)
| | - Ettore Novellino
- Healthcare Food Research Center, Inventia Biotech s.r.l., S. S. Sannitica, 81020 Caserta, Italy; (E.S.); (E.N.)
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|
36
|
Santos MAS, Fonseca LR, Okuro PK, Cunha RL. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier. Food Res Int 2023; 173:113247. [PMID: 37803560 DOI: 10.1016/j.foodres.2023.113247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
High internal phase emulsion (HIPE) was produced and stabilized using a novel antioxidant emulsifier formed by the complexation between sodium caseinate (SC) and quercetin (Q). Colloidal complexes, produced via an alkaline process, showed great ability to reduce the interfacial tension between oil-water phases, promoting stabilization of the HIPEs even at low concentrations (1.5% w/v in the aqueous fraction). HIPEs at 0.80 volume fraction of dispersed phase presented remarkable viscosity due to the high-packing network of oil droplets surrounded by a thin liquid layer. Moreover, the emulsions showed a gel-like behavior and kinetic stability for 45-days at 25 °C. The approach of SC:Q complexes on HIPEs development is promising to reduce lipid oxidation, translated by the formation of hydroperoxides and malondialdehyde during storage, especially for the complex formed with the highest amount of the phenolic compound. In this study, the development of HIPEs with outstanding kinetic and oxidative stability is reported as a potential alternative for the development of healthier products with reduced saturated and trans-fat content.
Collapse
Affiliation(s)
- Matheus A S Santos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil.
| | - Larissa R Fonseca
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, Zip Code: 13083-862, Campinas, Brazil
| |
Collapse
|
37
|
Xu D, Xing X, Chitrakar B, Li H, Hu L, Zhang J, Zhu X, Yao L, Hati S, Liu Z, Mo H. Fabrication and 3D printing of Pickering emulsion gel based on Hypsizygus marmoreus by-products protein. Food Chem X 2023; 19:100849. [PMID: 37780343 PMCID: PMC10534211 DOI: 10.1016/j.fochx.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Pickering emulsion gel (PEG) stabilized by the protein extracted from the by-product of Hypsizygus marmoreus, combining with xanthan gum (XG), was formulated as 3D printing ink. Hydrogen bonds are formed in XG/protein hybrid particles. Afterwards, PEG was developed. Results indicated that it has shear-thinning properties. The apparent viscosity, yield stress, Elastic modulus (G') and gel strength increased with the increased XG addition, while the size of emulsion decreased. XG incorporation improved the 3D printing performance with desired self-supporting capability and printing precision if its concentration reached 2.0% (w/v). This study provides ideas for the application of Hypsizygus marmoreus by-products protein in stabilizing PEG used for 3D printing, which has a potential to replace traditional hydrogenated cream for cake decoration.
Collapse
Affiliation(s)
- Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xuebing Xing
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jiayi Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Lishan Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Subrot Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat 388110, India
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
38
|
Dong Z, Yu S, Zhai K, Bao N, Rashed MMA, Wu X. Fabrication and Characterization of Complex Coacervation: The Integration of Sesame Protein Isolate-Polysaccharides. Foods 2023; 12:3696. [PMID: 37835349 PMCID: PMC10572293 DOI: 10.3390/foods12193696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The exceptional biocompatibility of emulsion systems that rely on stabilizing protein-polysaccharide particles presents extensive possibilities for the transportation of bioactive carriers, making them highly promising for various biological applications. The current work aimed to explore the phenomenon of complex coacervation between sesame protein isolate (SPI) and four distinct polysaccharides, namely, Arabic gum (GA), carrageenan (CAR), sodium carboxymethyl cellulose (CMC), and sodium alginate (SA). The study objective was achieved by fabricating emulsions through the blending of these polymers with oil at their maximum turbidity level (φ = 0.6), followed by the measurement of their rheological properties. The turbidity, ζ-potential, and particle size were among the techno-parameters analyzed to assess the emulsion stability. The microstructural characterization of the emulsions was conducted using both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, the functional properties were examined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SPI incorporated with SA, CMC, and CAR reached the maximum turbidity (0.2% w/v) at a ratio of 4:1, corresponding to the pH values of 4.5, 3, or 3.5, respectively. The SPI-GA mixture exhibited the maximum turbidity at a ratio of 10:1 and pH 4.5. Results from the FTIR and XRD analyses provided evidence of complex formation between SPI and the four polysaccharides, with the electrostatic and hydrogen bond interactions facilitating the binding of SPI to these polysaccharides. SPI was bound to the four polysaccharides through electrostatic and hydrogen bond interactions. The SPI-CMC and SPI-SA emulsions were more stable after two weeks of storage.
Collapse
Affiliation(s)
- Zeng Dong
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Yu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Nina Bao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Marwan M. A. Rashed
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Xiao Wu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| |
Collapse
|
39
|
Wang L, Liu M, Guo P, Zhang H, Jiang L, Xia N, Zheng L, Cui Q, Hua S. Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes. Food Chem 2023; 414:135718. [PMID: 36827783 DOI: 10.1016/j.foodchem.2023.135718] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Although protein-polysaccharide complexes have shown tremendous potential in stabilizing high internal phase Pickering emulsions (HIPPEs), it is unclear whether coacervates have the same potential to be used as effective Pickering stabilizers. In this study, HIPPEs were prepared by ovalbumin (OVA)-pectin (PE) coacervates during the transition from coacervates to complexes. The results showed that enhanced OVA-PE interactions significantly affected the wettability and surface-tension reduction ability of the OVA-PE coacervates. At pH 2, the coacervate-stabilized HIPPEs exhibited smaller oil droplet sizes (21.3±2.3 μm), tighter droplet packing, and finer solid-like structures through the bridging of droplets and the generation of stronger gel-like network structures to prevent coalescence and lipid oxidation. The gastrointestinal digestion results proved that the OVA-PE coacervates promoted lipid hydrolysis and improved the bioaccessibility (from 19.7±0.7% to 36.5±2%) of curcumin-loaded HIPPEs. Our work provides new ideas for the development of biopolymer particles as effective Pickering stabilizers in the food industry.
Collapse
Affiliation(s)
- Lechuan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Panpan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Cui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
40
|
Liu J, Zhang H, Sun X, Fan F. Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles. Molecules 2023; 28:5434. [PMID: 37513302 PMCID: PMC10386357 DOI: 10.3390/molecules28145434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This study was conducted to prepare walnut protein isolate nanoparticles (nano-WalPI) by pH-cycling, combined with the ultrasound method, to investigate the impact of various nano-WalPI concentrations (0.5~2.5%) and oil volume fractions (20~70%) on the stability of Pickering emulsion, and to improve the comprehensive utilization of walnut residue. The nano-WalPI was uniform in size (average size of 108 nm) with good emulsification properties (emulsifying activity index and stability index of 32.79 m2/g and 1423.94 min, respectively), and it could form a stable O/W-type Pickering emulsion. When the nano-WalPI concentration was 2.0% and the oil volume fraction was 60%, the best stability of Pickering emulsions was achieved with an average size of 3.33 μm, and an elastic weak gel network structure with good thermal stability and storage stability was formed. In addition, the emulsion creaming index value of the Pickering emulsion was 4.67% after 15 days of storage. This study provides unique ideas and a practical framework for the development and application of stabilizers for food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Jiongna Liu
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hengxuan Zhang
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Xue Sun
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Fangyu Fan
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
41
|
Zhang H, Tian Y, Pan S, Zheng L. Glycation Improved the Interfacial Adsorption and Emulsifying Performance of β-Conglycinin to Stabilize the High Internal Phase Emulsions. Foods 2023; 12:2706. [PMID: 37509797 PMCID: PMC10379661 DOI: 10.3390/foods12142706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the interfacial adsorption and emulsifying performance of glycated β-conglycinin (7S) with D-galactose (Gal) at various times. Results indicated that glycation increased the particle sizes and zeta potentials of glycated 7S by inducing subunit dissociation. Glycation destroyed the tertiary structures and transformed secondary structures from an ordered one to a disordered one, leading to the more flexible structures of glycated 7S compared with untreated 7S. All these results affected the structural unfolding and rearrangement of glycated 7S at the oil/water interface. Therefore, glycated 7S improved interfacial adsorption and formed an interfacial viscoelasticity layer, increasing emulsifying performance to stabilize high internal phase emulsions (HIPE) with self-supportive structures. Furthermore, the solid gel-like network of HIPE stabilized by glycated 7S led to emulsification stability. This result provided new ideas to improve the functional properties of plant proteins by changing the interfacial structure.
Collapse
Affiliation(s)
- Hongjian Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| | - Yan Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianhe Zheng
- Hainan Institute of Grain and Oil Science, Qionghai 571400, China
| |
Collapse
|
42
|
Incorporation of probiotics into 3D printed Pickering emulsion gel stabilized by tea protein/xanthan gum. Food Chem 2023; 409:135289. [PMID: 36586260 DOI: 10.1016/j.foodchem.2022.135289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Different xanthan gum (XG) concentrations on the rheological/texture properties of Pickering emulsion (PE) gel stabilized by tea protein/xanthan gum (TP/XG) were studied to achieve an ink feasible for 3D printing. Afterwards, the effects of 3D printing and digestion process on the viability of probiotics were studied when encapsulated in the PE gel. Results indicated that gel strength, stability, storage modulus (G') and loss modulus (G″) increased as XG concentration increased. Nozzle diameter and printing temperature of 45 and 55℃ had no significant effect on probiotic's viability, but printing temperature of 65℃ reduced viable probiotics from 8.07 to 6.59 log CFU/g. No significant change of probiotics viability in 3D printed samples was observed during 11-day storage at 4℃. PE gel encapsulated probiotic's viability was significantly improved under heat treatment and simulated gastrointestinal environment. This study gives insights on the production of 3D printed foods using PE gel incorporating probiotics.
Collapse
|
43
|
Liu Y, Xia H, Guo S, Li P, Qin S, Shi M, Zeng C. Effect and mechanism of edible oil co-digestion on the bioaccessibility and bioavailability of ursolic acid. Food Chem 2023; 423:136220. [PMID: 37156140 DOI: 10.1016/j.foodchem.2023.136220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models. The results showed that the bioaccessibility of UA was significantly improved after adding rapeseed oil. Caco-2 cell models showed that the UA-oil blend was more advantageous than UA emulsion in total absorption. The results indicate that the location of UA distribution in oil determines the ease of UA release into the mixed micellar phase. This paper brings a new research idea and basis for the design of improving the bioavailability of hydrophobic compounds.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Shiyin Guo
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha, Hunan 410128, China.
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
44
|
An Z, Liu Z, Mo H, Hu L, Li H, Xu D, Chitrakar B. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Ni J, Wang K, Yu D, Tan M. Pickering emulsions stabilized by Chlorella pyrenoidosa protein-chitosan complex for lutein encapsulation. Food Funct 2023; 14:2807-2821. [PMID: 36866667 DOI: 10.1039/d3fo00476g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Lutein has many physiological functions like antioxidation, anti-cancer, and anti-inflammation, which presents good potential in the development of functional food for eye protection. However, the hydrophobicity and harsh environment factors during digestive absorption process will greatly reduce lutein bioavailability. In this study, Chlorella pyrenoidosa protein-chitosan complex stabilized Pickering emulsions were prepared, and lutein was encapsulated into corn oil droplets to increase its stability and bioavailability in gastrointestinal digestion. The interaction between Chlorella pyrenoidosa protein (CP) and chitosan (CS), and the effect of chitosan concentration on the emulsifying ability of the complex and emulsion stability were studied. With the increase of CS concentration from 0% to 0.8%, the emulsion droplet size obviously decreased, and the emulsion stability and viscosity increased significantly. In particular, when the concentration was 0.8%, the emulsion system was stable at 80 °C and 400 mM sodium chloride. After ultraviolet irradiation for 48 h, the retention rate of lutein encapsulated in Pickering emulsions was 54.33%, which was significantly higher than that (30.67%) of lutein dissolved in corn oil. The retention rate of lutein in Pickering emulsions stabilized by CP-CS complex was significantly higher than that in Pickering emulsions stabilized by CP only and corn oil after heating at 90 °C for 8 h. The results of simulated gastrointestinal digestion showed that the bioavailability of lutein encapsulated in Pickering emulsions stabilized by CP-CS complex reached 44.83%. These results explored the high-value utilization of Chlorella pyrenoidosa and provided new insights into the preparation of Pickering emulsions and the protection for lutein.
Collapse
Affiliation(s)
- Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
46
|
Yang H, Wang S, Xu Y, Wang S, Yang L, Song H, He Y, Liu H. Storage stability and interfacial rheology analysis of high-internal-phase emulsions stabilized by soy hull polysaccharide. Food Chem 2023; 418:135956. [PMID: 36958186 DOI: 10.1016/j.foodchem.2023.135956] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
High-internal-phase emulsions (HIPEs) are more promising candidates for development to replace hydrogenated fatty acids, yet the current HIPEs are limited for stabilizers require very high surface activity. This study showed that HIPEs could be prepared with 1.0-2.2 wt% soy hull polysaccharide (SHP) and the related stability indicators of HIPEs were analyzed. The plasticity, stress resistance, stability of the HIPEs were positively correlated with the SHP content. The interfacial adsorption experiments showed that SHP had the good ability to reduce interfacial tension and formed an elastic interfacial layer. Dilatational rheological results showed the interfacial film reached jammed saturation at about 1.8 wt% of SHP concentration, and the zeta potential results were consistent. This study demonstrated that SHP was an efficient stabilizer of HIPEs, which was useful both for the preparation of HIPEs and for developing uses for SHP.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
47
|
Zhao Q, Fan L, Zhou Y, Li J. Effect of chitosan-protocatechuic acid conjugate on stability and encapsulation capacity of polysaccharide-based high internal phase emulsion. Carbohydr Polym 2023; 304:120487. [PMID: 36641160 DOI: 10.1016/j.carbpol.2022.120487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The aim of this work was to fabricate chitosan-protocatechuic acid (CSPA) conjugates by free radical grafting method and use them as novel emulsifiers to inhibit lipid oxidation and delay the photodegradation rate of curcumin in polysaccharide-based high internal phase emulsions (HIPEs). Results of UV-vis, FT-IR and 1H NMR spectra demonstrated that PA had been successfully bonded to chitosan (CS) through ester and amino linkages. CSPA conjugates (especially those with the ratio of CS to PA of 1:0.75) showed significantly increased water solubility and antioxidant activity than CS monomer. Furthermore, compared with sole OSA starch (OSAS), the electrostatic combination of CS and CSPA conjugate with OSAS could further reduce the interfacial tension, which was conducive to their adsorption at the oil-water interface. The introduction of CS and CSPA conjugate also increased the viscosity of aqueous phase and promoted the formation of gel-like percolating network structure, thereby effectively preventing droplets coalescence and endowing HIPEs with ideal viscoelasticity. More importantly, the contents of lipid hydroperoxide (24.09 μmol/g oil) and malondialdehyde (166.71 nmol/g oil) in HIPEs prepared by OSAS-CS-CSPA complexes were lower than those stabilized by OSAS, OSAS-CS and OSAS-CSPA complexes during accelerated storage. In addition, HIPEs prepared by OSAS-CS-CSPA complexes showed stronger protection capacity on curcumin against ultraviolet irradiation and natural light degradation. This study will provide useful information and technical reference for the fabrication of antioxidant polysaccharide-based HIPEs delivery vehicles.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yulin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Zhao Q, Fan L, Li J. Biopolymer-based pickering high internal phase emulsions: Intrinsic composition of matrix components, fundamental characteristics and perspective. Food Res Int 2023; 165:112458. [PMID: 36869475 DOI: 10.1016/j.foodres.2023.112458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pickering HIPEs have received tremendous attention in recent years due to their superior stability and unique solid-like and rheological properties. Biopolymer-based colloidal particles derived from proteins, polysaccharides and polyphenols have been demonstrated to be safety stabilizers for the construction of Pickering HIPEs, which can meet the demands of consumers for "all-natural" products and provide "clean-label" foods. Furthermore, the functionality of these biopolymers can be further extended by forming composite, conjugated and multi-component colloidal particles, which can be used to modulate the properties of the interfacial layer, thereby adjusting the performance and stability of Pickering HIPEs. In this review, the factors affecting the interfacial behavior and adsorption characteristics of colloidal particles are discussed. The intrinsic composition of matrix components and fundamental characteristics of Pickering HIPEs are emphatically summarized, and the emerging applications of Pickering HIPEs in the food industry are reviewed. Inspired by these findings, future perspectives concerning this field are also put forward, including (1) the exploration of the interactions between biopolymers used to produce Pickering HIPEs and target food ingredients, and the influence of the added biopolymers on the flavor and mouthfeel of the products, (2) the investigation of the digestion properties of Pickering HIPEs under oral administration, and (3) the fabrication of stimulus-responsive or transparent Pickering HIPEs. This review will give a reference for exploring more natural biopolymers for Pickering HIPEs application development.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
49
|
Hydrophobic interaction at the O/W interface: Impacts on the interfacial stability, encapsulation and bioaccessibility of polyphenols. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
50
|
Zhang L, Zhou C, Xing S, Chen Y, Su W, Wang H, Tan M. Sea bass protein-polyphenol complex stabilized high internal phase of algal oil Pickering emulsions to stabilize astaxanthin for 3D food printing. Food Chem 2023; 417:135824. [PMID: 36913867 DOI: 10.1016/j.foodchem.2023.135824] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The protective effect of sea bass protein (SBP)-(-)-epigallocatechin-3-gallate (EGCG) covalent complex-stabilized high internal phase (algal oil) Pickering emulsions (HIPPEs) on astaxanthin and algal oils was demonstrated in this study. The SBP-EGCG complex with better wettability and antioxidant activity was formed by the free radical-induced reaction to stabilize HIPPEs. Our results show that the SBP-EGCG complex formed dense particle shells surrounding the oil droplets, and the shells were crosslinked with the complex in the continuous phase to produce a network structure. The rheological analysis demonstrated that the SBP-EGCG complex endowed HIPPEs with high viscoelasticity, high thixotropic recovery, and good thermal stability, which were beneficial for three-dimensional (3D) printing applications. HIPPEs stabilized by SBP-EGCG complex were applied to improve the stability and bioaccessibility of astaxanthin and to delay algal oil lipid oxidation. The HIPPEs might become a food-grade 3D printing material served as a delivery system for functional foods.
Collapse
Affiliation(s)
- Lijuan Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|