1
|
Lu J, Qiao Y, Jiang Y, Ali A, Guo L. Fabrication of highly carboxylated nanofibrous aerogels under mild conditions and their protein adsorption performance. Int J Biol Macromol 2024; 281:136636. [PMID: 39419156 DOI: 10.1016/j.ijbiomac.2024.136636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The development of high-performance media for protein adsorption in bio-purification is highly desired, particularly in biological pharmaceuticals. In this study, we demonstrate a simple, versatile and mild strategy to construct a nanofibrous aerogel (NFA)-based adsorption media for protein purification. Pyromellitic dianhydride (PMDA) was selected to in-situ graft onto poly(ethylene-co-vinyl alcohol) (PE-co-PVA) nanofibers in aerogels through liquid phase grafting. The obtained PE-co-PVA/PMDA NFAs (PPNAs) possessed superb underwater elasticity, compression fatigue resistance and shape-memory performance. With an open porous network, abundant adsorption ligands, and surface hydrophilicity, the PPNAs exhibited a significant adsorption capacity of 1019.71 mg/g and a short equilibrium time of 3.0 h, surpassing that of commercial and reported nanofiber-based adsorbents. Additionally, the PPNAs demonstrated good dynamic adsorption performance for protein driven solely by gravity. Furthermore, the PPNAs showed reusability, selectivity, acid and alkaline resistance, and practical potential of extracting lysozyme form egg white solution. The successful scale-up of such aerogel-based adsorbents can open up new way for the development and design of next-generation protein adsorption media for bio-purification applications.
Collapse
Affiliation(s)
- Jianwei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yufei Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangang Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Lu J, Jiang Y, Qiao Y, Wen Z, Luo Z, Ahmed M, Ali A, Guo L. Butane Tetracarboxylic Acid Grafted on Polymeric Nanofibrous Aerogels for Highly Efficient Protein Absorption and Separation. Polymers (Basel) 2024; 16:1270. [PMID: 38732739 PMCID: PMC11085302 DOI: 10.3390/polym16091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Developing high-performance and low-cost protein purification materials is of great importance to meet the demands for highly purified proteins in biotechnological industries. Herein, a facile strategy was developed to design and construct high-efficiency protein absorption and separation media by combining aerogels' molding techniques and impregnation processes. Poly (ethylene-co-vinyl alcohol) (EVOH) nanofibrous aerogels (NFAs) were modified by grafting butane tetracarboxylic acid (BTCA) over them in situ. This modification was carried out using polyphosphoric acid as a catalyst. The resulting EVOH/BTCA NFAs exhibited favorable comprehensive properties. Benefiting from the highly interconnected porous structure, good underwater compressive properties, and abundant absorption ligands, the obtained EVOH/BTCA NFAs possessed a high static absorption capacity of 1082.13 mg/g to lysozyme and a short absorption equilibrium time of about 6 h. A high saturated dynamic absorption capacity for lysozyme (716.85 mg/g) was also realized solely by gravity. Furthermore, EVOH/BTCA NFAs displayed excellent reusability, good acid and alkaline resistance, and unique absorption selectivity performance. The successful synthesis of such aerogels can provide a potential candidate for next-generation protein absorbents for bio-separation and purification engineering.
Collapse
Affiliation(s)
- Jianwei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Yangang Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Yufei Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Zihao Wen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Zhengjin Luo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.J.); (Y.Q.); (Z.W.); (Z.L.); (A.A.)
| |
Collapse
|
4
|
Wang Y, Zhang X, Liu P, Liu Z, Ren T, Wang Z. Template-Free Synthesis of Phosphorus/Nitrogen-Doped Mesoporous Titania Materials with Excellent Adsorption for Lysozymes. ACS OMEGA 2023; 8:49129-49136. [PMID: 38162772 PMCID: PMC10753566 DOI: 10.1021/acsomega.3c07222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Element-doped mesoporous titanium oxide has significant advantages in substance separation and adsorption due to its larger specific surface area and stronger hydrophobicity. However, its current synthesis methods have limitations such as complicated preparation process, high production cost, or not being environmentally friendly, and the synthesis of elementally doped titanium oxide materials by simple, low-cost, and green means is the research goal of this study. In this study, phosphorus-doped mesoporous titanium oxides (TiP) materials have been synthesized through a facile template-free method in an ethanol system, which were further modified by nitrogen doping with the use of urea as the nitrogen source. Both the synthesized TiP and P-N codoped sample (N-TiP) are amorphous with mesopores. It was revealed by FTIR and XPS spectra that the formation of Ti-O-P and -O-Ti-N bonds in the synthesized samples was due to the partial substitution of phosphorus for titanium in Ti-O-Ti bonds in mesoporous titanium oxide, while nitrogen replaced some oxygen in the -O-Ti-O bonds in the form of anions. The TiP sample was estimated by the BET method to have a relatively large surface area, up to 317 m2/g. The adsorption of TiP and N-TiP materials to lysozyme protein in a buffer solution at different pH values showed that the adsorption of TiP to lysozyme protein was larger, which was 32.68 μmol/g. It shows that TiP has potential as a multifunctional adsorbent.
Collapse
Affiliation(s)
- Yajing Wang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Xu Zhang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Peng Liu
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
- Engineering
Research Center for Silicate Solid Waste Resource Utilization of Hebei
Province, Shijiazhuang 050031, China
- Hebei
Key Laboratory of Green Development of Rock Mineral Materials, Shijiazhuang 050031, China
| | - Zhao Liu
- School
of Water Resources and Environment, Hebei
GEO University, Shijiazhuang 050031, China
| | - Tiezhen Ren
- College
of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Ziqian Wang
- School
of Gemology and Materials, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
5
|
Chen KH, Lai YR, Hanh NTD, Wang SSS, Chang YK. Breakthrough Curve Modeling and Analysis for Lysozyme Adsorption by Tris(hydroxymethyl)aminomethane Affinity Nanofiber Membrane. MEMBRANES 2023; 13:761. [PMID: 37755183 PMCID: PMC10537428 DOI: 10.3390/membranes13090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
In this study, a polyacrylonitrile nanofiber membrane was first hydrolyzed and then functionalized with tris(hydroxymethyl)aminomethane (P-Tris), then used as an affinity nanofiber membrane for lysozyme adsorption in membrane chromatography. The dynamic adsorption behavior of lysozyme was investigated in a flow system under various operating parameters, including adsorption pHs, initial feed lysozyme concentration, loading flow rate, and the number of stacked membrane layers. Four different kinetic models, pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion kinetic models, were applied to experimental data from breakthrough curves of lysozyme. The results showed that the dynamic adsorption results were fitted well with the pseudo-second-order kinetic model. The breakthrough curve experimental results show significant differences in the breakthrough time, the dynamic binding capacity, the length of the mass transfer zone, and the utilization rate of the membrane bed under different operating parameters. Four dynamic adsorption models (i.e., Bohart-Adams, Thomas, Yoon-Nelson, and BDST models) were used to analyze the breakthrough curve characteristics of the dynamic adsorption experiments. Among them, the Yoon-Nelson model was the best model to fit the breakthrough curve. However, some of the theoretical results based on the Thomas and Bohart-Adams model analyses of the breakthrough curve fit well with the experimental data, with an error percentage of <5%. The Bohart-Adams model has the largest difference from the experimental results; hence it is not suitable for breakthrough curve analysis. These results significantly impact dynamic kinetics studies and breakthrough curve characteristic analysis in membrane bed chromatography.
Collapse
Affiliation(s)
- Kuei-Hsiang Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Nguyen The Duc Hanh
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli Dist., Taoyuan City 320315, Taiwan
| |
Collapse
|
6
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
7
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
8
|
Hidane T, Fukui T, Demura M, Morisada S, Ohto K, Kawakita H. Separation of Phycobiliprotein from Nostoc Commune by Using Ion-Exchange Membrane with Quaternary Amine. SOLVENT EXTRACTION AND ION EXCHANGE 2022. [DOI: 10.1080/07366299.2022.2116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Takanori Hidane
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan
| | - Tomohiro Fukui
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan
| | - Mikihide Demura
- Department of Agriculture, Faculty of Agriculture, Saga University, Saga, Japan
| | - Shintaro Morisada
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan
| | - Keisuke Ohto
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan
| | - Hidetaka Kawakita
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, Japan
| |
Collapse
|
9
|
He X, Li M, Liu Y, Nian Y, Hu B. Purification of Egg White Lysozyme Determines the Downstream Fibrillation of Protein and Co-assembly with Phytochemicals to Form Edible Hydrogels Regulating the Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9432-9441. [PMID: 35876899 DOI: 10.1021/acs.jafc.2c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the synthetic chemistry or synthetic biological systems have already shown the power of biomaterials engineering, natural bioresource matter is still a valuable library of raw ingredients for the production of biomaterials, in particular, the edible ones. However, the influence of upstream isolation and purification of the raw materials on their performance in the downstream processing procedures is still unexplored, which is essential for the engineering of biomaterials. Based on the comparison of conventional techniques, heating-induced precipitation combined with resin-blending ion exchange was developed as a simple and cheap method for the utilization of egg whites to produce the lysozyme that is found to be exclusively feasible for fibrillation. Even with similar purities, only the lysozyme prepared by this method could be utilized to form ordered linear aggregate fibrils. Fibrillation was recently pursued as a new approach to utilize bioresource mass for high-tech end-products. Phytochemicals, totally replacing salts, induced the lysozyme fibrils to form hydrogels spontaneously, which was further demonstrated in an in vivo study to prevent obesity induced by a high-fat diet (HFD) by reducing lipid absorption and lipogenesis, promoting energy expenditure, and inhibiting inflammation. The agri-food bioresource was successfully employed as a proof of concept in edible biomedical materials for the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Xiaoqian He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Min Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanhua Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
10
|
Cai DL, Thanh DTH, Show PL, How SC, Chiu CY, Hsu M, Chia SR, Chen KH, Chang YK. Studies of Protein Wastes Adsorption by Chitosan-Modified Nanofibers Decorated with Dye Wastes in Batch and Continuous Flow Processes: Potential Environmental Applications. MEMBRANES 2022; 12:membranes12080759. [PMID: 36005674 PMCID: PMC9416031 DOI: 10.3390/membranes12080759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 01/01/2023]
Abstract
In this study, reactive green 19 dye from wastewater was immobilized on the functionalized chitosan nanofiber membranes to treat soluble microbial proteins in biological wastewater. Polyacrylonitrile nanofiber membrane (PAN) was prepared by the electrospinning technique. After heat treatment, alkaline hydrolysis, and chemically grafted with chitosan to obtain modified chitosan nanofibers (P-COOH-CS), and finally immobilized with RG19 dye, dyed nanofibers were generated (P-COOH-CS-RG19). The synthesis of P-COOH-CS and P-COOH-CS-RG19 are novel materials for protein adsorption that are not deeply investigated currently, with each of the material functions based on their properties in significantly improving the adsorption efficiency. The nanofiber membrane shows good adsorption capacity and great recycling performance, while the application of chitosan and dye acts as the crosslinker in the nanofiber membrane and consists of various functional groups to enhance the adsorption of protein. The dyed nanofibers were applied for the batch adsorption of soluble protein (i.e., lysozyme), and the process parameters including chitosan’s molecular weight, coupling pH, chitosan concentration, dye pH, dye concentration, and lysozyme pH were studied. The results showed that the molecular weight of chitosan was 50 kDa, pH 5, concentration 0.5%, initial concentration of dye at 1 mg/mL dye and pH 12, lysozyme solution at 2 mg/mL at pH 8, and the maximum adsorption capacity was 1293.66 mg/g at a temperature of 318 K. Furthermore, thermodynamic, and kinetic studies suggested that the adsorption behavior of lysozyme followed the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. The optimal adsorption and desorption conditions based on batch experiments were directly applied to remove lysozyme in a continuous operation. This study demonstrated the potential of dyed nanofibers as an efficient adsorbent to remove approximately 100% of lysozyme from the simulated biological wastewater.
Collapse
Affiliation(s)
- Dai-Lun Cai
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (D.-L.C.); (C.-Y.C.)
| | - Dinh Thi Hong Thanh
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China;
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - Su-Chun How
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 10452, Taiwan;
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (D.-L.C.); (C.-Y.C.)
| | - Michael Hsu
- Chemist Scientific Corp., Taishan Dist., New Taipei City 243303, Taiwan;
| | - Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Malaysia;
| | - Kuei-Hsiang Chen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (D.-L.C.); (C.-Y.C.)
- Correspondence: (K.-H.C.); (Y.-K.C.)
| | - Yu-Kaung Chang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (D.-L.C.); (C.-Y.C.)
- Correspondence: (K.-H.C.); (Y.-K.C.)
| |
Collapse
|
11
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Fabrication and characterization of MgCo2O4 for Solid Phase Extraction of Pb(II) from Environmental Samples and Its detection with high-resolution continuum source flame atomic absorption spectrometry (HR-CS-FAAS). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|