1
|
Zhang H, Chen D, Zhang P, Xiao X, Wu H, Caiyin Q, Qiao J, Wu S. Mining and validating quorum sensing interference molecules from food-derived compounds for Salmonella Typhimurium. Food Funct 2025. [PMID: 40201951 DOI: 10.1039/d5fo00185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Food-derived compounds represent a promising reservoir for developing novel therapeutic agents against pathogenic infections such as Salmonella Typhimurium. In this study, we integrated computational biology with experimental validation to identify and characterize quorum sensing interference molecules (QSIMs) from food-derived compounds. Through structure-based virtual screening of more than 8000 compounds in the FooDB database, we identified the potential candidates (such as skatole, 2-aminoquinoline, tricarballylic acid, and L-3-phenyllactic acid) demonstrating high affinity binding to the LsrB receptor, as validated by surface plasmon resonance analysis. We further evaluated the performances of the aforementioned QSIMs on strain growth, biofilm formation, and motility. Furthermore, we have also deciphered the corresponding mechanisms and verified the effectiveness of the obtained QSIMs. Finally, we discussed the opportunities and challenges in the development of food-derived QSIMs for weakening virulence, reducing infection and relieving drug resistance of some other pathogens.
Collapse
Affiliation(s)
- Hongrui Zhang
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
| | - Xue Xiao
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300350, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300350, China
- State Key Laboratory of Synthetic Biology, Tianjin, 300350, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin, University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, 312300, China
| |
Collapse
|
2
|
Yarahmadi A, Najafiyan H, Yousefi MH, Khosravi E, Shabani E, Afkhami H, Aghaei SS. Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1493915. [PMID: 40176987 PMCID: PMC11962305 DOI: 10.3389/fcimb.2025.1493915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Antibiotics represent one of the most significant medical breakthroughs of the twentieth century, playing a critical role in combating bacterial infections. However, the rapid emergence of antibiotic resistance has become a major global health crisis, significantly complicating treatment protocols. This paper provides a narrative review of the current state of antibiotic resistance, synthesizing findings from primary research and comprehensive review articles to examine the various mechanisms bacteria employ to counteract antibiotics. One of the primary sources of antibiotic resistance is the improper use of antibiotics in the livestock industry. The emergence of drug-resistant microorganisms from human activities and industrial livestock production has presented significant environmental and public health concerns. Today, resistant nosocomial infections occur following long-term hospitalization of patients, causing the death of many people, so there is an urgent need for alternative treatments. In response to this crisis, non-antibiotic therapeutic strategies have been proposed, including bacteriophages, probiotics, postbiotics, synbiotics, fecal microbiota transplantation (FMT), nanoparticles (NPs), antimicrobial peptides (AMPs), antibodies, traditional medicines, and the toxin-antitoxin (TA) system. While these approaches offer innovative solutions for addressing bacterial infections and preserving the efficacy of antimicrobial therapies, challenges such as safety, cost-effectiveness, regulatory hurdles, and large-scale implementation remain. This review examines the potential and limitations of these strategies, offering a balanced perspective on their role in managing bacterial infections and mitigating the broader impact of antibiotic resistance.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamide Najafiyan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elham Khosravi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
3
|
Ghanem DM, Okba MM, Ammar NM, Mohamed DA, El-Desoky AH, Hussein RA, El-Hawary SS. Genus Carissa L.: a newly explored sustainable source of virulence inhibitors: a mini review. Nat Prod Res 2025; 39:1696-1713. [PMID: 39082374 DOI: 10.1080/14786419.2024.2385698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 03/14/2025]
Abstract
Misuse of antibiotics led to the world wide spread of antimicrobial resistance threatening human lives. The notable resistance of bacterial cells to antibiotics and immune system is the difficulty associated with biofilm-linked illnesses. Natural products from plant origin with antibiofilm activity could provide more therapeutic activity with fewer adverse effects. Carissa L. is a potential drug candidate that can be considered as an agro-food waste sustainable virulence inhibitor source. This mini-review sheds light on recent studies dealing with the anti-virulence potential of Carissa species and its different mechanisms of action. The traced articles revealed that Carissa species exhibited potent antibiofilm, anti-quorum sensing, hyaluronidase inhibitory and anti-adhesion potentials, in addition to violacein, and swimming motility inhibition activities. Ursolic acid, oleanolic acid, and methyl oleanate are the main phytoconstituents of Carissa with claimed virulence inhibitory potentials. Carissa species are safe, valuable, and effective anti-virulence drugs suppressing pathogenicity when compared to conventional antibiotics.
Collapse
Affiliation(s)
- Dina M Ghanem
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nagwa M Ammar
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Doha A Mohamed
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed H El-Desoky
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Rehab A Hussein
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Tamaroh S, Sari YP, Wariyah C, Huda N, Candraruna DB. Formulation and characterization of nanoemulsion containing anthocyanin extract from purple yam ( Dioscorea alata L.). Food Sci Biotechnol 2025; 34:905-911. [PMID: 39974873 PMCID: PMC11832857 DOI: 10.1007/s10068-024-01713-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 02/21/2025] Open
Abstract
Anthocyanin is abundantly present in purple yam (Dioscorea alata L.) but it has instability and poor solubility in lipophilic system To overcome the challenges, a water-in-oil (W/O) based carrier system is needed to increase its solubility before being applied to food. Therefore, this study aimed to develop a stable W/O nanoemulsion formulation as a carrier for anthocyanin. The results showed that formula with a surfactant:water ratio of 5:1 was selected due to its low particle size and polydispersity index of 22.38 ± 0.86 nm and 0.31 ± 0.07, respectively. In addition, replacing 50% of water with anthocyanin produced a relatively stable anthocyanin with the lowest particle size of 18.31 ± 6.52 nm. The findings also showed that antioxidant activity tended not to differ significantly and had higher retention compared to extract solutions with concentrated anthocyanin. These results indicated that nanoemulsion could protect anthocyanins and had the potential to be used in the food and health industry.
Collapse
Affiliation(s)
- Siti Tamaroh
- Department of Agricultural Product Technology, Faculty of Agroindustry, Universitas Mercu Buana Yogyakarta, Karanglo, 55752 Indonesia
| | - Yuli Perwita Sari
- Department of Agricultural Product Technology, Faculty of Agroindustry, Universitas Mercu Buana Yogyakarta, Karanglo, 55752 Indonesia
| | - Chatarina Wariyah
- Department of Agricultural Product Technology, Faculty of Agroindustry, Universitas Mercu Buana Yogyakarta, Karanglo, 55752 Indonesia
| | - Nurul Huda
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Dipta Bthari Candraruna
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| |
Collapse
|
5
|
Zhong H, Luo X, Abdullah, Liu X, Hussain M, Guan R. Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39919822 DOI: 10.1080/10408398.2025.2458741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xin Luo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Prabhakaran M, Chauhan AS, Shetty NP, Sreerama YN. Exploring the potential of Carissa spinarum fruit in RTS beverage: a comprehensive study on preparation and stability. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:144-154. [PMID: 39867611 PMCID: PMC11754577 DOI: 10.1007/s13197-024-06017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 01/28/2025]
Abstract
The potential of Carissa spinarum (Cs), an underutilized plant rich in medicinal and nutritional value, for producing ready-to-serve (RTS) beverages was explored. The research investigated commercial processing techniques for extracting Cs fruit juice and the impact of stabilizers such as pectin (low and high), xanthan gum, and sodium alginate on beverage quality. Sodium alginate, chosen for its sedimentation rate and sensory acceptability, was further optimized in RTS formulations. These formulations, with 10% Cs fruit juice at different °Brix concentrations (10 (T1), 12 (T2), and 14 (T3)), were refrigerated (4 ± 0.5 °C) for 60 days, for shelf life studies, alongside physicochemical (pH, vitamin C, titratable acidity, total sugars, anthocyanin, total phenolics, flavonoids, DPPH activity) and sensory assessments. The treatments showed significant improvements in physicochemical stability compared to controls. HPLC analysis confirmed the retention of bioactive compounds Cyanidin-3-glucoside, Chlorogenic acid, Syringic acid, and Resveratrol in RTS beverages. Sensory evaluation indicated a higher level of acceptance, with overall acceptability ranked as follows on a 9-point hedonic scale: T2 (7.01) > T3 (6.92) > T1 (6.58) > Control (5.46). The study underscores Cs's bioactive potential and promising role in functional beverage development, appealing to health-conscious consumers due to retained nutrition and nutraceuticals during storage, offering convenient and flavorful options. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06017-w.
Collapse
Affiliation(s)
- Manoj Prabhakaran
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020 India
- Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri PG campus, Chikka Aluvara, Kodagu 571232 India
| | - Attar Singh Chauhan
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020 India
| | - Nandini Prasad Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020 India
| | - Y. N. Sreerama
- Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| |
Collapse
|
7
|
Sruthi P, Madhava Naidu M, Rao PJ. Valorization of cashew nut testa phenolics through nano-complexes stabilized with whey protein isolate and β-cyclodextrin: Characterization, anti-oxidant activity, stability and in vitro release. Food Res Int 2024; 181:114110. [PMID: 38448109 DOI: 10.1016/j.foodres.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Cashew nut testa (CNT) is an underutilized cashew by-product rich in polyphenols. The applications of CNT are limited due to its astringency, less solubility, and instability of polyphenols during the processing. Nanoencapsulation was used to overcome these limitations. β-cyclodextrin alone and in combination with whey protein isolate (WPI) was used for nano-complex preparation. The WPI/CD-CNT nano-complex powder showed higher encapsulation efficiency (86.9%) and yield (70.5-80%) compared to CD-CNT powder. Both the spray-dried powders showed improved thermal stability, higher solubility (97%), less moisture content, and increased DPPH and ABTS radical scavenging activities indicating potential food and agricultural applications. In addition, the nano-complex powders showed a controlled release of core bio-actives under gastric and intestinal pH compared to the non-encapsulated CNT phenolic extract. Degradation kinetics studies of the CNT extract after thermal and light treatments were also discussed. Both the nano-complexes showed high stability under light and thermal treatment. The results suggest that valorization of CNT can be done through nano-complex preparation and WPI and β-CD are efficient carrier materials for the encapsulation of polyphenols with potential applications in food and agriculture.
Collapse
Affiliation(s)
- P Sruthi
- Department of Plantation Products, Spices and Flavour Technology, CSIR - Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Madhava Naidu
- Department of Plantation Products, Spices and Flavour Technology, CSIR - Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pooja J Rao
- Department of Plantation Products, Spices and Flavour Technology, CSIR - Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Yao Y, Yuan H, Zheng Y, Wang M, Li C. An Insight into the Thermal Degradation Pathway of γ-Oryzanol and the Effect on the Oxidative Stability of Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5757-5765. [PMID: 38445360 DOI: 10.1021/acs.jafc.3c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.
Collapse
Affiliation(s)
- Yunping Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zheng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengda Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Santana-Garrido Á, Durán-Lobato M, Mate A, Martín-Banderas L, Vázquez CM. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int J Pharm 2024; 649:123602. [PMID: 37967686 DOI: 10.1016/j.ijpharm.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxidative stress plays a key role in several systemic and ocular diseases, including hypertensive eye diseases. In this context, we previously showed that oral administration of wild olive (acebuche, ACE) oil from Olea europaea var. sylvestris can counteract ocular damage secondary to arterial hypertension by modulating excess reactive oxygen species (ROS) produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Therefore, this work describes the development of an ACE oil-based formulation for ocular administration as a local therapy to counteract hypertension-related oxidative damage. Specifically, ACE oil nanoemulsions (NEs) were successfully produced and characterized, exhibiting appropriate features for ophthalmic administration, including a nanometer size (<200 nm), moderate negative ZP, adequate osmolality and pH, and colloidal stability in biorelevant fluids. Likewise, the NEs presented a shear thinning behavior, especially convenient for ocular instillation. In vivo evaluation was performed through either intravitreal injection or topical ophthalmic administration in mice with hypertension induced via administration of Nω-nitro-L-arginine-methyl-ester (L-NAME). Both routes of administration reduced hypertensive morphological alterations and demonstrated a noticeable antioxidant effect thanks to the reduction of the activity/expression of NADPH oxidase in cornea and retina. Thus, an ACE oil ophthalmic formulation represent a promising therapy for ocular pathologies associated with arterial hypertension.
Collapse
Affiliation(s)
- Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - M Durán-Lobato
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain.
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
10
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
11
|
Cheng Y, Liu J, Li L, Ren J, Lu J, Luo F. Advances in embedding techniques of anthocyanins: Improving stability, bioactivity and bioavailability. Food Chem X 2023; 20:100983. [PMID: 38144721 PMCID: PMC10740132 DOI: 10.1016/j.fochx.2023.100983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
The health benefits of anthocyanins have attracted extensive research interest. However, anthocyanins are sensitive to certain environmental and gastrointestinal conditions and have low oral bioavailability. It has been reported that delivery systems made in different ways could improve the stability, bioavailability and bioactivity of anthocyanins. This present review summarizes the factors affecting the stability of anthocyanins and the reasons for poor bioavailability, and various technologies for encapsulation of anthocyanins including microcapsules, nanoemulsions, microemulsions, Pickering emulsions, nanoliposomes, nanoparticles, hydrogels and co-assembly with amphiphilic peptides were discussed. In particular, the effects of these encapsulation technologies on the stability, bioavailability and bioactivities of anthocyanins in vitro and in vivo experiments are reviewed in detail, which provided scientific insights for anthocyanins encapsulation methods. However, the application of anthocyanins in food industry as well as the biological fate and functional pathways in vivo still need to be further explored.
Collapse
Affiliation(s)
- Yingying Cheng
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiayi Liu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ling Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Lu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
12
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Li Q, Zhang F, Wang Z, Feng Y, Han Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023; 12:3969. [PMID: 37959087 PMCID: PMC10647620 DOI: 10.3390/foods12213969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Anthocyanins are natural flavonoid polyphenolic compounds widely found in fruits and vegetables. They exhibit antioxidant properties and prophylactic effects in the immune and cardiovascular systems, confer protection against cancer, and contribute to the prevention of cardiovascular diseases. Thus, their incorporation into functional foods, pharmaceuticals, supplements, and cosmetic formulations aims at promoting human well-being. This review comprehensively outlined the structural attributes of anthocyanins, expanding upon diverse methodologies employed for their extraction and production. Additionally, the stability, metabolic pathways, and manifold physiological functions of anthocyanins were discussed. However, their constrained fat solubility, susceptibility to instability, and restricted bioavailability collectively curtail their applicability and therapeutic efficacy. Consequently, a multidimensional approach was imperative, necessitating the exploration of innovative pathways to surmount these limitations, thereby amplifying the utilitarian significance of anthocyanins and furnishing pivotal support for their continual advancement and broader application.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Zhenzhen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yaoze Feng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Deng W, Li X, Ren G, Bu Q, Ruan Y, Feng Y, Li B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023; 12:2393. [PMID: 37372602 DOI: 10.3390/foods12122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Purple corn anthocyanins are important natural colourants with cheap prices and rich bioactivities. However, their stability is limited. Microencapsulation is an effective way to improve anthocyanin stability and the influence of the type of wall material on the stability of encapsulated anthocyanin is very important. In this study, maltodextrin (MD) and its combination with whey protein isolate (WPI) or gum arabic (GA) were utilised as wall materials to obtain encapsulated purple corn anthocyanins (PCAs) (MD-PCA, MD-WPI-PCA, MD-GA-PCA) using spray drying. The effect of the amount of the wall material was determined by encapsulation efficiency, anthocyanin content, and colour. On this basis, the effects of the types of wall materials on the physicochemical characteristics, storage, and digestion stabilities of encapsulated PCA, as well as their stabilities in chewing tablets, were investigated. The highest encapsulation efficiency, suitable colour, and anthocyanin content were obtained with the mass ratios 1:1 PCA to MD, 2:3 PCA to MD-GA, and 1:1 PCA to MD-WPI. Microencapsulation increased PCA storage and digestion stabilities. All three types of PCA microcapsules had low water content and hygroscopicity and good water solubility. MD-PCA had the strongest stability when stored at 25 °C; MD-GA-PCA-when stored at 40 °C, or in the presence of 5000 Lux light illumination; MD-WPI-PCA-when stored in 75% relative humidity or during gastric-intestinal digestion, but its resistance to 40 °C temperature and light illumination was lower than those for the two others. When used in chewing tablets, MD encapsulation was most stable in the presence of Ca2+, VC, or Fe2+ and improved PCA digestion stability. In conclusion, MD is a good choice for PCA encapsulation in regular conditions. MD-GA and MD-WPI can be used when considering high storage temperature (or light illumination) and high humidity (or for high digestion stability), respectively. The results of this study provide a reference for the storage and application of PCA.
Collapse
Affiliation(s)
- Wei Deng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyi Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Guoqiu Ren
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingmei Bu
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
15
|
Ellboudy NM, Elwakil BH, Shaaban MM, Olama ZA. Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities. Molecules 2023; 28:molecules28114492. [PMID: 37298980 DOI: 10.3390/molecules28114492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Despite recent scientific advances, the global load of bacterial disease remains high and has been established against a backdrop of increasing antimicrobial resistance. Therefore, there is a pressing need for highly effective and natural antibacterial agents. In the present work, the antibiofilm effect provided by essential oils was evaluated. Of these, cinnamon oil extract showed potent antibacterial and antibiofilm activities against Staphylococcus aureus at an MBEC of 75.0 µg/mL. It was revealed that benzyl alcohol, 2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were the major components of the tested cinnamon oil extract. In addition, the interaction between the cinnamon oil and colistin showed a synergistic effect against S. aureus. Cinnamon oil that had been combined with colistin was encapsulated by liposomes to enhance the essential oil's chemical stability, demonstrating a particle size of 91.67 nm, a PDI of 0.143, a zeta potential of -0.129 mV, and an MBEC of 50.0 µg/mL against Staphylococcus aureus. Scanning electron microscopy was employed to observe the morphological changes in the Staphylococcus aureus biofilm that was treated with the encapsulated cinnamon oil extract/colistin. As a natural and safe option, cinnamon oil exhibited satisfactory antibacterial and antibiofilm performance. The application of liposomes further improved the stability of the antibacterial agents and extended the essential oil release profile.
Collapse
Affiliation(s)
- Neveen M Ellboudy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21568, Egypt
| | - Zakia A Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
16
|
Zhang C, Xie Y, Qiu W, Mei J, Xie J. Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger ( Zingiber officinale) Essential Oil against Shewanella putrefaciens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1720. [PMID: 37111943 PMCID: PMC10140911 DOI: 10.3390/plants12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Ginger (Zingiber officinale) has unique medicinal value and can be used to treat colds and cold-related diseases. The chemical composition and antibacterial activity of ginger essential oil (GEO) against Shewanella putrefaciens were determined in the present study. Zingiberene, α-curcumene, and zingerone were the main active compounds of GEO. GEO displayed significant antibacterial activity against S. putrefaciens, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 2.0 and 4.0 μL/mL, respectively. Changes in intracellular ATP content, nucleic acid and protein structure, exopolysaccharides (EPS) content, and extracellular protease production indicated that GEO disrupted the membrane integrity of S. putrescens. At the same time, changes in biofilm metabolic activity content and the growth curve of biofilm showed that GEO could destroy the biofilm. Both scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations confirmed that GEO destroyed the cell membrane and lead to the leakage of the constituents. The above results indicate that GEO entered the cells via contact with bacterial membranes, and then inhibited the growth of S. putrefaciens and its biofilms by increasing membrane permeability and inhibiting various virulence factors such as EPS. The findings showed that GEO could destroy the structure of cell membrane and biofilm of tested S. putrefaciens, indicating its potential as a natural food preservative.
Collapse
Affiliation(s)
- Chi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
17
|
Li Y, Li Z, Wang Y, Sun L, Pei H. Anthocyanins/chitosan films doped by nano zinc oxide for active and intelligent packaging: comparison of anthocyanins source from purple tomato or black wolfberry. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
19
|
Li Q, Lv L, Liu Y, Fang Z, Deng Q, Liang W, Wu Y, Chen Z. Preparation, characterization and application of bacteriocin CAMT6 nanoliposomes using resveratrol as a novel stabilizer. Food Chem 2023; 403:134293. [DOI: 10.1016/j.foodchem.2022.134293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
20
|
Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. SEPARATIONS 2023. [DOI: 10.3390/separations10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Carissa spinarum L. (Apocynaceae), commonly known as Garna or Jungli Karonda, has a rich history of use in indigenous traditional medicinal systems owing to its tremendous medicinal and nutritional benefits. The present review aims to discuss the traditional uses, ethnopharmacology, bioactive composition, toxicity analysis, and biotechnological applications of Carissa spinarum L. (CS) to identify the gap between current applications and research conducted on this plant. We collected the literature published before December 2022 on the phytochemical composition, pharmacological properties, and biotechnological applications of CS. Literature in English from scientific databases such as Google Scholar, PubMed, ScienceDirect, Springer, and Wiley, along with books on CS, was analyzed and summarized to prepare this review. The plant taxonomy was verified using the “World Flora Online” database (http://www.worldfloraonline.org/). The in vitro and in vivo pharmacological studies on CS revealed its anthelmintic, anticonvulsant, anti-arthritic, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, hepatoprotective, vasorelaxant, antihypertensive, antitumor, wound-healing, anti-venom, and antipyretic effects. Toxicological studies on CS also indicated the absence of any adverse effects even at high doses after oral administration. Although CS showed remarkable therapeutic activities against several diseases—such as diabetes, cancer, inflammation, and hepatitis B virus—there are several drawbacks in previous reports, including the lack of information on the drug dose, standards, controls, and mechanism of action of the extract or the phytocompounds responsible for its activity. Extensive research with proper in vivo or in vitro model systems is required to validate its reported activities.
Collapse
|
21
|
Lin C, Jung J, Zhao Y. Cellulose nanofiber‐based emulsion coatings with enhanced hydrophobicity and surface adhesion for preserving anthocyanins within thermally processed blueberries packed in aqueous media. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chieh‐Yi Lin
- Department of Food Science & Technology Oregon State University Corvallis Oregon USA
| | - Jooyeoun Jung
- Department of Food Science & Technology Oregon State University Corvallis Oregon USA
| | - Yanyun Zhao
- Department of Food Science & Technology Oregon State University Corvallis Oregon USA
| |
Collapse
|
22
|
Ghosh S, Sarkar T, Chakraborty R. Underutilized plant sources: A hidden treasure of natural colors. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Li Q, Chen Q, Wu Y, Chen Z, Liu Y, Fang Z, Deng Q. Purification, characterization and structural identification of a novel bacteriocin produced by marine original Enterococcus durans YQ-6, and its inhibition of Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Sankar S, Ganesh PS, Subramaniam S, Shankar EM, Yuwanati M, Govindasamy R, Thiruvengadam M. Host cell responses against the pseudomonal biofilm: A continued tale of host-pathogen interactions. Microb Pathog 2023; 174:105940. [PMID: 36513294 DOI: 10.1016/j.micpath.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In biofilm formation, pathogens within the bacterial community coordinate a cell-cell communication system called quorum sensing (QS). This is achieved through various signalling pathways that regulate bacterial virulence and host immune response. Here, we reviewed the host responses, key clinical implications, and novel therapeutic approaches against the biofilms of P. aeruginosa. Given the high degree of intrinsic antibiotic resistance and biofilm formation by the pathogen, the ensuing treatment complications could result in high morbidity and mortality rates worldwide. Notwithstanding the availability of intervention strategies, there remains a paucity of effective therapeutic options to control biofilmogenesis. This review discusses the basic understanding of QS-associated virulence factors and several key therapeutic interventions to foil the biofilm menace of P. aeruginosa.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Suganya Subramaniam
- Department of Biotechnology, MMES Women's Arts and Science College, Melvisharam, 632 509, Tamil Nadu, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, Tamil Nadu, India
| | - Monal Yuwanati
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
25
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
26
|
Gonçalves AC, Falcão A, Alves G, Lopes JA, Silva LR. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022; 14:2272. [PMID: 36365091 PMCID: PMC9695229 DOI: 10.3390/pharmaceutics14112272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023] Open
Abstract
Anthocyanins are among the best-known phenolic compounds and possess remarkable biological activities, including antioxidant, anti-inflammatory, anticancer, and antidiabetic effects. Despite their therapeutic benefits, they are not widely used as health-promoting agents due to their instability, low absorption, and, thus, low bioavailability and rapid metabolism in the human body. Recent research suggests that the application of nanotechnology could increase their solubility and/or bioavailability, and thus their biological potential. Therefore, in this review, we have provided, for the first time, a comprehensive overview of in vitro and in vivo studies on nanocarriers used as delivery systems of anthocyanins, and their aglycones, i.e., anthocyanidins alone or combined with conventional drugs in the treatment or management of chronic diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - João A. Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
27
|
Noor A, Murad MA, Jaya Chitra A, Babu SN, Govindarajan S. Alginate based encapsulation of polyphenols ofPiper betelleaves: Development, stability, bio-accessibility and biological activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Ekrami A, Ghadermazi M, Ekrami M, Hosseini MA, Emam-Djomeh Z, Hamidi-Moghadam R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Yin L, Zhang Y, Azi F, Zhou J, Liu X, Dai Y, Wang Z, Dong M, Xia X. Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
31
|
Micro and Nanoencapsulation of Natural Colors: a Holistic View. Appl Biochem Biotechnol 2021; 193:3787-3811. [PMID: 34312787 DOI: 10.1007/s12010-021-03631-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
The applications of natural plant pigments are growing rapidly with the increasing awareness of the negative health impacts of synthetic colorants. Additionally, natural pigments possess various biological properties and therapeutic activities. But their functions are hindered by their poor bioavailability, bioaccessibility, low absorption rate, and susceptibility to destructive environmental changes during processing and delivery. Encapsulation is a method of entrapment of bioactive ingredients within suitable carriers to provide protection and for the appropriate delivery into the targeted site by the formation of particles or capsules in micrometer or nanometer scales. Encapsulation imparts several benefits including improved thermal and chemical stability, preserves or masks flavor, taste, or aroma, controlled and targeted release, and enhanced bioavailability of pigments. Micro and nanoencapsulation of pigments will provide extensive and intensive platforms for the development of a new stage in the production of novel and healthy foods. This review mainly focuses on the advanced developments in the fields of micro and nanoencapsulation of pigments.
Collapse
|