1
|
Wang M, Guo W, Lv J, Zhu Y, Ke Z, Mao H, Qi L, Wang J. Interaction mechanisms between α-glucosidase and procyanidin dimers with different galloyl moiety: Multi-spectral analysis and molecular dynamics simulation. Bioorg Chem 2025; 160:108476. [PMID: 40239406 DOI: 10.1016/j.bioorg.2025.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
This study investigated the interaction mechanisms between α-glucosidase and procyanidin dimers containing varying galloyl moieties. The in vitro inhibitory assay demonstrated that a dose-dependent inhibition on α-glucosidase with IC₅₀ values spanning from 0.29 mg/mL (PCBDG) to 80.24 mg/mL (PCB), highlighting the pivotal role of galloyl groups. Multi-spectral analyses (UV-vis, fluorescence, FT-IR, CD) demonstrated that galloylated procyanidin dimers induced conformational changes in α-glucosidase, altering its secondary structure and hydrophobic microenvironment. DSC and ITC studies indicated PCBDG reduced enzyme thermal stability, and exhibited the highest binding affinity. Molecular docking revealed that PCBDG formed the most stable complex with α-glucosidase via extensive hydrogen bonds, hydrophobic interactions, and π-stacking with key residues, while MD simulations further confirmed its structural stability. These findings emphasized that the number of galloyl moieties enhanced inhibitory potency by optimizing enzyme-ligand interactions, offering insights for designing natural α-glucosidase inhibitors to manage postprandial hyperglycemia.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Wenwen Guo
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jimin Lv
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yanyun Zhu
- Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
2
|
Meng X, Huang X, Cheng J, Wang Y, Wang L, He L, Liu D, Jiang J. Anti-glycemic mechanism of dihydromyricetin from Ampelopsis grossedentata on α-glucosidase by multispectroscopic investigation and in silico molecular simulation. Int J Biol Macromol 2025; 308:142571. [PMID: 40154717 DOI: 10.1016/j.ijbiomac.2025.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
As a potential anti-glycemic candidate in Ampelopsis grossedentata, the binding behavior of dihydromyricetin (DMY) on α-glucosidase (α-GLA) was investigated by multispectral techniques and in silico molecular docking coupled with molecular dynamic simulation. The results revealed that DMY had potent inhibition on α-GLA with the IC50 of 38 ± 0.025 μM in a mixed competitive mode. It could attenuate the endogenous fluorescence of α-GLA through the static quenching manner. The thermodynamic analysis indicated hydrogen bonding and van der Waals forces were two major driving forces to maintain the stability of the complex, resulting in the decline of α-helix and β-turn and enhancement of β-sheet and random coil correspondingly, evidenced by Fourier transform infrared spectroscopy and circular dichroism approaches. Isothermal titration calorimetry directly measured the dissociation constant Kd for the bound α-GLA-DMY complex was 2.39 ± 0.034 μM with enthalpy change of -33.8 ± 2.85 kJ·mol-1 and entropy change of -24.1 ± 1.76 J·mol-1·K-1. As expected with the microenvironmental changes, the docking conformation followed by dynamic simulation within 200 ns further corroborated the surrounding catalytic sites of α-GLA was non-covalently bound by DMY, in which GLU411, ARG442, ARG315 and PRO312 as hydrogen bond acceptors were double-connected by -OH of DMY at C7 in the A ring and C5' in the B ring, and reinforced by the hydroxyl substitution at C3 due to the hydrogenation on C2C3 bond in C ring. Our findings would boost DMY as a spectacular α-GLA inhibitor for hypoglycemic foods application.
Collapse
Affiliation(s)
- Xiaohui Meng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China; Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Xubo Huang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Junwen Cheng
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Yanbin Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liling Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liang He
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China.
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Jinrong Jiang
- Forestry Technology Extension Station, Qingtian County Forestry Bureau, Lishui 323999, PR China
| |
Collapse
|
3
|
Wang M, Guo W, Ke Z, Mao H, Lv J, Qi L, Wang J. Inhibitory mechanisms of galloylated forms of theaflavins on α-glucosidase. Int J Biol Macromol 2025; 294:139324. [PMID: 39755321 DOI: 10.1016/j.ijbiomac.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC50 values ranging from TFDG (0.26 mg/mL) < TF3'G (0.33 mg/mL) < TF3G (0.39 mg/mL) ≪ TF (3.26 mg/mL). The multi-spectroscopic analyses revealed that theaflavin monomers changed the microenvironment around aromatic amino acid residues and conformation of α-glucosidase, with the hierarchy being TFDG > TF3'G > TF3G > TF. The binding of theaflavins with α-glucosidase was confirmed by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulations analysis. It was confirmed that theaflavins can form stable complexes with α-glucosidase, and that hydrogen bonding and van der Waals forces play important roles in the binding of theaflavins to α-glucosidase. The strongest binding affinity was observed between TFDG and the enzyme's active site, which corresponded with its enzyme activity inhibition ability. The study suggests that GM substitution plays a crucial role in enhancing the binding of theaflavins to α-glucosidase, thereby inducing greater conformational changes and leading to a stronger inhibitory effect on α-glucosidase.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Wenwen Guo
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jimin Lv
- Xianghu Laboratory, Hangzhou 311231, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
4
|
Wen R, Chai X, Wang P, Wu K, Duan X, Chen J, Zhang T, Zeng L. Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro. Foods 2024; 13:4183. [PMID: 39767125 PMCID: PMC11675673 DOI: 10.3390/foods13244183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Tea polyphenols have been reported to decrease the rate of starch hydrolysis by inhibiting α-glucosidase. However, the effect of the tea harvesting season and the structure of catechin monomers on the inhibitory activity of α-glucosidase is not understood. In this study, the inhibitory effect and underlying mechanism of four seasons of Dancong tea against α-glucosidase were investigated by in vivo and in vitro experiments, multi-spectroscope and molecular dynamic. The Dancong tea harvested in spring and winter showed a stronger inhibitory effect on α-glucosidase due to a higher content of catechin, especially EGCG ((-)-epigallocatechin-3-gallate). The results of in vivo and in vitro experiments showed that EGCG and ECG ((-)-epicatechin-3-gallate) with a higher content of gallate and hydroxyl groups exhibited a stronger inhibitory effect on starch hydrolysis, rise of postprandial blood glucose and activities of α-glucosidase compared to EGC ((-)-epigallocatechin) and EC ((-)-epicatechin). These gallate and hydroxy groups were more effective in interacting with the amino acid residues in the active site of α-glucosidase, leading to structural changes in the enzyme. Certainly, the inhibitory effect of Dancong tea on α-glucosidase explains one of the mechanisms by which it helps alleviate diabetes; the other hypoglycaemic mechanisms of Dancong tea will be further explored.
Collapse
Affiliation(s)
- Rourou Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Xianghua Chai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
- Guangdong Province Laborary of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Kegang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Xuejuan Duan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Jiasi Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Tong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| | - Liya Zeng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; (R.W.); (X.C.); (K.W.); (X.D.); (J.C.); (T.Z.); (L.Z.)
| |
Collapse
|
5
|
Li ZR, Jia RB, Mo Y, Wang H, Luo D, Zhou C, Zhao M. Comparative Study on the Antioxidative Effects and α-Glucosidase Inhibitory Potential In Vitro among Ellagic Acid and Its Metabolites Urolithins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565047 DOI: 10.1021/acs.jafc.4c06542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The current study compared the radical scavenging and α-glucosidase inhibition potentials of ellagic acid (EA) and its metabolites, urolithins (Uros), and further explored the structure-activity relationship. The outcomes indicated that urolithin M5 (Uro-M5), EA, and urolithin M6 (Uro-M6) exhibited superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity; EA and urolithin D (Uro-D) expressed better ABTS scavenging ability, and EA and Uro-M5 showed preferable α-glucosidase inhibition activity. The results of CD spectra and fluorescence spectral analysis explained the interaction between Uros and α-glucosidase. Correlation analysis indicated that hydroxyl groups were crucial for the antioxidative effect, while C-8 OH contributed greatly to the α-glucosidase inhibition activity. Quantum mechanical analysis showed that both EA and Uros exhibited strong electrophilic properties. These comparative results showed a biological discrepancy between Uros and provided essential information for exploring the bioactive application of EA as a functional ingredient or dietary supplement.
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yurong Mo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haozheng Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
6
|
Yu G, Fu X, Mo X, Tan L, Yang S. Multi-target anti-diabetic styrylpyrones from Phellinus igniarius: Inhibition of α-glucosidase, protein glycation, and oxidative stress. Int J Biol Macromol 2024; 278:134854. [PMID: 39168223 DOI: 10.1016/j.ijbiomac.2024.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bioactivity screening revealed that the EtOAc extract from the culture broth of Phellinus igniarius SY489 exhibited remarkable α-glucosidase inhibitory activity, with an IC50 value of 1.92 μg/mL. Activity- and ultraviolet (UV) profile-guided isolation led to the discovery of four anti-diabetic styrylpyrones (1-4), including two novel compounds, phelignidins A (1) and B (2). Compounds 1 and 2 represent a rare structural type of styrylpyrone dimer, in which one of the pyrone moieties exists in an open-ring state. The absolute configurations of the new compounds 1 and 2, as well as the previously unresolved compound 3, were established. Compounds 1-4 were effective in α-glucosidase inhibition, anti-glycation, and antioxidant assays, surpassing or being comparable to the positive control drugs, with minimal cytotoxicity. Furthermore, studies on α-glucosidase inhibition mechanisms suggested that these compounds interact with α-glucosidase at a single binding site, causing secondary structure unfolding and exerting inhibitory activity via a mixed-type mechanism. These results provide an important basis for developing novel, low-toxicity, multi-target anti-diabetic drugs from edible and medicinal fungi.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiangji Fu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Sevimli E, Seyhan G, Akkaya D, Sarı S, Barut B, Köksoy B. Effective α-glycosidase inhibitors based on polyphenolic benzothiazole heterocycles. Bioorg Chem 2024; 147:107366. [PMID: 38636435 DOI: 10.1016/j.bioorg.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
α-Glycosidase inhibition is one of the main approaches to treat Diabetes mellitus. Polyphenolic moieties are known to be responsible for yielding exhibit potent α-glycosidase inhibitory effects. In addition, compounds containing benzothiazole and Schiff base functionalities were previously reported to show α-glycosidase inhibition. In this paper, the synthesis of seven new phloroglucinol-containing benzothiazole Schiff base derivatives through the reaction of 6-substituted-2-aminobenzothiazole compounds with 2,4,6-trihydroxybenzaldehyde using acetic acid as a catalyst was reported. The synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, and elemental analysis. The synthesized compounds were evaluated for their inhibitory effects on α-glycosidase, compounds 3f and 3g were found to show significant inhibitory properties when compared to the positive control. The IC50 values of 3f and 3g were calculated as 24.05 ± 2.28 and 18.51 ± 1.19 µM, respectively. Kinetic studies revealed that compounds 3f and 3g exhibited uncompetitive mode of inhibition against α-glycosidase. Molecular modeling predicted druglikeness for the title compounds and underpinned the importance of phloroglucinol hydroxyls for interacting with the key residues of α-glycosidase.
Collapse
Affiliation(s)
- Esra Sevimli
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Suat Sarı
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye.
| |
Collapse
|
8
|
Tang L, Guan Q, Zhang L, Xu M, Zhang M, Khan MS. Synergistic interaction of Cu(II) with caffeic acid and chlorogenic acid in α-glucosidase inhibition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:518-529. [PMID: 37661343 DOI: 10.1002/jsfa.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Phenolic acids are widespread in foods and are beneficial to human health. However, the role of metal ions in influencing the binding of proteins with phenolic acids that contain the same parent nucleus structure remains unclear. This study investigated the inhibitory effect of caffeic acid (CA) and chlorogenic acid (CHA) on α-glucosidase and the biological effect of copper on this process. RESULTS It was found that the esterification of CA with quinic acid could increase the fluorescence quenching, conformational change, and inhibitory effect of CHA on α-glucosidase. Copper ions reduced their fluorescence quenching and conformation-changing ability by binding to the neighboring phenolic hydroxyl group but also increased their ability to alter secondary structure and to inhibit α-glucosidase and in vitro anti-glycation. CONCLUSION Overall, this study shows that the binding of copper ions to the phenolic hydroxyl group adjacent to CA and CHA synergistically inhibited α-glucosidase. The findings will offer a theoretical basis for investigating the properties of metal ions and phenolic acid in food chemistry and their potential applications in the prevention and treatment of diabetes mellitus. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Meng Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | | |
Collapse
|
9
|
Wu Q, Zhang F, Niu M, Yan J, Shi L, Liang Y, Tan J, Xu Y, Xu J, Wang J, Feng N. Extraction Methods, Properties, Functions, and Interactions with Other Nutrients of Lotus Procyanidins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14413-14431. [PMID: 37754221 DOI: 10.1021/acs.jafc.3c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fen Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jia Yan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Yinggang Liang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiangying Tan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei 441300, China
| | - Jingyi Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
10
|
Shengnan Z, Yingjie Z, Junyue C, Shuangshuang S, Xin L, Yuanyuan S. Exploring the binding effect and mechanism of glycyrrhizin to ovomucin by combining spectroscopic analysis and molecular docking. Int J Biol Macromol 2023; 245:125535. [PMID: 37356685 DOI: 10.1016/j.ijbiomac.2023.125535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Ovomucin (OVM) is an ideal natural macromolecular glycoprotein extracted from eggs with good adhesion. Based on the defect that glycyrrhizin (GL) has good antiviral activity but fast metabolism, this study aimed to explore the binding effect and mechanism of GL to OVM, using multi-spectroscopic techniques, isothermal titration calorimetry (ITC), and molecular docking. The adhesion ability of OVM to the hydrophilic interface and GL was first demonstrated by dual polarization interferometry (DPI) analysis and binding capacity assay, and the OVM-GL complex exhibited a similar affinity for the spike protein of COVID-19. The spectroscopic results show that GL can quench the inherent fluorescence and change the glycosidic bond and secondary structure of OVM. The ITC measurements suggested that the binding was exothermic, the hydrogen bond was the dominant binding force for forming OVM-GL. Finally, molecular docking results indicated that GL has hydrogen bond interaction with several amino acid residues located in α-OVM and β-OVM while embedding into the hydrophobic pocket of OVM via hydrophobic interactions. In conclusion, OVM can adhere to the hydrophilic interface and bind to GL through hydrogen bonding and hydrophobic interactions to form a stable complex, that is expected to be helpful in virus prophylaxis.
Collapse
Affiliation(s)
- Zhu Shengnan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhou Yingjie
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Chai Junyue
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Sun Shuangshuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Lü Xin
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Shan Yuanyuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
11
|
Li J, Zhang J, Yu W, Gao H, Szeto IMY, Feng H, Liu X, Wang Y, Sun L. Soluble dietary fibres decrease α-glucosidase inhibition of epigallocatechin gallate through affecting polyphenol-enzyme binding interactions. Food Chem 2023; 409:135327. [PMID: 36586254 DOI: 10.1016/j.foodchem.2022.135327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The effects of soluble dietary fibres (SDFs) on α-glucosidase inhibition of EGCG were studied. Three arabinoxylans and polygalacturonic acid (PGA) significantly decreased inhibitory activity of EGCG against α-glucosidase, while two β-glucans hardly affected the inhibition. Although arabinoxylans and PGA weakened the competitive inhibition character of EGCG, they maintained the fluorescence quenching effect of EGCG. Then, arabinoxylans and PGA significantly decreased the particle size and turbidity of EGCG-enzyme complex. These results suggest that there formed SDFs-EGCG-enzyme ternary complexes. The stronger decreasing-effects of arabinoxylans and PGA on α-glucosidase inhibition of EGCG than β-glucans resulted from the stronger non-covalent interactions of arabinoxylans and PGA with EGCG. This is considered to arise from the short-branches of arabinoxylans that provided more opportunity for capturing EGCG, and from the strong polarity of PGA carboxyl that promoted hydrogen bondings with EGCG. Conclusively, SDFs should be considered as an impact factor when evaluating α-glucosidase inhibition of dietary polyphenols.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Wanyi Yu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Hang Gao
- College of Food Science and Engineering, Northwest A & F University, China
| | | | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
12
|
Gao J, Zhou M, Chen D, Xu J, Wang Z, Peng J, Lin Z, Yu S, Lin Z, Dai W. High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method. Food Chem 2023; 422:136179. [PMID: 37119598 DOI: 10.1016/j.foodchem.2023.136179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
An affinity selection-mass spectrometry method was applied for high-throughput screening of α-glucosidase (AGH) inhibitors from teas. Fourteen out of nineteen screened AGH inhibitor candidates were clustered as galloylated polyphenols (GPs). "AGH-GPs" interaction studies, including enzyme kinetics, fluorescence spectroscopy, circular dichroism, and molecular docking, jointly suggested that GPs noncompetitively inhibit AGH activity by interacting with amino acid residues near the active site of AGH and inducing changes in AGH secondary structure. Representative GPs and white tea extract (WTE) showed comparable AGH inhibition effects in Caco2 cells and postprandial hypoglycemic efficacy in diabetic mice as acarbose. The area under the curve of oral sucrose tolerance test was lower by 8.16%, 6.17%, and 7.37% than control group in 15 mg/kg EGCG, 15 mg/kg strictinin, and 150 mg/kg WTE group, respectively. Our study presents a high-efficiency approach to discover novel AGH inhibitors and elucidates a potential mechanism by which tea decreases diabetes risks.
Collapse
Affiliation(s)
- Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiye Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Shuai Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| |
Collapse
|
13
|
Han L, Wang H, Cao J, Li Y, Jin X, He C, Wang M. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose. Food Chem 2023; 420:136102. [PMID: 37060666 DOI: 10.1016/j.foodchem.2023.136102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Tartary buckwheat has been shown to provide a good antihyperglycemic effect. However, it is unclear which active compounds play a key role in attenuating postprandial hyperglycemia. Presently, acetone extract from the hull of Tartary buckwheat had the best effect for α-glucosidase inhibition (IC50 = 0.02 mg/mL). Twelve potential α-glucosidase inhibitors from Tartary buckwheat were screened and identified by the combination of ultrafiltration and high-performance liquid chromatography coupled with mass spectrometry. Myricetin and quercetin exhibited the highest anti-α-glucosidase activity with IC50 values of 0.02 and 0.06 mg/mL, respectively. These inhibitors manifested different types of inhibition manners against α-glucosidase via direct interaction with the amino acid residues. The results of structure-activity relationships indicated that an increase in the number of -OH on the B-ring greatly strengthened α-glucosidase inhibitory activity, but glucoside and rutinoside replacement on the C-ring obviously weakened this influence. Furthermore, a synergistic effect was observed between inhibitors with different inhibition manners.
Collapse
Affiliation(s)
- Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Huiqing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, PR China
| | - Xiying Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
14
|
In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis. Foods 2023; 12:foods12040715. [PMID: 36832790 PMCID: PMC9956223 DOI: 10.3390/foods12040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.
Collapse
|
15
|
Zhang J, Li S, Liu X, Sun L. Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins. Food Res Int 2023; 163:112155. [PMID: 36596106 DOI: 10.1016/j.foodres.2022.112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Inhibiting carbohydrate-hydrolyzing enzymes has been considered as an effective approach for controlling starch digestion and postprandial blood glucose level. α-Amylase and amyloglucosidase (AMG) are commonly applied in analysis of starch digestion behaviour. Catechins have been shown with the inhibiting effects on α-amylase. However, the inhibitory activity of catechins against AMG needs to be further studied. Therefore, AMG inhibition of 8 catechins and the mechanisms were studied in this work through substrate depletion, inhibition kinetics, molecular docking, fluorescence quenching, differential scanning calorimetry, and isothermal titration calorimetry. The inhibitory activity of catechins with galloyl moiety (CGMs) was found to be lower than the corresponding catechins without the moiety (Cs). All catechins were anti-competitive inhibitors, indicating that they tended to bind with AMG-starch complex in the digestion system, rather than with AMG directly. Interestingly, CGMs had higher quenching effects on AMG fluorescence than Cs, due to the additional π-stacking between aromatic rings of GM and AMG fluorophores. Also, CGMs had a higher binding affinity to AMG, due to the tendency of GM to AMG active site, although the affinity was much weaker than that of starch to AMG. Besides, catechins did not affect AMG thermostability. Therefore, there was an inconsistency between catechins-AMG binding interactions and the enzyme inhibition because the predominant sites for catechins binding were the non-active sites on AMG-starch complex, rather than the enzyme active ones. Conclusively, inhibition mode should also be considered when evaluating the inhibitory activity of a polyphenol based on the polyphenol-enzyme binding affinity.
Collapse
Affiliation(s)
- Jifan Zhang
- College of Food Science and Engineering, Northwest A & F University, China
| | - Shuangshuang Li
- College of Food Science and Engineering, Northwest A & F University, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A & F University, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, China.
| |
Collapse
|
16
|
Xiang J, Raka RN, Zhang L, Xiao J, Wu H, Ding Z. Inhibition of Three Diabetes-Related Enzymes by Procyanidins from Lotus (Nelumbo nucifera Gaertn.) Seedpods. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:390-398. [PMID: 35781857 DOI: 10.1007/s11130-022-00987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The inhibitory effects of procyanidins from lotus (Nelumbo nucifera Gaertn.) seedpods on the activities of α-amylase, α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), were studied and compared with those of (+)-catechin, (-)-epicatechin, epigallocatechin gallate (EGCG), procyanidin dimer B2 and trimer C1. The results showed that Lotus procyanidin extract (LPE) significantly inhibited α-amylase, α-glucosidase and PTP1B with IC50 values of 5.5, 1.0, and 0.33 μg/mL, respectively. The inhibition increased with the degree of polymerization and the existence of galloyl or gallocatechin units. Kinetic analysis showed that LPE inhibited α-glucosidase activity in a mixed competitive and noncompetitive mode. Fluorescence quenching revealed that α-glucosidase interacted with LPE or EGCG in an apparent static mode, or the model of "sphere of action". The apparent static (K) and bimolecular (kq) constants were 4375 M-1 and 4.375 × 1011 M-1 s-1, respectively, for LPE and 1195 M-1 and 1.195 × 1011 M-1 s-1, respectively, for EGCG. Molecular docking analysis provided further information on the interactions of (+)-catechin, (-)-epicatechin, EGCG, B2 and C1 with α-glucosidase. It is hypothesized that LPE may bind to multiple sites of the enzyme through hydrogen bonding and hydrophobic interactions, leading to conformational changes in the enzyme and thus inhibiting its activity. These findings first elucidate the inhibitory effect of LPE on diabetes-related enzymes and highlight the usefulness of LPE as a dietary supplement for the prophylaxis of diabetes.
Collapse
Affiliation(s)
- Jie Xiang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rifat Nowshin Raka
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Luocheng Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Junsong Xiao
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Hua Wu
- College of Chemistry and Materials Engineering, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zhiqian Ding
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
17
|
Zhang J, Li C, Wang G, Cao J, Yang X, Liu X, Sun L. α-Amylase inhibition of a certain dietary polyphenol is predominantly affected by the concentration of α-1, 4-glucosidic bonds in starchy and artificial substrates. Food Res Int 2022; 157:111210. [DOI: 10.1016/j.foodres.2022.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
18
|
Li S, Wu W, Li J, Zhu S, Yang X, Sun L. α-Amylase Changed the Catalytic Behaviors of Amyloglucosidase Regarding Starch Digestion Both in the Absence and Presence of Tannic Acid. Front Nutr 2022; 9:817039. [PMID: 35495955 PMCID: PMC9043763 DOI: 10.3389/fnut.2022.817039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The courses of starch digestion with individual α-amylase (AA), amyloglucosidase (AMG), and AA/AMG bi-enzyme system were performed and analyzed by first-order-reaction equations in the absence and presence of tannic acid (TA). An antagonistic effect between AA and AMG occurred at the digestion phase of readily-digestible starch due to the higher catalytic efficiency of AMG for starchy-substrates with more complex structures. This effect caused a faster rate of glucose production with AMG than with AA/AMG bi-enzyme system at this phase both in the absence and presence of TA. TA had a higher binding affinity to AA than to AMG as accessed by several methods, such as inhibition kinetics, fluorescence quenching, isothermal titration calorimetry (ITC), and molecular docking. Besides, differential scanning calorimetry (DSC) indicated that the change in the thermal and structural stabilities of enzymes in the presence of TA was related to the enzyme residues involved in binding with TA, rather than the inhibitory effects of TA. The binding characters of TA to both enzymes resulted in more “free” AMG without TA binding in AA/AMG bi-enzyme system than that in individual AMG. This binding property caused more and faster rate of glucose production at the digestion phase of slowly digestible starch (SDS) in the bi-enzyme system.
Collapse
|
19
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
20
|
Maradesha T, Patil SM, Al-Mutairi KA, Ramu R, Madhunapantula SV, Alqadi T. Inhibitory Effect of Polyphenols from the Whole Green Jackfruit Flour against α-Glucosidase, α-Amylase, Aldose Reductase and Glycation at Multiple Stages and Their Interaction: Inhibition Kinetics and Molecular Simulations. Molecules 2022; 27:1888. [PMID: 35335251 PMCID: PMC8949615 DOI: 10.3390/molecules27061888] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
For the first time, α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages inhibitory assays were used to explore the antidiabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed). Two polyphenols (phenolic acids) with strong antihyperglycaemic activity were isolated from the methanol extract of whole jackfruit flour (MJ) using activity-guided repeated fractionation on a silica gel column chromatography. The bioactive compounds isolated were identified as 3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid: CA) and 4-Hydroxy-3,5-dimethoxybenzoic acid (syringic acid: SA) after various physicochemical and spectroscopic investigations. CA (IC50: 8.0 and 26.90 µg/mL) and SA (IC50: 7.5 and 25.25 µg/mL) were identified to inhibit α-glucosidase and α-amylase in a competitive manner with low Ki values. In vitro glycation experiments further revealed that MJ and its components inhibited each stage of protein glycation as well as the generation of intermediate chemicals. Furthermore, CA (IC50: 3.10) and SA (IC50: 3.0 µg/mL) inhibited aldose reductase effectively in a non-competitive manner, respectively. The binding affinity of these substances towards the enzymes examined has been proposed by molecular docking and molecular dynamics simulation studies, which may explain their inhibitory activities. The found potential of MJ in antihyperglycaemic activity via inhibition of α-glucosidase and in antidiabetic action via inhibition of the polyol pathway and protein glycation is more likely to be related to the presence of the phenolic compounds, according to our findings.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India;
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
21
|
Li W, Song Y, Sun W, Yang X, Liu X, Sun L. Both Acidic pH Value and Binding Interactions of Tartaric Acid With α-Glucosidase Cause the Enzyme Inhibition: The Mechanism in α-Glucosidase Inhibition of Four Caffeic and Tartaric Acid Derivates. Front Nutr 2021; 8:766756. [PMID: 34692755 PMCID: PMC8529059 DOI: 10.3389/fnut.2021.766756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023] Open
Abstract
The inhibition mechanism of four caffeic and tartaric acid derivates, including caffeic acid (CA), tartaric acid (TA), caftaric acid (CFA) and chicoric acid (CHA) against α-glucosidase was characterized by substrate depletion, fluorescence quenching, isothermal titration calorimetry (ITC) and molecular docking. TA and CA were found with the highest and no inhibition effect respectively, and caffeoyl substitution at 2 and/or 3-OH of TA significantly decreased its inhibition. The enzyme inhibition effects of organic acids were not in an inhibitor concentration-dependent mode, and there was a rush increase in inhibition at a respective acidic pH value, especially for CFA and CHA, suggesting the important role of acidic pH in the enzyme inhibition for both compounds. Besides, CA, CFA and CHA were shown with strong quenching effects on α-glucosidase fluorescence because of π-conjugations between aromatic ring of caffeoyl moiety and that of enzyme fluorescent residues. However, no fluorescence quenching effect was observed for TA due to lack of aromatic ring. Additionally, a direct binding interaction behavior was observed for TA with α-glucosidase according to the fitted independent binding model in ITC, but not for CFA and CHA. Therefore, both acidic pH and binding interactions of TA with α-glucosidase resulted in the enzyme inhibition.
Collapse
Affiliation(s)
- Wenyue Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wanshu Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xi Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|